1
|
Tian WH, Jin Y, Liao YC, Faraj TK, Guo XY, Maharachchikumbura SSN. New and Interesting Pine-Associated Hyphomycetes from China. J Fungi (Basel) 2024; 10:546. [PMID: 39194872 DOI: 10.3390/jof10080546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Pine trees play a crucial role in the forests of Sichuan Province, boasting rich species diversity and a lengthy evolutionary history. However, research and investigation on fungi associated with pine trees are insufficient. This study investigated the diversity of hyphomycetes fungi associated with pine trees in Sichuan Province, China. During the survey, we collected five specimens of hyphomycetes from branches and bark of species of Pinus. Five barcodes were selected for study and sequenced, including ITS, SSU, LSU, TEF1, and RPB2. Morphological examination and multi-locus phylogenetic analyses revealed three new species, viz. Catenulostroma pini sp. nov. within Teratosphaeriaceae, Kirschsteiniothelia longisporum sp. nov. within Kirschsteiniotheliaceae, Sporidesmiella sichuanensis sp. nov. within Junewangiaceae, and two known species, Paradictyoarthrinium diffractum and P. hydei within Paradictyoarthriniaceae, which are the new host records from Pinus species. Catenulostroma pini, distinguished from other species in the genus by its unique morphology, has three conidial morphologies: small terminal helicoconidia, scolecoconidia with many septa, and phragmoconidia conidia. Kirschsteiniothelia longisporum has longer spores when compared to the other species in the genus. According to phylogenetic analysis, Sporidesmiella sichuanensis formed an independent clade sister to S. aquatica and S. juncicola, distinguished by differences in conidial size.
Collapse
Affiliation(s)
- Wen-Hui Tian
- Center for Informational Biology, College of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yan Jin
- Center for Informational Biology, College of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yue-Chi Liao
- Center for Informational Biology, College of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Turki Kh Faraj
- Department of Soil Science, College of Food and Agriculture Sciences, King Saud University, P.O. Box 145111, Riyadh 11362, Saudi Arabia
| | - Xin-Yong Guo
- College of Life Science, Shihezi University, Shihezi 832000, China
| | - Sajeewa S N Maharachchikumbura
- Center for Informational Biology, College of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
2
|
Zhao HJ, Doilom M, Mapook A, Wang G, Hyde KD, Dong W. New Insights into Tetraplosphaeriaceae Based on Taxonomic Investigations of Bambusicolous Fungi and Freshwater Fungi. J Fungi (Basel) 2024; 10:319. [PMID: 38786674 PMCID: PMC11121975 DOI: 10.3390/jof10050319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Species within Tetraplosphaeriaceae have been frequently documented in recent years with the extensive investigations of microfungi along a latitudinal gradient from north to south in the Asian/Australian region. Both bamboo substrates and freshwater habitats serve as extensive reservoirs, hosting a rich diversity of fungi that exhibit broad geographical distributions. The most common fungi in these two environments are generally distributed in distinct families. However, our statistics have revealed an intriguingly distinct preference of Tetraplosphaeriaceae species for inhabiting both bamboo substrates and freshwater habitats. The genera Pseudotetraploa (100%) and Triplosphaeria (100%) exhibit a strong preference, followed by Shrungabeeja (71%) and Quadricrura (67%). Our taxonomic and phylogenetic study of microfungi in southern China have identified four additional novel species, viz., Aquatisphaeria bambusae sp. nov., Pseudotetraploa phyllostachydis sp. nov., Pseudotetraploa yangjiangensis sp. nov., and Tetraploa submersa sp. nov. from bamboo substrates and freshwater habitats. In addition, Aquatisphaeria thailandica has previously been documented from freshwater habitats in Thailand; however, we have once again isolated this species from decaying bamboo substrates in Guangdong, China. The new findings substantiate our hypothesis that the preference of Tetraplosphaeriaceae species for colonizing bamboo substrates and freshwater habitats will be more evident through more extensive investigations conducted in such environments.
Collapse
Affiliation(s)
- Hai-Jun Zhao
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (H.-J.Z.); (K.D.H.)
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand;
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Mingkwan Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (H.-J.Z.); (K.D.H.)
| | - Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Gennuo Wang
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, 37073 Göttingen, Germany;
| | - Kevin D. Hyde
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (H.-J.Z.); (K.D.H.)
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand;
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11362, Saudi Arabia
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wei Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (H.-J.Z.); (K.D.H.)
| |
Collapse
|
3
|
Shu YX, Doilom M, Boonmee S, Xu B, Dong W. Three Novel Cheiroid Hyphomycetes in Dictyocheirospora and Dictyosporium ( Dictyosporiaceae) from Freshwater Habitats in Guangdong and Guizhou Provinces, China. J Fungi (Basel) 2024; 10:259. [PMID: 38667930 PMCID: PMC11051510 DOI: 10.3390/jof10040259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Over the past two decades, numerous novel species have been identified within Dictyosporiaceae, primarily in Dictyocheirospora and Dictyosporium. A recent monograph has revealed that these two genera exhibit a distinct preference for freshwater habitats, particularly in southern China. However, further investigation into the distribution and diversity of the two genera in Guangdong and Guizhou Provinces remains insufficient. In this study, we conducted an analysis of four intriguing cheiroid hyphomycetes collected from flowing rivers in these two regions. Through morphological and phylogenetic analyses incorporating combined LSU, SSU, ITS, and tef1-α sequence data, we have identified them as a novel species in Dictyocheirospora (Dictyoc. submersa sp. nov.), two novel species in Dictyosporium (Dictyos. guangdongense sp. nov. and Dictyos. variabilisporum sp. nov.), and one previously documented species (Dictyos. digitatum). Specifically, the identification of Dictyos. guangdongense is primarily based on its distinct morphology, characterized by complanate, cheiroid, and brown to dark brown conidia, with a hyaline, short, and atrophied appendage arising from the apical cell of the outer row. In addition, the morphological distinctions between Dictyocheirospora and Dictyosporium are further clarified based on our new data. This study also highlights a few phylogenetic matters regarding Dictyosporiaceae.
Collapse
Affiliation(s)
- Yong-Xin Shu
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (Y.-X.S.); (M.D.); (B.X.)
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand;
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Mingkwan Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (Y.-X.S.); (M.D.); (B.X.)
| | - Saranyaphat Boonmee
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand;
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Biao Xu
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (Y.-X.S.); (M.D.); (B.X.)
| | - Wei Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (Y.-X.S.); (M.D.); (B.X.)
| |
Collapse
|
4
|
Xu RJ, Li JF, Zhou DQ, Boonmee S, Zhao Q, Chen YY. Three novel species of Aquapteridospora (Distoseptisporales, Aquapteridosporaceae) from freshwater habitats in Tibetan Plateau, China. MycoKeys 2024; 102:183-200. [PMID: 38434108 PMCID: PMC10907956 DOI: 10.3897/mycokeys.102.112905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/17/2023] [Indexed: 03/05/2024] Open
Abstract
During an investigation of lignicolous freshwater fungi in the Tibetan Plateau, three Aquapteridospora taxa were collected from freshwater habitats in Xizang, China. The new species possess polyblastic, sympodial, denticles conidiogenous cells and fusiform, septate, with or without sheath conidial, that fit within the generic concept of Aquapteridospora, and multi-gene phylogeny placed these species within Aquapteridospora. Detailed morphological observations clearly demarcate three of these from extant species and are hence described as new taxa. The multi-gene phylogeny of the combined LSU, TEF1-α, and ITS sequence data to infer phylogenetic relationships and discuss phylogenetic affinities with morphologically similar species. Based on morphological characteristics and phylogenetic analyses, three new species viz. A.linzhiensis, A.yadongensis, and A.submersa are introduced. Details of asexual morphs are described, and justifications for establishing these new species are also provided in this study.
Collapse
Affiliation(s)
- Rong-Ju Xu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Guizhou Provincial Institute of Crop Germplasm Resources, Guiyang 550006, China
| | - Jun-Fu Li
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - De-Qun Zhou
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Saranyaphat Boonmee
- Guizhou Provincial Institute of Crop Germplasm Resources, Guiyang 550006, China
| | - Qi Zhao
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ya-Ya Chen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Centre for Mountain Futures (CMF), Kunming Institute of Botany, Kunming, Yunnan 650201, China
| |
Collapse
|
5
|
Jayawardena RS, Hyde KD, Wang S, Sun YR, Suwannarach N, Sysouphanthong P, Abdel-Wahab MA, Abdel-Aziz FA, Abeywickrama PD, Abreu VP, Armand A, Aptroot A, Bao DF, Begerow D, Bellanger JM, Bezerra JDP, Bundhun D, Calabon MS, Cao T, Cantillo T, Carvalho JLVR, Chaiwan N, Chen CC, Courtecuisse R, Cui BK, Damm U, Denchev CM, Denchev TT, Deng CY, Devadatha B, de Silva NI, dos Santos LA, Dubey NK, Dumez S, Ferdinandez HS, Firmino AL, Gafforov Y, Gajanayake AJ, Gomdola D, Gunaseelan S, Shucheng-He, Htet ZH, Kaliyaperumal M, Kemler M, Kezo K, Kularathnage ND, Leonardi M, Li JP, Liao C, Liu S, Loizides M, Luangharn T, Ma J, Madrid H, Mahadevakumar S, Maharachchikumbura SSN, Manamgoda DS, Martín MP, Mekala N, Moreau PA, Mu YH, Pahoua P, Pem D, Pereira OL, Phonrob W, Phukhamsakda C, Raza M, Ren GC, Rinaldi AC, Rossi W, Samarakoon BC, Samarakoon MC, Sarma VV, Senanayake IC, Singh A, Souza MF, Souza-Motta CM, Spielmann AA, Su W, Tang X, Tian X, Thambugala KM, Thongklang N, Tennakoon DS, Wannathes N, Wei D, Welti S, Wijesinghe SN, Yang H, Yang Y, Yuan HS, Zhang H, Zhang J, Balasuriya A, Bhunjun CS, Bulgakov TS, Cai L, Camporesi E, Chomnunti P, Deepika YS, Doilom M, Duan WJ, Han SL, Huanraluek N, Jones EBG, Lakshmidevi N, Li Y, Lumyong S, Luo ZL, Khuna S, Kumla J, Manawasinghe IS, Mapook A, Punyaboon W, Tibpromma S, Lu YZ, Yan J, Wang Y. Fungal diversity notes 1512-1610: taxonomic and phylogenetic contributions on genera and species of fungal taxa. FUNGAL DIVERS 2023; 117:1-272. [PMID: 36852303 PMCID: PMC9948003 DOI: 10.1007/s13225-022-00513-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/06/2022] [Indexed: 02/25/2023]
Abstract
This article is the 14th in the Fungal Diversity Notes series, wherein we report 98 taxa distributed in two phyla, seven classes, 26 orders and 50 families which are described and illustrated. Taxa in this study were collected from Australia, Brazil, Burkina Faso, Chile, China, Cyprus, Egypt, France, French Guiana, India, Indonesia, Italy, Laos, Mexico, Russia, Sri Lanka, Thailand, and Vietnam. There are 59 new taxa, 39 new hosts and new geographical distributions with one new combination. The 59 new species comprise Angustimassarina kunmingense, Asterina lopi, Asterina brigadeirensis, Bartalinia bidenticola, Bartalinia caryotae, Buellia pruinocalcarea, Coltricia insularis, Colletotrichum flexuosum, Colletotrichum thasutense, Coniochaeta caraganae, Coniothyrium yuccicola, Dematipyriforma aquatic, Dematipyriforma globispora, Dematipyriforma nilotica, Distoseptispora bambusicola, Fulvifomes jawadhuvensis, Fulvifomes malaiyanurensis, Fulvifomes thiruvannamalaiensis, Fusarium purpurea, Gerronema atrovirens, Gerronema flavum, Gerronema keralense, Gerronema kuruvense, Grammothele taiwanensis, Hongkongmyces changchunensis, Hypoxylon inaequale, Kirschsteiniothelia acutisporum, Kirschsteiniothelia crustaceum, Kirschsteiniothelia extensum, Kirschsteiniothelia septemseptatum, Kirschsteiniothelia spatiosum, Lecanora immersocalcarea, Lepiota subthailandica, Lindgomyces guizhouensis, Marthe asmius pallidoaurantiacus, Marasmius tangerinus, Neovaginatispora mangiferae, Pararamichloridium aquisubtropicum, Pestalotiopsis piraubensis, Phacidium chinaum, Phaeoisaria goiasensis, Phaeoseptum thailandicum, Pleurothecium aquisubtropicum, Pseudocercospora vernoniae, Pyrenophora verruculosa, Rhachomyces cruralis, Rhachomyces hyperommae, Rhachomyces magrinii, Rhachomyces platyprosophi, Rhizomarasmius cunninghamietorum, Skeletocutis cangshanensis, Skeletocutis subchrysella, Sporisorium anadelphiae-leptocomae, Tetraploa dashaoensis, Tomentella exiguelata, Tomentella fuscoaraneosa, Tricholomopsis lechatii, Vaginatispora flavispora and Wetmoreana blastidiocalcarea. The new combination is Torula sundara. The 39 new records on hosts and geographical distribution comprise Apiospora guiyangensis, Aplosporella artocarpi, Ascochyta medicaginicola, Astrocystis bambusicola, Athelia rolfsii, Bambusicola bambusae, Bipolaris luttrellii, Botryosphaeria dothidea, Chlorophyllum squamulosum, Colletotrichum aeschynomenes, Colletotrichum pandanicola, Coprinopsis cinerea, Corylicola italica, Curvularia alcornii, Curvularia senegalensis, Diaporthe foeniculina, Diaporthe longicolla, Diaporthe phaseolorum, Diatrypella quercina, Fusarium brachygibbosum, Helicoma aquaticum, Lepiota metulispora, Lepiota pongduadensis, Lepiota subvenenata, Melanconiella meridionalis, Monotosporella erecta, Nodulosphaeria digitalis, Palmiascoma gregariascomum, Periconia byssoides, Periconia cortaderiae, Pleopunctum ellipsoideum, Psilocybe keralensis, Scedosporium apiospermum, Scedosporium dehoogii, Scedosporium marina, Spegazzinia deightonii, Torula fici, Wiesneriomyces laurinus and Xylaria venosula. All these taxa are supported by morphological and multigene phylogenetic analyses. This article allows the researchers to publish fungal collections which are important for future studies. An updated, accurate and timely report of fungus-host and fungus-geography is important. We also provide an updated list of fungal taxa published in the previous fungal diversity notes. In this list, erroneous taxa and synonyms are marked and corrected accordingly.
Collapse
Affiliation(s)
- Ruvishika S. Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
| | - Song Wang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Ya-Ru Sun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, 550025 Guizhou China
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Phongeun Sysouphanthong
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Biotechnology and Ecology Institute, Ministry of Agriculture and Forestry, P.O.Box: 811, Vientiane Capital, Lao PDR
| | - Mohamed A. Abdel-Wahab
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524 Egypt
| | - Faten A. Abdel-Aziz
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524 Egypt
| | - Pranami D. Abeywickrama
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Beijing Key Laboratory of Environment-Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Vanessa P. Abreu
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais Brazil
| | - Alireza Armand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - André Aptroot
- Laboratório de Botânica/Liquenologia, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Avenida Costa e Silva S/N, Bairro Universitário, Campo Grande, Mato Grosso do Sul CEP 79070-900 Brazil
| | - Dan-Feng Bao
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- College of Agriculture and Biological Sciences, Dali University, Dali, 671003 Yunnan China
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Dominik Begerow
- Institute of Plant Science and Microbiology, Universität Hamburg, Organismic Botany and Mycology, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Jean-Michel Bellanger
- CEFE, CNRS, Univ. Montpellier, EPHE, IRD, INSERM, 1919, Route de Mende, 34293 Montpellier Cedex 5, France
| | - Jadson D. P. Bezerra
- Setor de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Rua 235, S/N, Setor Universitário, Goiânia, GO CEP: 74605-050 Brazil
| | - Digvijayini Bundhun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Mark S. Calabon
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Division of Biological Sciences, College of Arts and Sciences, University of the Philippines Visayas, 5023 Miagao, Iloilo Philippines
| | - Ting Cao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Taimy Cantillo
- Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Av. Transnordestina, S/N – Novo Horizonte, Feira de Santana, BA 44036-900 Brazil
| | - João L. V. R. Carvalho
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, S/N, Centro de Biociências, Cidade Universitária, Recife, PE CEP: 50670-901 Brazil
| | - Napalai Chaiwan
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Che-Chih Chen
- Biodiversity Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, 11529 Taipei Taiwan
| | - Régis Courtecuisse
- Faculty of Pharmacy of Lille, EA 4515 (LGCgE), Univ Lille, 59000 Lille, France
| | - Bao-Kai Cui
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083 China
| | - Ulrike Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - Cvetomir M. Denchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria
- IUCN SSC Rusts and Smuts Specialist Group, Sofia, Bulgaria
| | - Teodor T. Denchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria
- IUCN SSC Rusts and Smuts Specialist Group, Sofia, Bulgaria
| | - Chun Y. Deng
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Shanxi Road No. 1, Yunyan District, Guiyang, 550001 China
| | - Bandarupalli Devadatha
- Virus Diagnostic and Research Lab, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh 517501 India
- Department of Biotechnology, Pondicherry University, Kalapet, Pondicheryy 605014 India
| | - Nimali I. de Silva
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Lidiane A. dos Santos
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Pernambuco Brazil
| | - Nawal K. Dubey
- Center of Advanced Study in Botany, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - Sylvain Dumez
- Faculty of Pharmacy of Lille, EA 4515 (LGCgE), Univ Lille, 59000 Lille, France
| | - Himashi S. Ferdinandez
- Department of Botany, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - André L. Firmino
- Universidade Federal de Uberlândia, Instituto de Ciências Agrárias, Monte Carmelo, Minas Gerais Brazil
| | - Yusufjon Gafforov
- Laboratory of Mycology, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, 32 Durmon Yuli Street, Tashkent, Uzbekistan 100125
- AKFA University, 264 Milliy Bog Street, Tashkent, Uzbekistan 111221
| | - Achala J. Gajanayake
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Deecksha Gomdola
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Sugantha Gunaseelan
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Shucheng-He
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, West Side of North Section of Industrial Avenue, Linyi, 276000 China
| | - Zin H. Htet
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Malarvizhi Kaliyaperumal
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Martin Kemler
- Institute of Plant Science and Microbiology, Universität Hamburg, Organismic Botany and Mycology, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Kezhocuyi Kezo
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Nuwan D. Kularathnage
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangdong, 510225 China
| | - Marco Leonardi
- University of L’Aquila Dept. MeSVA, sect. Environmental Sciences via Vetoio, 67100 Coppito, AQ Italy
| | - Ji-Peng Li
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Shanxi Road No. 1, Yunyan District, Guiyang, 550001 China
| | - Chunfang Liao
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
| | - Shun Liu
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083 China
| | | | - Thatsanee Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Jian Ma
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003 China
| | - Hugo Madrid
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Tarapacá, Sede Iquique, Av. Luis Emilio Recabarren, 2477 Iquique, Chile
| | - S. Mahadevakumar
- Forest Pathology Department, KSCSTE-Kerala Forest Research Institute, Peechi, Thrissur, Kerala 680653 India
- Botanical Survey of India, Andaman and Nicobar Regional Centre, Haddo, Port Blair, South Andaman 744102 India
| | | | - Dimuthu S. Manamgoda
- Department of Botany, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - María P. Martín
- Real Jardín Botánico, RJB-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - Niranjan Mekala
- Department of Biotechnology, Pondicherry University, Kalapet, Pondicheryy 605014 India
- Department of Botany, Rajiv Gandhi University, Rono Hills, Doimukh, Papum Pare, Itanagar, Arunachal Pradesh 791112 India
| | | | - Yan-Hong Mu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Pasouvang Pahoua
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dhandevi Pem
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Olinto L. Pereira
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais Brazil
| | - Wiphawanee Phonrob
- Microbiology Program, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok, 65000 Thailand
| | - Chayanard Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University 38, Changchun, 130118 China
| | - Mubashar Raza
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Rd., Chaoyang District, Beijing, 100101 China
| | - Guang-Cong Ren
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Andrea C. Rinaldi
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Walter Rossi
- University of L’Aquila Dept. MeSVA, sect. Environmental Sciences via Vetoio, 67100 Coppito, AQ Italy
| | - Binu C. Samarakoon
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Milan C. Samarakoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Vemuri V. Sarma
- Department of Biotechnology, School of Life Sciences, Pondicherry University, R.V. Nagar, Kalapet, Pondicherry 605014 India
| | - Indunil C. Senanayake
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangdong, 510225 China
| | - Archana Singh
- Center of Advanced Study in Botany, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - Maria F. Souza
- Laboratório de Botânica/Liquenologia, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Avenida Costa e Silva S/N, Bairro Universitário, Campo Grande, Mato Grosso do Sul CEP 79070-900 Brazil
| | - Cristina M. Souza-Motta
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, S/N, Centro de Biociências, Cidade Universitária, Recife, PE CEP: 50670-901 Brazil
| | - Adriano A. Spielmann
- Laboratório de Botânica/Liquenologia, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Avenida Costa e Silva S/N, Bairro Universitário, Campo Grande, Mato Grosso do Sul CEP 79070-900 Brazil
| | - Wenxin Su
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University 38, Changchun, 130118 China
| | - Xia Tang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang, 550025 Guizhou Province China
| | - XingGuo Tian
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003 China
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Yunnan Engineering Research Center of Fruit Wine, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, 655011 Yunnan China
| | - Kasun M. Thambugala
- Generics and Molecular Biology Unit, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, 10250 Nugegoda Sri Lanka
| | - Naritsada Thongklang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Danushka S. Tennakoon
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Nopparat Wannathes
- Microbiology Program, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok, 65000 Thailand
| | - DingPeng Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200 Thailand
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, West Side of North Section of Industrial Avenue, Linyi, 276000 China
| | - Stéphane Welti
- Faculty of Pharmacy of Lille, EA 4515 (LGCgE), Univ Lille, 59000 Lille, France
| | - Subodini N. Wijesinghe
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Hongde Yang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, West Side of North Section of Industrial Avenue, Linyi, 276000 China
| | - Yunhui Yang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
| | - Hai-Sheng Yuan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164 China
| | - Huang Zhang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, West Side of North Section of Industrial Avenue, Linyi, 276000 China
| | - Jingyi Zhang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003 China
| | - Abhaya Balasuriya
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Chitrabhanu S. Bhunjun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Timur S. Bulgakov
- Department of Plant Protection, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Jana Fabriciusa Str. 2/28, Krasnodar Region, Sochi, Russia 354002
| | - Lei Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Rd., Chaoyang District, Beijing, 100101 China
| | - Erio Camporesi
- A.M.B, Circolo Micologico ‘‘Giovanni Carini’’, C.P. 314, 25121 Brescia, Italy
- A.M.B. Gruppo, Micologico Forlivese ‘‘Antonio Cicognani’’, via Roma 18, 47121 Forlì, Italy
- Società per gli Studi Naturalistici Della Romagna, C.P. 143, 48012 Bagnacavallo, RA Italy
| | - Putarak Chomnunti
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Y. S. Deepika
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru, Karnataka 570006 India
| | - Mingkwan Doilom
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
| | - Wei-Jun Duan
- Ningbo Academy of Inspection and Quarantine, Ningbo, Zhejiang, 315012 PR China
- Ningbo Customs District, Ningbo, 315012 Zhejiang PR China
| | - Shi-Ling Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Rd., Chaoyang District, Beijing, 100101 China
| | - Naruemon Huanraluek
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - E. B. Gareth Jones
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - N. Lakshmidevi
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru, Karnataka 570006 India
| | - Yu Li
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University 38, Changchun, 130118 China
| | - Saisamorn Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Zong-Long Luo
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003 China
| | - Surapong Khuna
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Ishara S. Manawasinghe
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
| | - Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Wilawan Punyaboon
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Saowaluck Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Yunnan Engineering Research Center of Fruit Wine, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, 655011 Yunnan China
| | - Yong-Zhong Lu
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003 China
| | - JiYe Yan
- Beijing Key Laboratory of Environment-Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Yong Wang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, 550025 Guizhou China
| |
Collapse
|
6
|
Ma J, Zhang JY, Xiao XJ, Xiao YP, Tang X, Boonmee S, Kang JC, Lu YZ. Multi-Gene Phylogenetic Analyses Revealed Five New Species and Two New Records of Distoseptisporales from China. J Fungi (Basel) 2022; 8:1202. [PMID: 36422023 PMCID: PMC9697283 DOI: 10.3390/jof8111202] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Eight hyphomycetes were collected as part of an investigation into the diversity of hyphomycetous fungi in China. Based on morphology and multi-loci (LSU, ITS, tef1α, and rpb2) phylogenetic analyses, five new taxa, including a new Aquapteridospora species A. hyalina and four novel Distoseptispora species, viz D. aquisubtropica, D. septata, D. tropica, and D. wuzhishanensis were introduced in Distoseptisporales (Sordariomycetes). Two new habitat records, viz Distoseptispora pachyconidia and D. xishuangbannaensis were firstly reported. Also provided in this study are detailed descriptions of eight new collections and a revised phylogenetic tree for the Distoseptisporales.
Collapse
Affiliation(s)
- Jian Ma
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Jing-Yi Zhang
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Xing-Juan Xiao
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, China
| | - Yuan-Pin Xiao
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, China
| | - Xia Tang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang 550025, China
| | - Saranyaphat Boonmee
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Ji-Chuan Kang
- Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang 550025, China
| | - Yong-Zhong Lu
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, China
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
- Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang 550025, China
| |
Collapse
|
7
|
Zhang H, Zhu R, Qing Y, Yang H, Li C, Wang G, Zhang D, Ning P. Polyphasic Identification of Distoseptispora with Six New Species from Fresh Water. J Fungi (Basel) 2022; 8:1063. [PMID: 36294625 PMCID: PMC9605234 DOI: 10.3390/jof8101063] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Twelve new specimens of sporidesmium-like taxa were collected from freshwater habitats in China and Thailand. Phylogenetic analysis of nuc 28S rDNA (LSU), internal transcribed spacer (ITS), translation elongation factor 1-alpha (TEF1-α) and second-largest subunit of RNA polymerase II (RPB2) sequence data, combined with morphological data, revealed that they are Distoseptispora species. Among them, six new species, including D. aqualignicola, D. aquamyces, D. crassispora, D. curvularia, D. nonrostrata and D. pachyconidia, are introduced. Two new combinations, D. adscendens and D. leonensis, are transferred from Ellisembia. A new habitat and geographical record are reported for D. clematidis, collected from a freshwater habitat in China. New RPB2 sequence data for D. dehongensis are provided.
Collapse
Affiliation(s)
- Huang Zhang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, West Side of North Section of Industrial Avenue, Linyi 276000, China
| | - Rong Zhu
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Yun Qing
- Faculty of Food Science and Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Hao Yang
- Faculty of Food Science and Engineering, Kunming University of Science & Technology, Kunming 650500, China
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Chunxue Li
- Faculty of Food Science and Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Gennuo Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Di Zhang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, West Side of North Section of Industrial Avenue, Linyi 276000, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming 650500, China
| |
Collapse
|
8
|
Calabon MS, Hyde KD, Jones EBG, Luo ZL, Dong W, Hurdeal VG, Gentekaki E, Rossi W, Leonardi M, Thiyagaraja V, Lestari AS, Shen HW, Bao DF, Boonyuen N, Zeng M. Freshwater fungal numbers. FUNGAL DIVERS 2022. [DOI: 10.1007/s13225-022-00503-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Maharachchikumbura SSN, Wanasinghe DN, Elgorban AM, Al-Rejaie SS, Kazerooni EA, Cheewangkoon R. Brunneosporopsis yunnanensis gen. et sp. nov. and Allocryptovalsa xishuangbanica sp. nov., New Terrestrial Sordariomycetes from Southwest China. Life (Basel) 2022; 12:life12050635. [PMID: 35629303 PMCID: PMC9146849 DOI: 10.3390/life12050635] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022] Open
Abstract
Three fungal taxa were collected on dead branches of wood during fieldwork in Sichuan and Yunnan Provinces, China. The new generic name Brunneosporopsis gen. nov. and species B. yunnanensis sp. nov. are introduced for a novel taxon characterized by globose to subglobose and dark olivacous-brown conidia. Phylogenetic analyses based on combined LSU, SSU and tef1-α loci strongly support the monophyly of this taxon and place it in the subclass Diaporthomycetidae. It could not be assigned to any currently recognized families in the subclass and was, therefore, placed in the Diaporthomycetidae genera incertae sedis. A second taxon represents a new species in Allocryptovalsa based on an analysis of the sequence datasets of ITS and btub loci of the novel, brown-spored sexual morphic species. This taxon is described here as A. xishuangbanica sp. nov. An interesting hypocrealean fungus producing synnemata, Stilbocrea gracilipes, was collected from dead wood of an unknown host from Sichuan Province and is reported here, with asexual morph from both the host and culture as well as LSU, ITS, tef1-α, rpb2 and rpb1 sequence data.
Collapse
Affiliation(s)
- Sajeewa S. N. Maharachchikumbura
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; or
| | - Dhanushka N. Wanasinghe
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe County 654400, China
- Correspondence: or (D.N.W.); (R.C.)
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Salim S. Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Elham A. Kazerooni
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea;
| | - Ratchadawan Cheewangkoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: or (D.N.W.); (R.C.)
| |
Collapse
|
10
|
Sugita R, Tanaka K. Thyridium revised: Synonymisation of Phialemoniopsis under Thyridium and establishment of a new order, Thyridiales. MycoKeys 2022; 86:147-176. [PMID: 35145340 PMCID: PMC8825628 DOI: 10.3897/mycokeys.86.78989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/11/2022] [Indexed: 11/23/2022] Open
Abstract
The genus Thyridium, previously known as a saprobic or hemibiotrophic ascomycete on various plants, was revised taxonomically and phylogenetically. Sequences of the following six regions, that is, the nuclear ribosomal internal transcribed spacer (ITS) region, the large subunit (LSU) of rDNA, the second largest RNA polymerase II subunit (rpb2) gene, translation elongation factor 1-alpha (tef1) gene, the actin (act) gene, and the beta-tubulin (tub2) gene, were generated for molecular phylogenetic analyses of species of this genus. Phialemoniopsis, a genus encompassing medically important species, is synonymised with Thyridium based on molecular evidence and morphological similarities in their asexual characters. The generic concept for Thyridium is expanded to include species possessing both coelomycetous and hyphomycetous complex asexual morphs. In addition to type species of Thyridium, T.vestitum, nine species were accepted in Thyridium upon morphological comparison and molecular phylogenetic analyses in this study. All seven species of Phialemoniopsis were treated as members of the genus Thyridium and new combinations were proposed. A bambusicolous fungus, Pleosporapunctulata, was transferred to Thyridium, and an epitype is designated for this species. A new species, T.flavostromatum, was described from Phyllostachyspubescens. The family Phialemoniopsidaceae, proposed as a familial placement for Phialemoniopsis, was regarded as a synonym of Thyridiaceae. A new order, Thyridiales, was established to accommodate Thyridiaceae; it forms a well-supported, monophyletic clade in Sordariomycetes.
Collapse
|
11
|
Morphological Variety in Distoseptispora and Introduction of Six Novel Species. J Fungi (Basel) 2021; 7:jof7110945. [PMID: 34829232 PMCID: PMC8620209 DOI: 10.3390/jof7110945] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/26/2021] [Accepted: 11/04/2021] [Indexed: 11/27/2022] Open
Abstract
Distoseptispora is one of the sporidesmium-like taxa with great variation in asexual morphology and delineation of species. Phylogenetic analyses of four gene regions LSU, ITS, TEF1α, and RPB2 revealed the placement of several sporidesmium-like species in Distoseptispora (Distoseptisporaceae, Distoseptisporales, Sordariomycetes), collected on submerged decaying twigs from streams in China and Thailand. Based on morphological examination and molecular DNA data, six new species, Distoseptispora amniculi, D. atroviridis, D. effusa, D. fusiformis, D. hyalina, and D. verrucosa, are proposed. Among them, D. hyalina is the first sexual morph confirmed in the genus. A new geographical record is reported for D. lignicola in China. Conidial length proved to be of less taxonomic significance for some Distoseptispora species, whereas the type of conidial septa is informative at species level.
Collapse
|
12
|
Shen HW, Bao DF, Hyde KD, Su HY, Bhat DJ, Luo ZL. Two novel species and two new records of Distoseptispora from freshwater habitats in China and Thailand. MycoKeys 2021; 84:79-101. [PMID: 34790026 PMCID: PMC8592981 DOI: 10.3897/mycokeys.84.71905] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022] Open
Abstract
During investigations into freshwater fungi from the Great Mekong Subregion, four Distoseptispora taxa were collected from China and Thailand. Based on morphological characteristics, and phylogenetic analyses of combined LSU, ITS, SSU, TEF1-α, and RPB2 sequence data, two new species Distoseptisporabangkokensis and D.lancangjiangensis are introduced, and two known species D.clematidis and D.thysanolaenae were first reported in freshwater habitat. Illustrations and descriptions of these taxa are provided, along with comparisons with extant taxa in the genus.
Collapse
Affiliation(s)
- Hong-Wei Shen
- College of Agriculture and Biological Sciences, Dali University, Dali 671003, Yunnan, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Dan-Feng Bao
- College of Agriculture and Biological Sciences, Dali University, Dali 671003, Yunnan, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Hong-Yan Su
- College of Agriculture and Biological Sciences, Dali University, Dali 671003, Yunnan, China
| | - Darbhe J. Bhat
- No. 128/1-J, Azad Housing Society, Curca, Goa Velha, 403108, India
| | - Zong-Long Luo
- College of Agriculture and Biological Sciences, Dali University, Dali 671003, Yunnan, China
| |
Collapse
|
13
|
Five Novel Taxa from Freshwater Habitats and New Taxonomic Insights of Pleurotheciales and Savoryellomycetidae. J Fungi (Basel) 2021; 7:jof7090711. [PMID: 34575749 PMCID: PMC8470061 DOI: 10.3390/jof7090711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/05/2022] Open
Abstract
Pleurotheciales is the largest order in Savoryellomycetidae with a large proportion of species known from freshwater habitats. In order to investigate the phylogenetic relationships of taxa within Pleurotheciales and contribute to their diversity, submerged wood was collected from freshwater habitats in China (Yunnan Province) and Thailand. Two dematiaceous, sporodochial hyphomycetes and one annulatascales-like ascomycete with unusual morphology as compared to extant ones were discovered. They were subjected to DNA-based phylogenetic analyses and the results revealed three distinct lineages in Savoryellomycetidae. This morpho-phylo taxonomic study supports the establishment of five novel taxa including two novel genera, Obliquifusoideum and Saprodesmium, and three novel species, Coleodictyospora muriformis, Obliquifusoideum guttulatum and Saprodesmium dematiosporum. Coleodictyospora muriformis and S. dematiosporum are placed in Pleurotheciales, while O. guttulatum is referred to Savoryellomycetidae genera incertae sedis. The phylogenetic relationships are also presented for Coleodictyospora and Pseudocoleodictyospora, which raises an intriguing taxonomic issue. These two genera are positioned in two different classes, viz Sordariomycetes and Dothideomycetes, although they are quite similar except for the presence of a conidial sheath. This study expands our knowledge of the fungal diversity of freshwater fungi, and also indicates that Pleurotheciales species are mostly found in freshwater habitats.
Collapse
|
14
|
|
15
|
Thi Hoang Yen L, Yamaguchi K, Van Hop D, Tsurumi Y, Kim Nu Thao N, Ando K. Phylogeny and a new species of Polylobatispora. MYCOSCIENCE 2021; 62:176-181. [PMID: 37091323 PMCID: PMC9157749 DOI: 10.47371/mycosci.2021.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/20/2023]
Abstract
During surveys conducted on freshwater fungi from Vietnam, a new aquatic anamorphic fungus was isolated from decaying leaves in Vietnam. The fungus produced phialidic, swollen conidiophore and conidiogenous cells with one-celled conidia with four very tiny lobes. Based on its conidial development and other morphological characteristics, we confirmed that this is a novel fungus and described it as P. ambigua sp. nov. Phylogenetic analyses of P. ambigua based on the LSU nrDNA sequences showed that this fungus clusters in a single clade with the two known Polylobatispora spp. with 97% bootstrap value which is sister with Pseudoprobiscisporaceae. The Polylobatispora clade is nested in the Attracrosporales, Sordariomycetes. Furthermore, in this study two known species of Polylobatispora (P. deltoidea and P. quinquecornuta) were also isolated and illustrated.
Collapse
Affiliation(s)
- Le Thi Hoang Yen
- a Institute of Microbiology and Biotechnology,Vietnam National University
| | - Kaoru Yamaguchi
- b Biological Resource Center, National Institute of Technology and Evaluation
| | - Duong Van Hop
- a Institute of Microbiology and Biotechnology,Vietnam National University
| | - Yasuhisa Tsurumi
- b Biological Resource Center, National Institute of Technology and Evaluation
| | - Nguyen Kim Nu Thao
- a Institute of Microbiology and Biotechnology,Vietnam National University
| | - Katsuhiko Ando
- b Biological Resource Center, National Institute of Technology and Evaluation
| |
Collapse
|
16
|
Calabon MS, Jones EG, Hyde KD, Boonmee S, Tibell S, Tibell L, Pang KL, Phookamsak R. Phylogenetic assessment and taxonomic revision of Halobyssothecium and Lentithecium (Lentitheciaceae, Pleosporales). Mycol Prog 2021. [DOI: 10.1007/s11557-021-01692-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractOur studies on lignicolous aquatic fungi in Thailand, Sweden, and the UK resulted in the collection of three new Halobyssothecium species (H. bambusicola, H. phragmitis, H. versicolor) assigned to Lentitheciaceae (Pleosporales, Dothideomycetes). Multi-loci phylogenetic analyses of the combined large subunit, small subunit, internal transcribed spacers of ribosomal DNA, and the translation elongation factor 1-alpha sequence data enabled a revision of the taxa assigned to Lentithecium and the transfer of L. cangshanense, L. carbonneanum, L. kunmingense, L. unicellulare, and L. voraginesporum to Halobyssothecium. Collection of an asexual morph of L. lineare and phylogenetic analysis confirmed its taxonomic placement in Keissleriella. Detailed descriptions and illustrations of H. bambusicola, H. phragmitis, and H. versicolor are provided.
Collapse
|
17
|
Hyde KD, Bao DF, Hongsanan S, Chethana KWT, Yang J, Suwannarach N. Evolution of freshwater Diaporthomycetidae (Sordariomycetes) provides evidence for five new orders and six new families. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-021-00469-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Abstract
AbstractFreshwater Dothideomycetes are a highly diverse group of fungi, which are mostly saprobic in freshwater habitats worldwide. They are important decomposers of submerged woody debris and leaves in water. In this paper, we outline the genera of freshwater Dothideomycetes with notes and keys to species. Based on multigene analyses and morphology, we introduce nine new genera, viz. Aquimassariosphaeria, Aquatospora, Aquihelicascus, Fusiformiseptata, Neohelicascus, Neojahnula, Pseudojahnula, Purpureofaciens, Submersispora; 33 new species, viz. Acrocalymma bipolare, Aquimassariosphaeria kunmingensis, Aquatospora cylindrica, Aquihelicascus songkhlaensis, A. yunnanensis, Ascagilis submersa, A. thailandensis, Bambusicola aquatica, Caryospora submersa, Dictyocheirospora thailandica, Fusiformiseptata crocea, Helicosporium thailandense, Hongkongmyces aquaticus, Lentistoma aquaticum, Lentithecium kunmingense, Lindgomyces aquaticus, Longipedicellata aquatica, Neohelicascus submersus, Neohelicomyces dehongensis, N. thailandicus, Neohelicosporium submersum, Nigrograna aquatica, Occultibambusa kunmingensis, Parabambusicola aquatica, Pseudoasteromassaria aquatica, Pseudoastrosphaeriella aquatica, Pseudoxylomyces aquaticus, Purpureofaciens aquatica, Roussoella aquatica, Shrungabeeja aquatica, Submersispora variabilis, Tetraploa puzheheiensis, T. yunnanensis; 16 new combinations, viz. Aquimassariosphaeria typhicola, Aquihelicascus thalassioideus, Ascagilis guttulaspora, A. queenslandica, A. seychellensis, A. sunyatsenii, Ernakulamia xishuangbannaensis, Neohelicascus aquaticus, N. chiangraiensis, N. egyptiacus, N. elaterascus, N. gallicus, N. unilocularis, N. uniseptatus, Neojahnula australiensis, Pseudojahnula potamophila; 17 new geographical and habitat records, viz. Aliquandostipite khaoyaiensis, Aquastroma magniostiolata, Caryospora aquatica, C. quercus, Dendryphiella vinosa, Ernakulamia cochinensis, Fissuroma neoaggregatum, Helicotruncatum palmigenum, Jahnula rostrata, Neoroussoella bambusae, N. leucaenae, Occultibambusa pustula, Paramonodictys solitarius, Pleopunctum pseudoellipsoideum, Pseudocapulatispora longiappendiculata, Seriascoma didymosporum, Shrungabeeja vadirajensis and ten new collections from China and Thailand, viz. Amniculicola guttulata, Aquaphila albicans, Berkleasmium latisporum, Clohesyomyces aquaticus, Dictyocheirospora rotunda, Flabellascoma fusiforme, Pseudoastrosphaeriella bambusae, Pseudoxylomyces elegans, Tubeufia aquatica and T. cylindrothecia. Dendryphiella phitsanulokensis and Tubeufia roseohelicospora are synonymized with D. vinosa and T. tectonae, respectively. Six orders, 43 families and 145 genera which belong to freshwater Dothideomycetes are reviewed. Of these, 46 genera occur exclusively in freshwater habitats. A world map illustrates the distribution of freshwater Dothideomycetes.
Collapse
|
19
|
Yuan HS, Lu X, Dai YC, Hyde KD, Kan YH, Kušan I, He SH, Liu NG, Sarma VV, Zhao CL, Cui BK, Yousaf N, Sun G, Liu SY, Wu F, Lin CG, Dayarathne MC, Gibertoni TB, Conceição LB, Garibay-Orijel R, Villegas-Ríos M, Salas-Lizana R, Wei TZ, Qiu JZ, Yu ZF, Phookamsak R, Zeng M, Paloi S, Bao DF, Abeywickrama PD, Wei DP, Yang J, Manawasinghe IS, Harishchandra D, Brahmanage RS, de Silva NI, Tennakoon DS, Karunarathna A, Gafforov Y, Pem D, Zhang SN, de Azevedo Santiago ALCM, Bezerra JDP, Dima B, Acharya K, Alvarez-Manjarrez J, Bahkali AH, Bhatt VK, Brandrud TE, Bulgakov TS, Camporesi E, Cao T, Chen YX, Chen YY, Devadatha B, Elgorban AM, Fan LF, Du X, Gao L, Gonçalves CM, Gusmão LFP, Huanraluek N, Jadan M, Jayawardena RS, Khalid AN, Langer E, Lima DX, de Lima-Júnior NC, de Lira CRS, Liu JK(J, Liu S, Lumyong S, Luo ZL, Matočec N, Niranjan M, Oliveira-Filho JRC, Papp V, Pérez-Pazos E, Phillips AJL, Qiu PL, Ren Y, Ruiz RFC, Semwal KC, Soop K, de Souza CAF, Souza-Motta CM, Sun LH, Xie ML, Yao YJ, Zhao Q, Zhou LW. Fungal diversity notes 1277–1386: taxonomic and phylogenetic contributions to fungal taxa. FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00461-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Jennwenomyces, a new hyphomycete genus segregated from Belemnospora, producing versicolored phragmospores from percurrently extending conidiophores. Mycol Prog 2020. [DOI: 10.1007/s11557-020-01602-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Mayers CG, Harrington TC, Mcnew DL, Roeper RA, Biedermann PHW, Masuya H, Bateman CC. Four mycangium types and four genera of ambrosia fungi suggest a complex history of fungus farming in the ambrosia beetle tribe Xyloterini. Mycologia 2020; 112:1104-1137. [PMID: 32552515 DOI: 10.1080/00275514.2020.1755209] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Ambrosia beetles farm fungal cultivars (ambrosia fungi) and carry propagules of the fungal mutualists in storage organs called mycangia, which occur in various body parts and vary greatly in size and complexity. The evolution of ambrosia fungi is closely tied to the evolution and development of the mycangia that carry them. The understudied ambrosia beetle tribe Xyloterini included lineages with uncharacterized ambrosia fungi and mycangia, which presented an opportunity to test whether developments of different mycangium types in a single ambrosia beetle lineage correspond with concomitant diversity in their fungal mutualists. We collected representatives of all three Xyloterini genera (Trypodendron, Indocryphalus, and Xyloterinus politus) and characterized their ambrosia fungi in pure culture and by DNA sequencing. The prothoracic mycangia of seven Trypodendron species all yielded Phialophoropsis (Microascales) ambrosia fungi, including three new species, although these relationships were not all species specific. Indocryphalus mycangia are characterized for the first time in the Asian I. pubipennis. They comprise triangular prothoracic cavities substantially smaller than those of Trypodendron and unexpectedly carry an undescribed species of Toshionella (Microascales), which are otherwise ambrosia fungi of Asian Scolytoplatypus (Scolytoplatypodini). Xyloterinus politus has two different mycangia, each with a different ambrosia fungus: Raffaelea cf. canadensis RNC5 (Ophiostomatales) in oral mycangia of both sexes and Kaarikia abrahamsonii (Sordariomycetes, genus incertae sedis with affinity for Distoseptisporaceae), a new genus and species unrelated to other known ambrosia fungi, in shallow prothoracic mycangia of females. In addition to their highly adapted mycangial mutualists, Trypodendron and X. politus harbor a surprising diversity of facultative symbionts in their galleries, including Raffaelea. A diversity of ambrosia fungi and mycangia suggest multiple ancestral cultivar captures or switches in the history of tribe Xyloterini, each associated with unique adaptations in mycangium anatomy. This further supports the theory that developments of novel mycangium types are critical events in the evolution of ambrosia beetles and their coadapted fungal mutualists.
Collapse
Affiliation(s)
- Chase G Mayers
- Department of Plant Pathology and Microbiology, Iowa State University, 2213 Pammel Drive, 1344 Advanced Teaching and Research Building , Ames, Iowa 50011
| | - Thomas C Harrington
- Department of Plant Pathology and Microbiology, Iowa State University, 2213 Pammel Drive, 1344 Advanced Teaching and Research Building , Ames, Iowa 50011
| | - Douglas L Mcnew
- Department of Plant Pathology and Microbiology, Iowa State University, 2213 Pammel Drive, 1344 Advanced Teaching and Research Building , Ames, Iowa 50011
| | | | - Peter H W Biedermann
- Department of Animal Ecology and Tropical Biology, Research Group Insect-Fungus Symbioses, University of Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Hayato Masuya
- Department of Forest Microbiology, Forestry and Forest Products Research Institute , 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Craig C Bateman
- Florida Museum of Natural History, University of Florida , Gainesville, Florida 32611
| |
Collapse
|
22
|
Composition and Diversity of Fungal Decomposers of Submerged Wood in Two Lakes in the Brazilian Amazon State of Pará. Int J Microbiol 2020. [DOI: 10.1155/2020/6582514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aquatic ecosystems in tropical forests have a high diversity of microorganisms, including fungi, which are important decomposers of submerged wood. Despite the importance of their role in decomposition, research concerning the diversity of freshwater fungi from Brazilian Amazonian environments is scarce. The aim of this work was to describe the composition and diversity of fungi present on submerged wood in two lakes of the Brazilian Amazon (State of Pará). Fragments of decaying wood (30 samples per lake) were collected from the Lakes Juá and Maicá. The wood samples were inspected for 6 months in the presence of fungal reproductive structures. Fungi observed in the wood were identified morphologically. Twenty-three taxa were identified in the Lake Juá (10 sexual and 13 asexual) and 26 taxa in the Lake Maicá (17 sexual, 9 asexual). ITS sequences were obtained for 14 taxa to aid in identification. In the Lakes Juá and Maicá, the diversity indices were H': 2.6514 and H': 2.8174, respectively. The Sørensen index of the fungal communities in the studied lakes was 0.3673. This study is the first to describe the fungal biodiversity of two important aquatic environments in Pará, Brazil.
Collapse
|
23
|
Dong W, Hyde KD, Doilom M, Yu XD, Bhat DJ, Jeewon R, Boonmee S, Wang GN, Nalumpang S, Zhang H. Pseudobactrodesmium (Dactylosporaceae, Eurotiomycetes, Fungi) a Novel Lignicolous Genus. Front Microbiol 2020; 11:456. [PMID: 32300334 PMCID: PMC7144566 DOI: 10.3389/fmicb.2020.00456] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/03/2020] [Indexed: 11/13/2022] Open
Abstract
During our ongoing surveys of fungi on submerged wood in the Greater Mekong Subregion, we collected two new species similar to Bactrodesmium longisporum. Pseudobactrodesmium gen. nov. is introduced to accommodate the new species, P. aquaticum, P. chiangmaiensis and B. longisporum is transferred to this genus. Fasciculate conidiophores, enteroblastic conidiogenous cells and subulate to fusiform, phragmoseptate conidia with a tapering apical cell and sheath characterize the genus. Pseudobactrodesmium aquaticum has longer conidia than P. chiangmaiensis. The placement of Pseudobactrodesmium in Dactylosporaceae (Eurotiomycetes) is a novel finding based on analyses of combined LSU, SSU, ITS and RPB2 sequence data. Our study reveals that Pseudobactrodesmium is likely to be a speciose genus with different species in streams around the world.
Collapse
Affiliation(s)
- Wei Dong
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, China.,Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Kevin D Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Mingkwan Doilom
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,World Agroforestry Centre, East and Central Asia, Kunming, China
| | - Xian-Dong Yu
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, China
| | | | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - Saranyaphat Boonmee
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Gen-Nuo Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Sarunya Nalumpang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Huang Zhang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, China.,Department of Botany, University of British Columbia, Vancouver, BC, Canada.,Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
24
|
Luo ZL, Hyde KD, Liu JK(J, Maharachchikumbura SSN, Jeewon R, Bao DF, Bhat DJ, Lin CG, Li WL, Yang J, Liu NG, Lu YZ, Jayawardena RS, Li JF, Su HY. Freshwater Sordariomycetes. FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00438-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Sordariomycetes is one of the largest classes of Ascomycota that comprises a highly diverse range of fungi mainly characterized by perithecial ascomata and inoperculate unitunicate asci. Freshwater Sordariomycetes play an important role in ecosystems and some of them have the potential to produce bioactive compounds. This study documents and reviews the freshwater Sordariomycetes, which is one of the largest and important groups of fungi in aquatic habitats. Based on evidence from DNA sequence data and morphology, we introduce a new order Distoseptisporales, two new families, viz. Ceratosphaeriaceae and Triadelphiaceae, three new genera, viz. Aquafiliformis, Dematiosporium and Neospadicoides, 47 new species, viz. Acrodictys fluminicola, Aquafiliformis lignicola, Aquapteridospora fusiformis, Arthrinium aquaticum, Ascosacculus fusiformis, Atractospora aquatica, Barbatosphaeria lignicola, Ceratosphaeria aquatica, C. lignicola, Chaetosphaeria aquatica, Ch. catenulata, Ch. guttulata, Ch. submersa, Codinaea yunnanensis, Conioscypha aquatica, C. submersa, Cordana aquatica, C. lignicola, Cosmospora aquatica, Cylindrotrichum submersum, Dematiosporium aquaticum, Dictyochaeta cangshanensis, D. ellipsoidea, D. lignicola, D. submersa, Distoseptispora appendiculata, D. lignicola, D. neorostrata, D. obclavata, Hypoxylon lignicola, Lepteutypa aquatica, Myrmecridium aquaticum, Neospadicoides aquatica, N. lignicola, N. yunnanensis, Ophioceras submersum, Peroneutypa lignicola, Phaeoisaria filiformis, Pseudostanjehughesia lignicola, Rhodoveronaea aquatica, Seiridium aquaticum, Sporidesmiella aquatica, Sporidesmium lageniforme, S. lignicola, Tainosphaeria lunata, T. obclavata, Wongia aquatica, two new combinations, viz. Acrodictys aquatica, Cylindrotrichum aquaticum, and 9 new records, viz. Chaetomium globosum, Chaetosphaeria cubensis, Ch. myriocarpa, Cordana abramovii, Co. terrestris, Cuspidatispora xiphiago, Sporidesmiella hyalosperma, Stachybotrys chartarum,S. chlorohalonata. A comprehensive classification of the freshwater Sordariomycetes is presented based on updated literature. Phylogenetic inferences based on DNA sequence analyses of a combined LSU, SSU, RPB2 and TEF1α dataset comprising species of freshwater Sordariomycetes are provided. Detailed information including their habitats distribution, diversity, holotype, specimens collected and classification are provided.
Collapse
|
25
|
Xie L, Chen YL, Long YY, Zhang Y, Liao ST, Liu B, Qin LP, Nong Q, Zhang WL. Three new species of Conlarium from sugarcane rhizosphere in southern China. MycoKeys 2019; 56:1-11. [PMID: 31327928 PMCID: PMC6626063 DOI: 10.3897/mycokeys.56.35857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/20/2019] [Indexed: 11/12/2022] Open
Abstract
Three new species isolated from sugarcane rhizosphere in China, namely Conlariumbaiseense sp. nov., C.nanningense sp. nov., and C.sacchari sp. nov., are described and illustrated. Molecular evidence (phylogenetic analysis of combined LSU, SSU, ITS and RPB2 sequence data) and phenotypical characters support their independent status from related and similar species. The new species, as dark spetate endophytes, inhabit sugarcane rhizosphere and can form a symbiosis with sugarcane.
Collapse
Affiliation(s)
- Ling Xie
- Microbiology Research Institute, Guangxi Academy of Agricultural Science, Nanning, Guangxi Province 530007, China Agricultural College of Guangxi University Nanning China.,Institute of Applied Microbiology, Agricultural College of Guangxi University, Nanning, Guangxi Province 530005, China Microbiology Research Institute, Guangxi Academy of Agricultural Science Nanning China
| | - Yan-Lu Chen
- Microbiology Research Institute, Guangxi Academy of Agricultural Science, Nanning, Guangxi Province 530007, China Agricultural College of Guangxi University Nanning China
| | - Yan-Yan Long
- Microbiology Research Institute, Guangxi Academy of Agricultural Science, Nanning, Guangxi Province 530007, China Agricultural College of Guangxi University Nanning China
| | - Yan Zhang
- Microbiology Research Institute, Guangxi Academy of Agricultural Science, Nanning, Guangxi Province 530007, China Agricultural College of Guangxi University Nanning China
| | - Shi-Tong Liao
- Microbiology Research Institute, Guangxi Academy of Agricultural Science, Nanning, Guangxi Province 530007, China Agricultural College of Guangxi University Nanning China
| | - Bin Liu
- Institute of Applied Microbiology, Agricultural College of Guangxi University, Nanning, Guangxi Province 530005, China Microbiology Research Institute, Guangxi Academy of Agricultural Science Nanning China
| | - Li-Ping Qin
- Microbiology Research Institute, Guangxi Academy of Agricultural Science, Nanning, Guangxi Province 530007, China Agricultural College of Guangxi University Nanning China
| | - Qian Nong
- Microbiology Research Institute, Guangxi Academy of Agricultural Science, Nanning, Guangxi Province 530007, China Agricultural College of Guangxi University Nanning China
| | - Wen-Long Zhang
- Microbiology Research Institute, Guangxi Academy of Agricultural Science, Nanning, Guangxi Province 530007, China Agricultural College of Guangxi University Nanning China
| |
Collapse
|
26
|
Phookamsak R, Hyde KD, Jeewon R, Bhat DJ, Jones EBG, Maharachchikumbura SSN, Raspé O, Karunarathna SC, Wanasinghe DN, Hongsanan S, Doilom M, Tennakoon DS, Machado AR, Firmino AL, Ghosh A, Karunarathna A, Mešić A, Dutta AK, Thongbai B, Devadatha B, Norphanphoun C, Senwanna C, Wei D, Pem D, Ackah FK, Wang GN, Jiang HB, Madrid H, Lee HB, Goonasekara ID, Manawasinghe IS, Kušan I, Cano J, Gené J, Li J, Das K, Acharya K, Raj KNA, Latha KPD, Chethana KWT, He MQ, Dueñas M, Jadan M, Martín MP, Samarakoon MC, Dayarathne MC, Raza M, Park MS, Telleria MT, Chaiwan N, Matočec N, de Silva NI, Pereira OL, Singh PN, Manimohan P, Uniyal P, Shang QJ, Bhatt RP, Perera RH, Alvarenga RLM, Nogal-Prata S, Singh SK, Vadthanarat S, Oh SY, Huang SK, Rana S, Konta S, Paloi S, Jayasiri SC, Jeon SJ, Mehmood T, Gibertoni TB, Nguyen TTT, Singh U, Thiyagaraja V, Sarma VV, Dong W, Yu XD, Lu YZ, Lim YW, Chen Y, Tkalčec Z, Zhang ZF, Luo ZL, Daranagama DA, Thambugala KM, Tibpromma S, Camporesi E, Bulgakov TS, Dissanayake AJ, Senanayake IC, Dai DQ, Tang LZ, Khan S, Zhang H, Promputtha I, Cai L, Chomnunti P, Zhao RL, Lumyong S, Boonmee S, Wen TC, Mortimer PE, Xu J. Fungal diversity notes 929–1035: taxonomic and phylogenetic contributions on genera and species of fungi. FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00421-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
27
|
Delgado G, Miller AN, Piepenbring M. South Florida microfungi: Castanedospora, a new genus to accommodate Sporidesmium pachyanthicola(Capnodiales, Ascomycota). CRYPTOGAMIE MYCOL 2018. [DOI: 10.7872/crym/v39.iss1.2018.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Gregorio Delgado
- EMLab P&K Houston, 10900 Brittmoore Park Drive Suite G, Houston, TX 77041, USA
- Department of Mycology, Institute of Ecology, Evolution and Diversity, Goethe Universität Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Andrew N. Miller
- Illinois Natural History Survey, University of Illinois, 1816 South Oak Street, Champaign, IL 61820, USA
| | - Meike Piepenbring
- Department of Mycology, Institute of Ecology, Evolution and Diversity, Goethe Universität Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| |
Collapse
|
28
|
Wijayawardene NN, Hyde KD, Lumbsch HT, Liu JK, Maharachchikumbura SSN, Ekanayaka AH, Tian Q, Phookamsak R. Outline of Ascomycota: 2017. FUNGAL DIVERS 2018. [DOI: 10.1007/s13225-018-0394-8] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
29
|
申 效. The Macroscopic Characteristics of Distribution of Global Terrestrial Biota—Biogeographical Regionalization Research III. INTERNATIONAL JOURNAL OF ECOLOGY 2018. [DOI: 10.12677/ije.2018.72014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Réblová M, Miller AN, Réblová K, Štěpánek V. Phylogenetic classification and generic delineation of Calyptosphaeria gen. nov., Lentomitella, Spadicoides and Torrentispora ( Sordariomycetes). Stud Mycol 2017; 89:1-62. [PMID: 29367793 PMCID: PMC5773705 DOI: 10.1016/j.simyco.2017.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The genus Ceratostomella has a long history of taxonomic confusion. While species with evanescent asci have been transferred to the Microascales and Ophiostomatales, the taxonomic status of species with persistent asci has not been completely resolved. In previous studies using DNA sequence data, cultures and morphology, several Ceratostomella spp. were allocated in 13 genera in the Eurotiomycetes and Sordariomycetes. In our study, the systematics of the remaining Ceratostomella spp. with persistent asci is revisited with new collection data, cultures and phylogeny based on novel DNA sequences from six nuclear loci. Bayesian inference and Maximum Likelihood analyses support the monophyly of several wood-inhabiting species formerly classified in Ceratostomella and other unknown morphologically similar taxa and their division into four genera, i.e. Lentomitella, Spadicoides, Torrentispora and the newly described Calyptosphaeria. This robust clade represents the order Xenospadicoidales in the Sordariomycetidae. Comparative analysis of the ITS2 secondary structure revealed a genetic variation among Lentomitella isolates; 11 species were recognised, of which five are newly introduced and two are new combinations. Other taxonomic novelties include four new species and eight new combinations in Calyptosphaeria, Spadicoides, and Torrentispora. Molecular data suggest that Spadicoides is polyphyletic. The core of the genus is positioned in the Xenospadicoidales; Spadicoides s. str. is experimentally linked with sexual morphs for the first time. Based on DNA sequence data, the monotypic genera Xenospadicoides and Pseudodiplococcium are reduced to synonymy under Spadicoides, while Fusoidispora and Pseudoannulatascus are synonymised with Torrentispora. Members of the Xenospadicoidales inhabit decaying wood in terrestrial and freshwater environments and share a few morphological characters such as the absence of stromatic tissue, ascomata with a cylindrical or rostrate neck, similar anatomies of the ascomatal walls, thin-walled unitunicate asci with a non-amyloid apical annulus, disintegrating paraphyses, usually ellipsoidal to fusiform ascospores and holoblastic-denticulate or tretic conidiogenesis. Revised Ceratostomella spp. with persistent asci are listed and the taxonomic status of each species is re-evaluated based on revision of the holotype and other representative material, published details and available phylogenetic data.
Collapse
Affiliation(s)
- M Réblová
- Institute of Botany of the Czech Academy of Sciences, Průhonice 252 43, Czech Republic
| | - A N Miller
- Illinois Natural History Survey, University of Illinois, Champaign, IL 61820, USA
| | - K Réblová
- Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - V Štěpánek
- Institute of Microbiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| |
Collapse
|
31
|
Yang J, Maharachchikumbura SSN, Liu JK, Hyde KD, Gareth Jones E, Al-Sadi AM, Liu ZY. Pseudostanjehughesia aquitropica gen. et sp. nov. and Sporidesmium sensu lato species from freshwater habitats. Mycol Prog 2017. [DOI: 10.1007/s11557-017-1339-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|