1
|
Mohammadi MA, Alizadeh AM, Mousavi M, Hashempour-Baltork F, Kooki S, Shadan MR, Hosseini SM, McClements DJ. Advances and applications of crosslinked electrospun biomacromolecular nanofibers. Int J Biol Macromol 2024; 271:132743. [PMID: 38821308 DOI: 10.1016/j.ijbiomac.2024.132743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Electrospinning is a technology for fabricating ultrafine fibers from natural or synthetic polymers that have novel or enhanced functional properties. These fibers have found applications in a diverse range of fields, including the food, medicine, cosmetics, agriculture, and chemical industries. However, the tendency for electrospun nanofibers to dissociate when exposed to certain environmental conditions limits many of their practical applications. The structural integrity and functional attributes of these nanofibers can be improved using physical and/or chemical crosslinking methods. This review article discusses the formation of polymeric nanofibers using electrospinning and then describes how different crosslinking methods can be used to enhance their mechanical, thermal, and biological attributes. Methods for optimizing the crosslinking reactions are discussed, including proper selection of crosslinker type and reaction conditions. Then, food, medical, and separation applications of crosslinked electrospun fibers are assessed, including in bone and skin tissue engineering, wound healing, drug delivery, air filtration, water filtration, oil removal, food packaging, food preservation, and bioactive delivery. Finally, areas where future research are needed are highlighted, as well as possible future applications of crosslinked nanofibers.
Collapse
Affiliation(s)
- Masoud Aman Mohammadi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Adel Mirza Alizadeh
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Malihe Mousavi
- Department of Nutrition, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Fataneh Hashempour-Baltork
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| | - Safa Kooki
- Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Reza Shadan
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Seyede Marzieh Hosseini
- Department of Food Technology, Faculty of Nutrition Science and Food Technology, Nutritional, and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
2
|
Liu Y, Lin Y, Lin Y, Lin C, Lan G, Su Y, Hu F, Chang K, Chen V, Yeh Y, Chen T, Yu J. Injectable, Antioxidative, and Tissue-Adhesive Nanocomposite Hydrogel as a Potential Treatment for Inner Retina Injuries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308635. [PMID: 38233151 PMCID: PMC10953571 DOI: 10.1002/advs.202308635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/05/2024] [Indexed: 01/19/2024]
Abstract
Reactive oxygen species (ROS) have been recognized as prevalent contributors to the development of inner retinal injuries including optic neuropathies such as glaucoma, non-arteritic anterior ischemic optic neuropathy, traumatic optic neuropathy, and Leber hereditary optic neuropathy, among others. This underscores the pivotal significance of oxidative stress in the damage inflicted upon retinal tissue. To combat ROS-related challenges, this study focuses on creating an injectable and tissue-adhesive hydrogel with tailored antioxidant properties for retinal applications. GelCA, a gelatin-modified hydrogel with photo-crosslinkable and injectable properties, is developed. To enhance its antioxidant capabilities, curcumin-loaded polydopamine nanoparticles (Cur@PDA NPs) are incorporated into the GelCA matrix, resulting in a multifunctional nanocomposite hydrogel referred to as Cur@PDA@GelCA. This hydrogel exhibits excellent biocompatibility in both in vitro and in vivo assessments, along with enhanced tissue adhesion facilitated by NPs in an in vivo model. Importantly, Cur@PDA@GelCA demonstrates the potential to mitigate oxidative stress when administered via intravitreal injection in retinal injury models such as the optic nerve crush model. These findings underscore its promise in advancing retinal tissue engineering and providing an innovative strategy for acute neuroprotection in the context of inner retinal injuries.
Collapse
Affiliation(s)
- Yi‐Chen Liu
- Department of Chemical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Yi‐Ke Lin
- Department of OphthalmologyCollege of MedicineNational Taiwan UniversityTaipei100233Taiwan
| | - Yu‐Ting Lin
- Department of Chemical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Che‐Wei Lin
- Department of Chemical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Guan‐Yu Lan
- Department of Chemical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Yu‐Chia Su
- Institute of Polymer Science and EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Fung‐Rong Hu
- Department of OphthalmologyCollege of MedicineNational Taiwan UniversityTaipei100233Taiwan
- Department of OphthalmologyNational Taiwan University HospitalTaipei100225Taiwan
| | - Kai‐Hsiang Chang
- Department of Chemical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Vincent Chen
- Department of Chemical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Yi‐Cheun Yeh
- Institute of Polymer Science and EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Ta‐Ching Chen
- Department of OphthalmologyNational Taiwan University HospitalTaipei100225Taiwan
- Center of Frontier MedicineNational Taiwan University HospitalTaipei100225Taiwan
| | - Jiashing Yu
- Department of Chemical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| |
Collapse
|
3
|
Suner SC, Oral A, Yildirim Y. Design of Poly(lactic) acid/gelatin core-shell bicomponent systems as a potential wound dressing material. J Mech Behav Biomed Mater 2024; 150:106255. [PMID: 38039772 DOI: 10.1016/j.jmbbm.2023.106255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
The electrospun core-shell nanofiber has great many advantages such as different types of solvents that can be used for changing flexibility, mechanical properties, or surface chemistry of fiber. Hydrophobic Poly(lactic) acid (PLA) and hydrophilic gelatin (Gel) were electrospun by various preparation conditions to design perfect bicomponent PLA:Gel nanofiber in a core-shell structure. Solvent types, the concentration of polymeric components, flow rate, and voltage of the electrospinning process were changed to optimization of nanofiber. According to the SEM images, the best nanofiber structure without beads was obtained at 0.4 ml/h flow rate of PLA solution and 1.2 ml/h flow rate of Gel solution at 45:55 (w:w %) weight ratio of PLA:Gel in trifluoroethanol solvent with a 10 kV voltage at 10 cm distance to the collector. From the TEM images, the existence of the core-shell structure had been proved which all prepared nanofibers with 2,2,2-Trifluoroethanol solvent. Furthermore, contact angle measurements showed a change in wettability when the Gel amount was increased. Therefore, the mildest synthesis conditions were determined for bicomponent PLA:Gel core-shell nanofibers as a potential wound dressing and dual drug carrier materials.
Collapse
Affiliation(s)
- Salih Can Suner
- Department of Chemistry and Chemical Processing Technologies, Lapseki Vocational School, Canakkale Onsekiz Mart University, Canakkale, Turkey; Canakkale Onsekiz Mart University Science and Technology Application and Research Laboratory, 17020, Canakkale, Turkey
| | - Ayhan Oral
- Department of Chemistry, Faculty of Arts and Science, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Yeliz Yildirim
- Department of Chemistry, Faculty of Sciences, Ege University, Izmir, Turkey; Center for Drug Research and Development and Pharmacokinetic Applications (ARGEFAR), Ege University, Izmir, Turkey.
| |
Collapse
|
4
|
Kong Y, Huang D. Pumpkin seed proteins rival animal gelatin in increasing the cytoaffinity of edible microbeads for cell-based meat culture. Food Res Int 2023; 168:112750. [PMID: 37120203 DOI: 10.1016/j.foodres.2023.112750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/21/2023] [Accepted: 03/19/2023] [Indexed: 05/01/2023]
Abstract
Edible microbeads are hotly sought after for emerging cell-based meat culture but there are no major breakthroughs so far. Herein we report a functional edible microbead with alginate as core coated with pumpkin proteins as shell. Proteins from 11 plant-seeds were extracted and tested their cytoaffinity as gelatin replacer by grafting them on alginate microbeads and pumpkin seed protein coated microbeads shown the best performance in stimulating proliferation of C2C12 cells (by 17 folds in a week), 3T3-L1 adipocytes, chicken muscle satellite cells and primary porcine myoblast. The cytoaffinity of pumpkin seed protein coated microbeads comparable with that of animal gelatin microbeads. Protein sequencing analysis on pumpkin seed proteins found that it is rich in RGD tripeptide moiety, which are known to be enhance cytoaffinity. Our work advances our search for edible microbeads as ECM materials for cell-based meat culture.
Collapse
Affiliation(s)
- Yan Kong
- Department of Food Science and Technology, 2 Science Drive 2, National University of Singapore, 117542, Singapore
| | - Dejian Huang
- Department of Food Science and Technology, 2 Science Drive 2, National University of Singapore, 117542, Singapore.
| |
Collapse
|
5
|
Kong Y, Jing L, Huang D. Plant proteins as the functional building block of edible microcarriers for cell-based meat culture application. Crit Rev Food Sci Nutr 2022; 64:4966-4976. [PMID: 36384368 DOI: 10.1080/10408398.2022.2147144] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Edible microcarriers are essential for developing cell-based meat in large-scale cell cultures. As they are required to be embedded in the final products, the microcarriers should be edible, biocompatible, cost-effective, and pathogen-free. The invention of edible animal-free microcarriers would be a breakthrough for cell-based meat culture. We reviewed the fabrication techniques and the materials of microcarriers, and found that plant proteins, having diverse structures and composition, could possess the active domains that are hypnotized to replace the animal-based extracellular matrix (ECM) for meat culture applications. In addition, the bioactive peptides in plants have been reviewed and most of them were resulted from enzyme hydrolysis. Therefore, plant proteins with rich bioactive peptides have the potential in the development microcarriers. Our work provided some new trains of thought for developing plant-based biomaterials as ECM materials and advances the fabrication of microcarriers for meat culture.
Collapse
Affiliation(s)
- Yan Kong
- Department of Food Science and Technology, 2 Science Drive 2, National University of Singapore, Singapore, Singapore
| | - Linzhi Jing
- National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Dejian Huang
- Department of Food Science and Technology, 2 Science Drive 2, National University of Singapore, Singapore, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou, China
| |
Collapse
|
6
|
Topçu AA. The adsorption performance of magnetic gelatin nanofiber for Orange G removal. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04464-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Singh YP, Dasgupta S. Gelatin-based electrospun and lyophilized scaffolds with nano scale feature for bone tissue engineering application: review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1704-1758. [PMID: 35443894 DOI: 10.1080/09205063.2022.2068943] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The rebuilding of the normal functioning of the damaged human body bone tissue is one of the main objectives of bone tissue engineering (BTE). Fabricated scaffolds are mostly treated as artificial supports and as materials for regeneration of neo bone tissues and must closely biomimetic the native extracellular matrix of bone. The materials used for developing scaffolds should be biodegradable, nontoxic, and biocompatible. For the resurrection of bone disorder, specifically natural and synthetic polymers such as chitosan, PCL, gelatin, PGA, PLA, PLGA, etc. meet the requirements for serving their functions as artificial bone substitute materials. Gelatin is one of the potential candidates which could be blended with other polymers or composites to improve its physicochemical, mechanical, and biological performances as a bone graft. Scaffolds are produced by several methods including electrospinning, self-assembly, freeze-drying, phase separation, fiber drawing, template synthesis, etc. Among them, freeze-drying and electrospinning are among the popular, simplest, versatile, and cost-effective techniques. The design and preparation of freeze-dried and electrospun scaffolds are of intense research over the last two decades. Freeze-dried and electrospun scaffolds offer a distinctive architecture at the micro to nano range with desired porosity and pore interconnectivity for selective movement of small biomolecules and play its role as an appropriate matrix very similar to the natural bone extracellular matrix. This review focuses on the properties and functionalization of gelatin-based polymer and its composite in the form of bone scaffolds fabricated primarily using lyophilization and electrospinning technique and their applications in BTE.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Department of Ceramic Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Sudip Dasgupta
- Department of Ceramic Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
8
|
Lee SY, Jeon S, Kwon YW, Kwon M, Kang MS, Seong KY, Park TE, Yang SY, Han DW, Hong SW, Kim KS. Combinatorial wound healing therapy using adhesive nanofibrous membrane equipped with wearable LED patches for photobiomodulation. SCIENCE ADVANCES 2022; 8:eabn1646. [PMID: 35427152 PMCID: PMC9012471 DOI: 10.1126/sciadv.abn1646] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/25/2022] [Indexed: 06/02/2023]
Abstract
Wound healing is the dynamic tissue regeneration process replacing devitalized and missing tissue layers. With the development of photomedicine techniques in wound healing, safe and noninvasive photobiomodulation therapy is receiving attention. Effective wound management in photobiomodulation is challenged, however, by limited control of the geometrical mismatches on the injured skin surface. Here, adhesive hyaluronic acid-based gelatin nanofibrous membranes integrated with multiple light-emitting diode (LED) arrays are developed as a skin-attachable patch. The nanofibrous wound dressing is expected to mimic the three-dimensional structure of the extracellular matrix, and its adhesiveness allows tight coupling between the wound sites and the flexible LED patch. Experimental results demonstrate that our medical device accelerates the initial wound healing process by the synergetic effects of the wound dressing and LED irradiation. Our proposed technology promises progress for wound healing management and other biomedical applications.
Collapse
Affiliation(s)
- So Yun Lee
- School of Chemical Engineering, College of Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Sangheon Jeon
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Young Woo Kwon
- Department of Nano-fusion Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Mina Kwon
- School of Chemical Engineering, College of Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Keum-Yong Seong
- Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Tae-Eon Park
- School of Chemical Engineering, College of Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Seung Yun Yang
- Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Ki Su Kim
- School of Chemical Engineering, College of Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
9
|
Sarvari R, Keyhanvar P, Agbolaghi S, Roshangar L, Bahremani E, Keyhanvar N, Haghdoost M, Keshel SH, Taghikhani A, Firouzi N, Valizadeh A, Hamedi E, Nouri M. A comprehensive review on methods for promotion of mechanical features and biodegradation rate in amniotic membrane scaffolds. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:32. [PMID: 35267104 PMCID: PMC8913518 DOI: 10.1007/s10856-021-06570-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 06/07/2021] [Indexed: 06/14/2023]
Abstract
Amniotic membrane (AM) is a biological tissue that surrounds the fetus in the mother's womb. It has pluripotent cells, immune modulators, collagen, cytokines with anti-fibrotic and anti-inflammatory effect, matrix proteins, and growth factors. In spite of the biological characteristics, some results have been released in preventing the adhesion on traumatized surfaces. Application of the AM as a scaffold is limited due to its low biomechanical resistance and rapid biodegradation. Therefore, for using the AM during surgery, its modification by different methods such as cross-linking of the membrane collagen is necessary, because the cross-linking is an effective way to reduce the rate of biodegradation of the biological materials. In addition, their cross-linking is likely an efficient way to increase the tensile properties of the material, so that they can be easily handled or sutured. In this regard, various methods related to cross-linking of the AM subsuming the composite materials, physical cross-linking, and chemical cross-linking with the glutraldehyde, carbodiimide, genipin, aluminum sulfate, etc. are reviewed along with its advantages and disadvantages in the current work.
Collapse
Affiliation(s)
- Raana Sarvari
- Stem Cell And Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Peyman Keyhanvar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Convergence of Knowledge, Technology and Society Network (CKTSN), Universal Scientific Education and Research Network (USERN), Tabriz, Iran.
- ARTAN1100 Startup Accelerator, Tabriz, Iran.
| | - Samira Agbolaghi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, P.O. BOX: 5375171379, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Bahremani
- Alavi Ophthalmological Treatment and Educational Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Keyhanvar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Gene Yakhteh Keyhan (Genik) Company (Ltd), Pharmaceutical Biotechnology Incubator, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Haghdoost
- Department of Infectious Diseases, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Heidari Keshel
- Medical Nanotechnology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Taghikhani
- Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Nima Firouzi
- Stem Cell and Tissue Engineering Research Laboratory, Chemical Engineering Faculty, Sahand University of Technology, P.O.BOX:51335-1996, Tabriz, Iran
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene, OR, 97403, USA
| | - Amir Valizadeh
- Stem Cell And Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Hamedi
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Nouri
- Stem Cell And Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Gao C, Zhang L, Wang J, Cheng Y, Chen Z, Yang R, Zhao G. Coaxial structured drug loaded dressing combined with induced stem cell differentiation for enhanced wound healing. BIOMATERIALS ADVANCES 2022; 134:112542. [PMID: 35525764 DOI: 10.1016/j.msec.2021.112542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/06/2021] [Indexed: 12/01/2022]
Abstract
Controllable drug-loaded dressings combined with induced stem cell differentiation have received considerable interest. In this study, a directional core-shell drug-loaded magnetocaloric response PCL/Gelatin-Antibiotics/Fe3O4 multifunctional dressing was developed. Due to the magnetothermal heating effect of magnetic nanoparticles and the contraction of elastic electrospun fibers, the fibers release antibiotics as needed to prevent drug-resistant infection. IV collagenase catalyzes the degradation of gelatin by achieving an optimum reaction temperature, the purpose of which is also to reduce the viscosity of liquid gelatin and promote the release of drugs. With the sacrifice of gelatin, the directional structure of scaffold and the internal steric hindrance promoted stem cell differentiation and wound healing. The expression of Vimentin, VEGF, bFGF, TGF-β, and THY1 was confirmed by fluorescence immunostaining and RT-PCR. Western blot was used to detect expression of Vimentin, collagen, CD34, and CD31 in the (5/5, v/v) PCL/gelatin scaffold incubated with mouse wound. Therefore, the functional fibers can significantly accelerate the healing process.
Collapse
Affiliation(s)
- Chen Gao
- College of Life Sciences, Anhui Medical University, Hefei 230022, Anhui, China
| | - Liyuan Zhang
- School of Basic Medicine, Anhui Medical University, Hefei 230022, Anhui, China
| | - Juan Wang
- Chaohu Clinical Medical College, Anhui Medical University, Hefei 230022, Anhui, China
| | - Yue Cheng
- School of Biomedical Engineering, Anhui Medical University, Hefei 230022, Anhui, China
| | - Zhongrong Chen
- School of Biomedical Engineering, Anhui Medical University, Hefei 230022, Anhui, China
| | - Runhuai Yang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230022, Anhui, China.
| | - Gang Zhao
- School of Biomedical Engineering, Anhui Medical University, Hefei 230022, Anhui, China; Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China.
| |
Collapse
|
11
|
Pierau L, Elian C, Akimoto J, Ito Y, Caillol S, Versace DL. Bio-sourced Monomers and Cationic Photopolymerization: The Green combination towards Eco-Friendly and Non-Toxic Materials. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Meamar R, Ghasemi-Mobarakeh L, Norouzi MR, Siavash M, Hamblin MR, Fesharaki M. Improved wound healing of diabetic foot ulcers using human placenta-derived mesenchymal stem cells in gelatin electrospun nanofibrous scaffolds plus a platelet-rich plasma gel: A randomized clinical trial. Int Immunopharmacol 2021; 101:108282. [PMID: 34737130 DOI: 10.1016/j.intimp.2021.108282] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/16/2021] [Accepted: 10/17/2021] [Indexed: 01/13/2023]
Abstract
AIM The effectiveness of nanofibers containing human placenta-derived mesenchymal stem cells (hPDMSCs) plus platelet-rich plasma (PRP) for healing of diabetic foot ulcers (DFUs) was investigated. METHODS hPDMSCs were isolated from human donor placentas, and cultured in electrospun gelatin nanofibrous scaffolds (GNS). Twenty-eight patients with DFUs were randomized into three groups in a 12-week trial: (A) Treated with hPDMSCs; (B) Treated with hPDMSCs after coating the ulcer with PRP gel; (C) Control group received standard wound care. Wound area and pain freewalkingdistance were measured every 2 weeks. RESULTS Flow cytometry showed the expression of mesenchymal markers. SEM images and DAPI staining indicated significantly higher levels of hPDMSC proliferation on GNS after 3 and 7 days of culture. The MTS assay showed a significant increase in proliferation on GNS, compared to controls. Wound size reduction was 66% in group A, 71% in group B, and 36% in control group C. A significant difference in wound closure and pain-free walking distance was observed between groups A and B, compared to control group C (p < 0.05), but no difference between groups A and B. Biopsy of the implanted tissue showed the development of new capillary formation in groups A and B. CONCLUSION Implantation of hPDMSCs in GNS accelerated wound healing and improved clinical parameters in DFU patients.
Collapse
Affiliation(s)
- Rokhsareh Meamar
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Laleh Ghasemi-Mobarakeh
- Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mohammad-Reza Norouzi
- Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mansour Siavash
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mehrafarin Fesharaki
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Ndlovu SP, Ngece K, Alven S, Aderibigbe BA. Gelatin-Based Hybrid Scaffolds: Promising Wound Dressings. Polymers (Basel) 2021; 13:2959. [PMID: 34502997 PMCID: PMC8434607 DOI: 10.3390/polym13172959] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022] Open
Abstract
Wound care is a major biomedical field that is challenging due to the delayed wound healing process. Some factors are responsible for delayed wound healing such as malnutrition, poor oxygen flow, smoking, diseases (such as diabetes and cancer), microbial infections, etc. The currently used wound dressings suffer from various limitations, including poor antimicrobial activity, etc. Wound dressings that are formulated from biopolymers (e.g., cellulose, chitin, gelatin, chitosan, etc.) demonstrate interesting properties, such as good biocompatibility, non-toxicity, biodegradability, and attractive antimicrobial activity. Although biopolymer-based wound dressings display the aforementioned excellent features, they possess poor mechanical properties. Gelatin, a biopolymer has excellent biocompatibility, hemostatic property, reduced cytotoxicity, low antigenicity, and promotes cellular attachment and growth. However, it suffers from poor mechanical properties and antimicrobial activity. It is crosslinked with other polymers to enhance its mechanical properties. Furthermore, the incorporation of antimicrobial agents into gelatin-based wound dressings enhance their antimicrobial activity in vitro and in vivo. This review is focused on the development of hybrid wound dressings from a combination of gelatin and other polymers with good biological, mechanical, and physicochemical features which are appropriate for ideal wound dressings. Gelatin-based wound dressings are promising scaffolds for the treatment of infected, exuding, and bleeding wounds. This review article reports gelatin-based wound dressings which were developed between 2016 and 2021.
Collapse
Affiliation(s)
| | | | | | - Blessing A. Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice 5700, South Africa; (S.P.N.); (K.N.); (S.A.)
| |
Collapse
|
14
|
Ehrmann A. Non-Toxic Crosslinking of Electrospun Gelatin Nanofibers for Tissue Engineering and Biomedicine-A Review. Polymers (Basel) 2021; 13:1973. [PMID: 34203958 PMCID: PMC8232702 DOI: 10.3390/polym13121973] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 02/04/2023] Open
Abstract
Electrospinning can be used to prepare nanofiber mats from diverse polymers, polymer blends, or polymers doped with other materials. Amongst this broad range of usable materials, biopolymers play an important role in biotechnological, biomedical, and other applications. However, several of them are water-soluble, necessitating a crosslinking step after electrospinning. While crosslinking with glutaraldehyde or other toxic chemicals is regularly reported in the literature, here, we concentrate on methods applying non-toxic or low-toxic chemicals, and enzymatic as well as physical methods. Making gelatin nanofibers non-water soluble by electrospinning them from a blend with non-water soluble polymers is another method described here. These possibilities are described together with the resulting physical properties, such as swelling behavior, mechanical strength, nanofiber morphology, or cell growth and proliferation on the crosslinked nanofiber mats. For most of these non-toxic crosslinking methods, the degree of crosslinking was found to be lower than for crosslinking with glutaraldehyde and other common toxic chemicals.
Collapse
Affiliation(s)
- Andrea Ehrmann
- Working Group Textile Technologies, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| |
Collapse
|
15
|
Saeed M, Beigi-Boroujeni S, Rajabi S, Rafati Ashteiani G, Dolatfarahi M, Özcan M. A simple, green chemistry technology for fabrication of tissue-engineered scaffolds based on mussel-inspired 3D centrifugal spun. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111849. [PMID: 33579483 DOI: 10.1016/j.msec.2020.111849] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/14/2020] [Accepted: 12/28/2020] [Indexed: 11/18/2022]
Abstract
The fabrication of 3D fibrous scaffolds with highly interconnected pores has been crucial in the development of tissue regeneration techniques. The present study describes the fabrication of 3D fibrous scaffolds by freeze-drying of polydopamine (PDA) coated centrifugal spun gelatin fibers. We wanted to combine the mussel-inspired chemistry, Maillard reaction, and the 3D microstructural advantages of centrifugal spun fibers to develop the green fibrous scaffolds at low cost, high speed, and desired mold shape. The resultant PDA-gelatin fibers exhibited a smooth 3D microstructure with a uniform formation of PDA thin ad-layer that enhanced the mechanical properties and stability of the scaffolds, and thereby decreased the degradation rate. All scaffolds showed promising properties including good dimensional and mechanical stability under wet state, optimal porosity over 94%, and high water uptake of approximately 1500%. The results of cell culture studies, further confirmed that all scaffolds exhibited appropriate biocompatibility, cell proliferation, migration, and infiltration. Particularly, the PDA-coated scaffolds showed a significant enhancement in proliferation, migration, and infiltration of HDF-GFP+ cells. These results show that a 3D porous fibrous scaffold with simplifying tunable density and desirable shape on a large scale can be readily prepared for different fields of tissue engineering applications.
Collapse
Affiliation(s)
- Mahdi Saeed
- Soft Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran; Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran.
| | - Saeed Beigi-Boroujeni
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada Sur, Monterrey, 2501, N.L., Mexico; Hard Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Sarah Rajabi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Golnaz Rafati Ashteiani
- Soft Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Dolatfarahi
- Hard Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mutlu Özcan
- University of Zürich, Division of Dental Biomaterials, Center for Dental and Oral Medicine, Clinic for Reconstructive Dentistry, Zürich, Switzerland
| |
Collapse
|
16
|
Kadam V, Truong YB, Schutz J, Kyratzis IL, Padhye R, Wang L. Gelatin/β-Cyclodextrin Bio-Nanofibers as respiratory filter media for filtration of aerosols and volatile organic compounds at low air resistance. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123841. [PMID: 33264922 PMCID: PMC7467901 DOI: 10.1016/j.jhazmat.2020.123841] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/02/2020] [Accepted: 08/27/2020] [Indexed: 05/13/2023]
Abstract
Air pollution is a universal concern. The suspended solid/liquid particles in the air and volatile organic compounds (VOCs) are ubiquitous. Synthetic polymer-based air filter media not only has disposal issues but also is a source of air and water pollution at the end of their life cycle. It has been a challenge to filter both particulate matter and VOC pollutants by a common biodegradable filter media having low air resistance. This study reports gelatin/β-cyclodextrin composite nanofiber mats with dual function air filtration ability at reduced air resistance (148 Pa) and low basis weight (1 g/m²). Gelatin/β-cyclodextrin nanofibers captured aerosols (0.3-5 μm) with < 95% filtration efficiency at 0.029/Pa quality factor. They adsorbed great amount of xylene (287 mg/g), benzene (242 mg/g), and formaldehyde (0.75 mg/g) VOCs. VOC adsorption of gelatin/β-cyclodextrin nanofibers is found several times higher than a commercial face mask and pristine powder samples. This study provides a solution for a 'green' dual function respiratory air filtration at low resistance. Gelatin/β-cyclodextrin nanofibers also have the potential to filter nano-sized viruses.
Collapse
Affiliation(s)
- Vinod Kadam
- School of Fashion & Textiles, RMIT University, Brunswick, Victoria 3056, Australia; Commonwealth Scientific and Industrial Research Organization (CSIRO) - Manufacturing, Clayton, Victoria 3168, Australia; ICAR-Central Sheep and Wool Research Institute, Rajasthan 304501, India.
| | - Yen Bach Truong
- Commonwealth Scientific and Industrial Research Organization (CSIRO) - Manufacturing, Clayton, Victoria 3168, Australia
| | - Jurg Schutz
- Commonwealth Scientific and Industrial Research Organization (CSIRO) - Manufacturing, Waurn Ponds, VIC 3216, Australia
| | - Ilias Louis Kyratzis
- Commonwealth Scientific and Industrial Research Organization (CSIRO) - Manufacturing, Clayton, Victoria 3168, Australia
| | - Rajiv Padhye
- School of Fashion & Textiles, RMIT University, Brunswick, Victoria 3056, Australia
| | - Lijing Wang
- School of Fashion & Textiles, RMIT University, Brunswick, Victoria 3056, Australia
| |
Collapse
|
17
|
Vardiani M, Ghaffari Novin M, Koruji M, Nazarian H, Goossens E, Aghaei A, Seifalian AM, Ghasemi Hamidabadi H, Asgari F, Gholipourmalekabadi M. Gelatin Electrospun Mat as a Potential Co-culture System for In Vitro Production of Sperm Cells from Embryonic Stem Cells. ACS Biomater Sci Eng 2020; 6:5823-5832. [PMID: 33320586 DOI: 10.1021/acsbiomaterials.0c00893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Engineering of 3D substrates with maximum similarity to seminiferous tubules would help to produce functional sperm cells in vitro from stem cells. Here, we present a 3D electrospun gelatin (EG) substrate seeded with Sertoli cells and determine its potential for guided differentiation of embryonic stem cells (ESCs) toward germline cells. The EG was fabricated by electrospinning, and its morphology under SEM, as well as cytobiocompatibility for Sertoli cells and ESCs, was confirmed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and cell attachment assay. Embryoid bodies (EBs) were formed from ESCs and co-cultured with Sertoli cells, induced with BMP4 for 3 and 7 consecutive days to induce the differentiation of EBs toward germline cells. The differentiation was investigated by immunocytochemistry (ICC), flow cytometry, and RT-PCR in four experimental groups of EBs (EBs cultured in gelatin-coated cell culture plates); Scaffold/EB (EBs cultured on EG); ESCs/Ser (EBs and Sertoli cells co-cultured on gelatin-coated cell culture plates without EG); and Scaffold/EB/Ser (EBs and Sertoli cells co-cultured on EG). All experimental groups exhibited a significantly increased MVH (germline-specific marker) and decreased c-KIT (stemness marker) expression when compared with the EB group. ICC and flow cytometry revealed that Scaffold/EB/Ser had the highest level of MVH and the lowest c-KIT expression at both 3 and 7 days postdifferentiation compared with other groups. RT-PCR results showed a significant increase in the germline marker (Dazl) and a significant decrease in the ESC stemness marker (Nanog) in Scaffold/EB compared to the EB group. The germline markers Gcna, Stella, Mvh, Stra8, Piwil2, and Dazl were significantly increased in Scaffold/EB/Ser compared to the Scaffold/EB group. Our findings revealed that the EG scaffold can provide an excellent substrate biomimicking the micro/nanostructure of native seminiferous tubules and a platform for Sertoli cell-EB communication required for growth and differentiation of ESCs into germline cells.
Collapse
Affiliation(s)
- Mina Vardiani
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran.,Reproductive Biotechnology Research Center, Aviccena Research Institute, ACECR, 14115-343 Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran
| | - Marefat Ghaffari Novin
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran
| | - Morteza Koruji
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, 14496-14535 Tehran, Iran.,Department of Anatomical Sciences, Iran University of Medical Sciences, 14496-14535 Tehran, Iran
| | - Hamid Nazarian
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran
| | - Ellen Goossens
- Biology of the Testis Research Group, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Abbas Aghaei
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran
| | - Alexander M Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (Ltd.), The London BioScience Innovation Centre, NW1 0NH London, United Kingdom
| | - Hatef Ghasemi Hamidabadi
- Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, 2093716496 Sari, Iran.,Immunogenetic Research Center, Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, 2093716496 Sari, Iran
| | - Fatemeh Asgari
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, 14496-14535 Tehran, Iran.,Department of Anatomical Sciences, Iran University of Medical Sciences, 14496-14535 Tehran, Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, 14496-14535 Tehran, Iran.,Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, 14496-14535 Tehran, Iran
| |
Collapse
|
18
|
Dual physically and chemically crosslinked regenerated cellulose – Gelatin composite hydrogels towards art restoration. Carbohydr Polym 2020; 234:115885. [DOI: 10.1016/j.carbpol.2020.115885] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 11/23/2022]
|
19
|
Smoak MM, Han A, Watson E, Kishan A, Grande-Allen KJ, Cosgriff-Hernandez E, Mikos AG. Fabrication and Characterization of Electrospun Decellularized Muscle-Derived Scaffolds. Tissue Eng Part C Methods 2019; 25:276-287. [PMID: 30909819 PMCID: PMC6535957 DOI: 10.1089/ten.tec.2018.0339] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/06/2019] [Indexed: 12/21/2022] Open
Abstract
Although skeletal muscle has a high potential for self-repair, volumetric muscle loss can result in impairment beyond the endogenous regenerative capacity. There is a clinical need to improve on current clinical treatments that fail to fully restore the structure and function of lost muscle. Decellularized extracellular matrix (dECM) scaffolds have been an attractive platform for regenerating skeletal muscle, as dECM contains many biochemical cues that aid in cell adhesion, proliferation, and differentiation. However, there is limited capacity to tune physicochemical properties in current dECM technologies to improve outcome. In this study, we aim to create a novel, high-throughput technique to fabricate dECM scaffolds with tunable physicochemical properties while retaining proregenerative matrix components. We demonstrate a successful decellularization protocol that effectively removes DNA. We also identified key steps for the successful production of electrospun muscle dECM without the use of a carrier polymer; electrospinning allows for rapid scaffold fabrication with high control over material properties, which can be optimized to mimic native muscle. To this end, fiber orientation and degree of crosslinking of these dECM scaffolds were modulated and the corollary effects on fiber swelling, mechanical properties, and degradation kinetics were investigated. Beyond application in skeletal muscle, the versatility of this technology has the potential to serve as a foundation for dECM scaffold fabrication in a variety of tissue engineering applications.
Collapse
Affiliation(s)
- Mollie M. Smoak
- Department of Bioengineering, Rice University, Houston, Texas
| | - Albert Han
- Department of Bioengineering, Rice University, Houston, Texas
| | - Emma Watson
- Department of Bioengineering, Rice University, Houston, Texas
| | - Alysha Kishan
- Department of Biomedical Engineering, University of Texas, Austin, Texas
| | | | | | | |
Collapse
|
20
|
Vardiani M, Gholipourmalekabadi M, Ghaffari Novin M, Koruji M, Ghasemi Hamidabadi H, Salimi M, Nazarian H. Three-dimensional electrospun gelatin scaffold coseeded with embryonic stem cells and sertoli cells: A promising substrate for in vitro coculture system. J Cell Biochem 2019; 120:12508-12518. [PMID: 30977186 DOI: 10.1002/jcb.28517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/29/2019] [Indexed: 01/15/2023]
Abstract
In this study, we present an electrospun gelatin (EG) scaffold to mimic the extracellular matrix of the testis. The EG scaffold was synthesized by electrospinning and crosslinked with glutaraldehyde vapor to decrease its water solubility and degradation rate. The scanning electron microscope micrographs showed the homogenous morphology of randomly aligned gelatin fibers. The average diameter of gelatin fibers before and after crosslinking was approximately 180 and 220 nm, respectively. Modulus, tensile strength, and elongation at break values were as 161.8 ± 24.4 MPa, 4.21 ± 0.54 MPa, and 7.06 ± 2.12 MPa, respectively. The crosslinked EG showed 75.2% ± 4.5% weight loss after 14 days with no changes in the pH value of degradation solution. Cytobiocompatibility of the EG for sertoli cells and embryonic stem cells (ESCs) was determined in vitro. Sertoli cells were isolated from mouse testis and characterized by immunostaining and flow cytometry. The effects of EG on proliferation and attachment of both sertoli cells and ESCs were examined. The EG scaffolds exhibited no cytotoxicity for sertoli and ESCs. Both sertoli and ESCs were well attached and grown on EG. Coculture of sertoli and ESCs on EG showed better ESCs adhesion compared with ESCs alone. Our findings indicate the potential of EG as a substrate for proliferation, adhesion, and coculture of sertoli and ESCs and may be considered as a promising engineered microenvironment for in vitro coculture system with the aim of guiding stem cells differentiation toward sperm-producing cells.
Collapse
Affiliation(s)
- Mina Vardiani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Koruji
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Hatef Ghasemi Hamidabadi
- Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Anatomy & Cell Biology, Faculty of Medicine, Immunogenetic Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Salimi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Ahmad-Fouad Basha M, Mostafa AM. UV-induced macromolecular and optical modifications in gelatin solid films with transition metal chlorides. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.01.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
|
23
|
Ban Q, Chen W, Du S, Wang H, Li J, You R, Jin Y, Xue Y, Guan YQ. The preparation of the ordered pores colloidal crystal scaffold and its role in promoting growth of lung cells. Colloids Surf B Biointerfaces 2019; 173:907-917. [PMID: 30551309 DOI: 10.1016/j.colsurfb.2018.10.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/04/2018] [Accepted: 10/21/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Qing Ban
- School of Life Science, South China Normal University, Guangzhou 510631, China; Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Wuya Chen
- School of Life Science, South China Normal University, Guangzhou 510631, China; Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Shiwei Du
- School of Life Science, South China Normal University, Guangzhou 510631, China; Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Huimin Wang
- School of Life Science, South China Normal University, Guangzhou 510631, China; Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Jian Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Rong You
- School of Life Science, South China Normal University, Guangzhou 510631, China; Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Ying Jin
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yongyong Xue
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yan-Qing Guan
- School of Life Science, South China Normal University, Guangzhou 510631, China; Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
24
|
Chen P, Liu L, Pan J, Mei J, Li C, Zheng Y. Biomimetic composite scaffold of hydroxyapatite/gelatin-chitosan core-shell nanofibers for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 97:325-335. [PMID: 30678918 DOI: 10.1016/j.msec.2018.12.027] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 11/23/2018] [Accepted: 12/09/2018] [Indexed: 11/30/2022]
Abstract
Good biocompatibility and osteogenesis of three-dimensional porous scaffolds are critical for bone tissue engineering. In this work, biomimetic hydroxyapatite/gelatin-chitosan core-shell nanofibers composite scaffolds have been fabricated to mimic both the specific structure and the chemical composition of natural bone. The coaxial electrospinning technique was introduced to prepare gelatin-chitosan core-shell structured nanofibers mat which formed three-dimensional porous structure for promoting cells growth. The gelatin-chitosan core-shell nanofibers formed Arginine-Glycine-Aspartic acid (RGD)-like structure to mimic the organic component of natural bone extracellular matrix. Hydroxyapatite (Ca10(PO4)6(OH)2, HAP), as the major mineral constituent of native bone, was then deposited onto the surface of gelatin-chitosan core-shell structured nanofibers by a wet chemical method. Compared with chitosan nanofibers, gelatin nanofibers and chitosan-gelatin composite nanofibers, gelatin-chitosan core-shell structured nanofibers improved the mineralization efficiency of hydroxyapatite and formed a homogeneous HAP deposit. When Human osteoblast like cell line (MG-63) were cultured on the materials, the results showed that hydroxyapatite deposited on the gelatin-chitosan core-shell structured nanofibers could further enhance osteoblast cell proliferation. The biomimetic composite scaffolds could be suggested as a promising material to promote osteoblast cell growth in bone tissue engineering.
Collapse
Affiliation(s)
- Peng Chen
- Department of Physics, Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Leyun Liu
- Department of Physics, Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Jiaqi Pan
- Department of Physics, Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Jie Mei
- School of Chemistry & Bioengineering, Taizhou College of Nanjing Normal University, Taizhou 225300, People's Republic of China
| | - Chaorong Li
- Department of Physics, Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Yingying Zheng
- Department of Physics, Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
25
|
Li Z, Pan T, Wu Y, Kang W, Liu Y. Preparation and characterization of long-term stable pullulan nanofibers via in situ cross-linking electrospinning. ADSORPT SCI TECHNOL 2018. [DOI: 10.1177/0263617418813018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Zongjie Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, PR China; School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin, PR China
| | | | - Yuke Wu
- School of Textile, Tianjin Polytechnic University, Tianjin, PR China
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, PR China; School of Textile, Tianjin Polytechnic University, Tianjin, PR China
| | - Yong Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, PR China; School of Textile, Tianjin Polytechnic University, Tianjin, PR China
| |
Collapse
|
26
|
Li L, Zhang W, Huang M, Li J, Chen J, Zhou M, He J. Preparation of gelatin/genipin nanofibrous membrane for tympanic member repair. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:2154-2167. [PMID: 30295148 DOI: 10.1080/09205063.2018.1528519] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Longfei Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Weizheng Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Mengjia Huang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Jie Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Jia Chen
- Department of Otorhinolaryngology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mi Zhou
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Jianguo He
- Department of Otorhinolaryngology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Ghassemi Z, Slaughter G. Cross-linked electrospun gelatin nanofibers for cell-based assays. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:6088-6091. [PMID: 30441724 DOI: 10.1109/embc.2018.8513549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The present study evaluates the crosslinking of electrospun gelatin nanofibers by physical and chemical methods to further elucidate the importance of the application of gelatin scaffold platforms for cell-based assays. The dehydrothermally cross-linked electrospun gelatin scaffolds were unable to retained their structure morphology and integrity upon exposure to 1X PBS or cell-culture media. The DHT and EDC/Sulfo-NHS cross-linked gelatin scaffolds exhibited fiber diameter on average in the nanometer range. Subsequently, we utilized 1X PBS and cell culture media to evaluate the stability of the nanofibers in solution. The immersion evaluation indicated that the chemically crosslinked gelatin nanofibers maintained their random nanofiber distribution and morphology. However, a high degree of swelling was observed in the presence of cell culture media. Overall, the gelatin scaffold demonstrated good performance in PBS and cell culture media. Hence, EDC/Sulfo-NHS crosslinked electrospun gelatin nanofibrous scaffolds have good biocompatibility and are promising bio-scaffolds for cell-based assays.
Collapse
|
28
|
A UV-cured nanofibrous membrane of vinylbenzylated gelatin-poly(ɛ-caprolactone) dimethacrylate co-network by scalable free surface electrospinning. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:541-555. [DOI: 10.1016/j.msec.2018.05.076] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 05/03/2018] [Accepted: 05/26/2018] [Indexed: 12/15/2022]
|
29
|
Huang M, Li J, Chen J, Zhou M, He J. Preparation of CS/PVA Nanofibrous Membrane with Tunable Mechanical Properties for Tympanic Member Repair. Macromol Res 2018. [DOI: 10.1007/s13233-018-6127-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Yano S, Iwase T, Teramoto N, Shimasaki T, Shibata M. Synthesis, thermal properties and cell-compatibility of photocrosslinked cinnamoyl-modified hydroxypropyl cellulose. Carbohydr Polym 2018; 184:418-426. [PMID: 29352937 DOI: 10.1016/j.carbpol.2017.12.087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/26/2017] [Accepted: 12/31/2017] [Indexed: 12/23/2022]
Abstract
Biocompatibility of cinnamoyl-modified carbohydrate materials is not well-known, while they are attracting attention as a photoreactive material. In order to investigate biocompatible properties of cinnamoyl-modified carbohydrate, hydroxypropyl cellulose (HPC) was reacted with cinnamoyl chloride to yield cinnamoyl-modified HPC (HPC-C) for a cell proliferation test. HPC-Cs with three different degrees of substitution (DS) were prepared by changing a feed ratio of cinnamoyl chloride to HPC. The DS of the products ranged from 1.3 to 3.0 per one hydroxylpropyl anhydroglucose unit. Thermal analysis using DSC and TGA showed that the HPC-C with higher DS has a glass transition temperature and higher thermal stability. Ultraviolet (UV) light was irradiated on the HPC-C thin films, and changes in the UV-vis spectrum of the films were examined. In the course of UV irradiation, the absorbance at 280 nm was reduced. Fibroblast cells were cultured on the photocrosslinked HPC-C films, and cell growth was examined. The cell proliferation test revealed that the photocrosslinked HPC-C films have good compatibility with fibroblast cells.
Collapse
Affiliation(s)
- Shinya Yano
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Takumi Iwase
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Naozumi Teramoto
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan.
| | - Toshiaki Shimasaki
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Mitsuhiro Shibata
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| |
Collapse
|
31
|
Gomes S, Rodrigues G, Martins G, Henriques C, Silva JC. Evaluation of nanofibrous scaffolds obtained from blends of chitosan, gelatin and polycaprolactone for skin tissue engineering. Int J Biol Macromol 2017; 102:1174-1185. [PMID: 28487195 DOI: 10.1016/j.ijbiomac.2017.05.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 12/16/2022]
Abstract
Polymer blending is a strategy commonly used to obtain hybrid materials possessing properties better than those of the individual constituents regarding their use in scaffolds for Tissue Engineering. In the present work, the scaffolds produced by electrospinning solutions of polymeric blends obtained using a polyester (polycaprolactone, PCL), a polysaccharide (chitosan, CS) and a protein (gelatin extracted from cold water fish skin, GEL), were investigated. Solutions conductivity, shear viscosity and surface tension were determined. GEL-containing scaffolds were crosslinked with vapour phase glutaraldehyde (GTA). The scaffolds were characterized physico-chemically regarding fibre morphology, porosity, water contact angle, mechanical properties, chemical bonds and fibre and dimensional stability upon immersion in water and cell culture medium. The scaffolds were further tested in vitro for cell adhesion, growth and morphology of human foetal fibroblasts (cell line HFFF2). Results show that the nanofibrous scaffolds are hydrophilic and display the typical porosity of non-woven fibre mats. The CS/PCL and CS/PCL/GEL scaffolds have the highest elastic modulus (48MPa). Dimensional stability is best for the CS/PCL/GEL scaffolds. FTIR spectra confirm the occurrence of cross-linking reactions of GTA with both GEL and CS. Cell adhesion ratio ranked from excellent (close to 100%) to satisfactory (around 50%) in the order PCL/GEL>CS/GEL>CS/PCL/GEL>CS/PCL. Cell populations show an extended lag phase in comparison with the controls but cell proliferation occurs on all scaffolds until confluence is reached. In conclusion, all scaffolds studied possess characteristics that enable them to be used in skin tissue engineering but the CS/PCL/GEL scaffolds have better physical properties whereas the PCL/GEL scaffolds support a higher cell adhesion.
Collapse
Affiliation(s)
- Susana Gomes
- Departamento de Física, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Gabriela Rodrigues
- Centro de Ecologia, Evolução e Alterações Ambientais/Departamento de Biologia Animal Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Gabriel Martins
- Centro de Ecologia, Evolução e Alterações Ambientais/Departamento de Biologia Animal Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Instituto Gulbenkian de Ciência, R. da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Célia Henriques
- Departamento de Física, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Jorge Carvalho Silva
- Departamento de Física, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
32
|
Shankar KG, Gostynska N, Montesi M, Panseri S, Sprio S, Kon E, Marcacci M, Tampieri A, Sandri M. Investigation of different cross-linking approaches on 3D gelatin scaffolds for tissue engineering application: A comparative analysis. Int J Biol Macromol 2017; 95:1199-1209. [DOI: 10.1016/j.ijbiomac.2016.11.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 11/30/2022]
|
33
|
Vijayavenkataraman S, Lu WF, Fuh JYH. 3D bioprinting of skin: a state-of-the-art review on modelling, materials, and processes. Biofabrication 2016; 8:032001. [DOI: 10.1088/1758-5090/8/3/032001] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Chen J, Liu Z, Chen M, Zhang H, Li X. Electrospun Gelatin Fibers with a Multiple Release of Antibiotics Accelerate Dermal Regeneration in Infected Deep Burns. Macromol Biosci 2016; 16:1368-80. [DOI: 10.1002/mabi.201600108] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/05/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Jianmei Chen
- Key Laboratory of Advanced Technologies of Materials; Ministry of Education; School of Materials Science and Engineering; Southwest Jiaotong University; Chengdu 610031 P. R. China
- The First Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou 310003 P. R. China
| | - Zongguang Liu
- Key Laboratory of Advanced Technologies of Materials; Ministry of Education; School of Materials Science and Engineering; Southwest Jiaotong University; Chengdu 610031 P. R. China
- School of Materials Science and Engineering; State Key Laboratory of Silicon Materials; Zhejiang University; Hangzhou 310027 P. R. China
| | - Maohua Chen
- Key Laboratory of Advanced Technologies of Materials; Ministry of Education; School of Materials Science and Engineering; Southwest Jiaotong University; Chengdu 610031 P. R. China
| | - Hong Zhang
- Key Laboratory of Advanced Technologies of Materials; Ministry of Education; School of Materials Science and Engineering; Southwest Jiaotong University; Chengdu 610031 P. R. China
| | - Xiaohong Li
- Key Laboratory of Advanced Technologies of Materials; Ministry of Education; School of Materials Science and Engineering; Southwest Jiaotong University; Chengdu 610031 P. R. China
| |
Collapse
|
35
|
Elamparithi A, Punnoose AM, Paul SFD, Kuruvilla S. Gelatin electrospun nanofibrous matrices for cardiac tissue engineering applications. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2016.1180616] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Anuradha Elamparithi
- Cell and Tissue Engineering Laboratory, Sri Ramachandra University, Chennai, India
- Department of Human Genetics, Sri Ramachandra University, Chennai, India
| | - Alan M. Punnoose
- Cell and Tissue Engineering Laboratory, Sri Ramachandra University, Chennai, India
| | - Solomon F. D. Paul
- Department of Human Genetics, Sri Ramachandra University, Chennai, India
| | - Sarah Kuruvilla
- Cell and Tissue Engineering Laboratory, Sri Ramachandra University, Chennai, India
- Department of Pathology, Sri Ramachandra Medical Centre, Chennai, India
- Department of Pathology, The Madras Medical Mission, Chennai, India
| |
Collapse
|
36
|
Lin WH, Yu J, Chen G, Tsai WB. Fabrication of multi-biofunctional gelatin-based electrospun fibrous scaffolds for enhancement of osteogenesis of mesenchymal stem cells. Colloids Surf B Biointerfaces 2016; 138:26-31. [DOI: 10.1016/j.colsurfb.2015.11.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 10/12/2015] [Accepted: 11/09/2015] [Indexed: 01/14/2023]
|
37
|
Han HJ, Zhang S, Sun RY, Wu JH, Xie MR, Liao XJ. Photocrosslinkable polynorbornene-based block copolymers with enhanced dielectric and thermal properties. CHINESE JOURNAL OF POLYMER SCIENCE 2016. [DOI: 10.1007/s10118-016-1753-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Preparation of Nanofibers with Renewable Polymers and Their Application in Wound Dressing. INT J POLYM SCI 2016. [DOI: 10.1155/2016/4672839] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Renewable polymers have attracted considerable attentions in the last two decades, predominantly due to their environmentally friendly properties, renewability, good biocompatibility, biodegradability, bioactivity, and modifiability. The nanofibers prepared from the renewable polymers can combine the excellent properties of the renewable polymer and nanofiber, such as high specific surface area, high porosity, excellent performances in cell adhesion, migration, proliferation, differentiation, and the analogous physical properties of extracellular matrix. They have been widely used in the fields of wound dressing to promote the wound healing, hemostasis, skin regeneration, and treatment of diabetic ulcers. In the present review, the different methods to prepare the nanofibers from the renewable polymers were introduced. Then the recent progress on preparation and properties of the nanofibers from different renewable polymers or their composites were reviewed; the application of them in the fields of wound dressing was emphasized.
Collapse
|
39
|
Potential of electrospun core–shell structured gelatin–chitosan nanofibers for biomedical applications. Carbohydr Polym 2016; 136:1098-107. [DOI: 10.1016/j.carbpol.2015.10.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 10/04/2015] [Accepted: 10/05/2015] [Indexed: 01/09/2023]
|
40
|
Yu Y, Hua S, Yang M, Fu Z, Teng S, Niu K, Zhao Q, Yi C. Fabrication and characterization of electrospinning/3D printing bone tissue engineering scaffold. RSC Adv 2016. [DOI: 10.1039/c6ra17718b] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A composite scaffold was fabricated with a method involving both electrospinning and 3D printing to give microscale pores and good mechanical properties. Biocompatibility and cell infiltration on the scaffold was evaluated by an in vitro study.
Collapse
Affiliation(s)
- Yinxian Yu
- Department of Orthopaedic Surgery
- Shanghai General Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Sha Hua
- Department of Cardiovascular Medicine
- Ruijin Hospital Luwan Branch of Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Mengkai Yang
- Department of Orthopaedic Surgery
- Shanghai General Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Zeze Fu
- Department of Orthopaedic Surgery
- Shanghai General Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Songsong Teng
- Department of Orthopaedic Surgery
- Shanghai General Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Kerun Niu
- Department of Orthopaedic Surgery
- Shanghai General Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Qinghua Zhao
- Department of Orthopaedic Surgery
- Shanghai General Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Chengqing Yi
- Department of Orthopaedic Surgery
- Shanghai General Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| |
Collapse
|
41
|
Sridhar R, Lakshminarayanan R, Madhaiyan K, Amutha Barathi V, Lim KHC, Ramakrishna S. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals. Chem Soc Rev 2015; 44:790-814. [PMID: 25408245 DOI: 10.1039/c4cs00226a] [Citation(s) in RCA: 278] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nanotechnology refers to the fabrication, characterization, and application of substances in nanometer scale dimensions for various ends. The influence of nanotechnology on the healthcare industry is substantial, particularly in the areas of disease diagnosis and treatment. Recent investigations in nanotechnology for drug delivery and tissue engineering have delivered high-impact contributions in translational research, with associated pharmaceutical products and applications. Over the past decade, the synthesis of nanofibers or nanoparticles via electrostatic spinning or spraying, respectively, has emerged as an important nanostructuring methodology. This is due to both the versatility of the electrospinning/electrospraying process and the ensuing control of nanofiber/nanoparticle surface parameters. Electrosprayed nanoparticles and electrospun nanofibers are both employed as natural or synthetic carriers for the delivery of entrapped drugs, growth factors, health supplements, vitamins, and so on. The role of nanofiber/nanoparticle carriers is substantiated by the programmed, tailored, or targeted release of their contents in the guise of tissue engineering scaffolds or medical devices for drug delivery. This review focuses on the nanoformulation of natural materials via the electrospraying or electrospinning of nanoparticles or nanofibers for tissue engineering or drug delivery/pharmaceutical purposes. Here, we classify the natural materials with respect to their animal/plant origin and macrocyclic, small molecule or herbal active constituents, and further categorize the materials according to their proteinaceous or saccharide nature.
Collapse
Affiliation(s)
- Radhakrishnan Sridhar
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore 117576.
| | | | | | | | | | | |
Collapse
|
42
|
Norouzi M, Boroujeni SM, Omidvarkordshouli N, Soleimani M. Advances in skin regeneration: application of electrospun scaffolds. Adv Healthc Mater 2015; 4:1114-33. [PMID: 25721694 DOI: 10.1002/adhm.201500001] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Indexed: 12/28/2022]
Abstract
The paucity of cellular and molecular signals essential for normal wound healing makes severe dermatological ulcers stubborn to heal. The novel strategies of skin regenerative treatments are focused on the development of biologically responsive scaffolds accompanied by cells and multiple biomolecules resembling structural and biochemical cues of the natural extracellular matrix (ECM). Electrospun nanofibrous scaffolds provide similar architecture to the ECM leading to enhancement of cell adhesion, proliferation, migration and neo tissue formation. This Review surveys the application of biocompatible natural, synthetic and composite polymers to fabricate electrospun scaffolds as skin substitutes and wound dressings. Furthermore, the application of biomolecules and therapeutic agents in the nanofibrous scaffolds viz growth factors, genes, antibiotics, silver nanoparticles, and natural medicines with the aim of ameliorating cellular behavior, wound healing, and skin regeneration are discussed.
Collapse
Affiliation(s)
- Mohammad Norouzi
- Department of Nanotechnology and Tissue Engineering; Stem Cell Technology Research Center; Tehran Iran
| | | | | | - Masoud Soleimani
- Department of Hematology; Faculty of Medical Sciences; Tarbiat Modares University; Tehran Iran
| |
Collapse
|
43
|
Khorshidi S, Solouk A, Mirzadeh H, Mazinani S, Lagaron JM, Sharifi S, Ramakrishna S. A review of key challenges of electrospun scaffolds for tissue-engineering applications. J Tissue Eng Regen Med 2015; 10:715-38. [DOI: 10.1002/term.1978] [Citation(s) in RCA: 323] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 09/09/2014] [Accepted: 11/10/2014] [Indexed: 12/26/2022]
Affiliation(s)
- Sajedeh Khorshidi
- Biomedical Engineering Faculty; Amirkabir University of Technology (Tehran Polytechnic); Tehran Iran
| | - Atefeh Solouk
- Biomedical Engineering Faculty; Amirkabir University of Technology (Tehran Polytechnic); Tehran Iran
| | - Hamid Mirzadeh
- Polymer Engineering Faculty; Amirkabir University of Technology (Tehran Polytechnic); Tehran Iran
| | - Saeedeh Mazinani
- Amirkabir Nanotechnology Research Institute (ANTRI); Amirkabir University of Technology (Tehran Polytechnic); Tehran Iran
| | - Jose M. Lagaron
- Novel Materials and Nanotechnology Group; IATA-CSIC; Avda Agustı'n Escardino 7 46980 Burjassot Spain
| | - Shahriar Sharifi
- Department of Biomaterials Science and Technology; University of Twente; Enschede The Netherlands
| | - Seeram Ramakrishna
- Nanoscience and Nanotechnology Initiative; National University of Singapore; Singapore
| |
Collapse
|
44
|
Gomes S, Rodrigues G, Martins G, Roberto M, Mafra M, Henriques C, Silva J. In vitro and in vivo evaluation of electrospun nanofibers of PCL, chitosan and gelatin: A comparative study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 46:348-58. [DOI: 10.1016/j.msec.2014.10.051] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 09/20/2014] [Accepted: 10/21/2014] [Indexed: 11/28/2022]
|
45
|
Fabrication and characterization of electrospun curcumin-loaded polycaprolactone-polyethylene glycol nanofibers for enhanced wound healing. Macromol Res 2014. [DOI: 10.1007/s13233-014-2179-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Sajkiewicz P, Kołbuk D. Electrospinning of gelatin for tissue engineering--molecular conformation as one of the overlooked problems. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2014; 25:2009-22. [PMID: 25357002 DOI: 10.1080/09205063.2014.975392] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Gelatin is one of the most promising materials in tissue engineering as a scaffold component. This biopolymer indicates biocompatibility and bioactivity caused by the existence of specific amino acid sequences, being preferred sites for interactions with cells, with high similarity to natural extracellular matrix. The present paper does not aspire to be a full review of electrospinning of gelatin and gelatin containing nanofibers as scaffolds in tissue engineering. It is focused on the still open question of the role of the higher order structures of gelatin in scaffold's bioactivity/functionality. Gelatin molecules can adopt various conformations depending on temperature, solvent, pH, etc. Our review indicates the potential ways for formation of α-helix conformation during electrospinning and the methods of further structure stabilization. It is intuitively expected that the native α-helix conformation appearing as a result of partial renaturation of gelatin can be beneficial from the viewpoint of bioactivity of scaffolds, providing thus a much cheaper alternative approach as opposed to expensive electrospinning of native collagen.
Collapse
Affiliation(s)
- P Sajkiewicz
- a Institute of Fundamental Technological Research , Polish Academy of Sciences , Pawinskiego 5B, 02-106 Warsaw , Poland
| | | |
Collapse
|
47
|
He C, Nie W, Feng W. Engineering of biomimetic nanofibrous matrices for drug delivery and tissue engineering. J Mater Chem B 2014; 2:7828-7848. [PMID: 32262073 DOI: 10.1039/c4tb01464b] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Biomimetic nanofibers have emerged as promising candidates for drug delivery and tissue engineering applications. In this paper, recent advances on the fabrication and application of biomimetic nanofibers as drug carriers and scaffolding materials are reviewed. First, we delineate the three popular nanofiber fabrication techniques including electrospinning, phase separation and molecular self-assembly, covering the principal materials used for different techniques and surface functionalization strategies for nanofibers. Furthermore, we focus our interest on the nanofiber-based delivery strategies and underlying kinetics for growth factors and other bioactive molecules, following which we summarize the recent advances in the development of these nanofibrous matrices for bone, vascular and neural tissue engineering applications. Finally, research challenges and future trends in the related areas are discussed.
Collapse
Affiliation(s)
- Chuanglong He
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.
| | | | | |
Collapse
|
48
|
Ruggeri RR, Bressan FF, Siqueira NM, Meirelles F, Frantz N, Watanabe YF, Soares RMD, Bos-Mikich A. Derivation and culture of putative parthenogenetic embryonic stem cells in new gelatin substrates modified with galactomannan. Macromol Res 2014. [DOI: 10.1007/s13233-014-2151-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Abrigo M, McArthur SL, Kingshott P. Electrospun Nanofibers as Dressings for Chronic Wound Care: Advances, Challenges, and Future Prospects. Macromol Biosci 2014; 14:772-92. [DOI: 10.1002/mabi.201300561] [Citation(s) in RCA: 365] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/16/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Martina Abrigo
- Faculty of Engineering and Industrial Science; Industrial Research Institute Swinburne (IRIS), Swinburne University of Technology; Hawthorn VIC 3122 Australia
| | - Sally L. McArthur
- Faculty of Engineering and Industrial Science; Industrial Research Institute Swinburne (IRIS), Swinburne University of Technology; Hawthorn VIC 3122 Australia
| | - Peter Kingshott
- Faculty of Engineering and Industrial Science; Industrial Research Institute Swinburne (IRIS), Swinburne University of Technology; Hawthorn VIC 3122 Australia
| |
Collapse
|
50
|
In vitro biological activity comparison of some hydroxyapatite-based composite materials using simulated body fluid. OPEN CHEM 2013. [DOI: 10.2478/s11532-013-0293-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AbstractHydroxyapatite composites are the main biomaterials used for metal implant coatings. Their in vitro study is very important. That is why their behavior was monitored in simulated body fluid (SBF), which is a solution with ion concentrations and pH value similar to those of human blood plasma. Silica, chitosan and gelatin-doped hydroxyapatite-based biomaterials were studied in SBF; the samples were characterized pre-, during and post-SBF immersion using infra-red, scanning and transmission electron spectroscopy and X-ray diffraction methods. The solubility of materials in SBF was determined, and the variation of Ca2+ and phosphorus concentration was also recorded during SBF experiments. The results were compared and their in vitro biological activity was determined.
Collapse
|