1
|
Ruan H, Aulova A, Ghai V, Pandit S, Lovmar M, Mijakovic I, Kádár R. Polysaccharide-based antibacterial coating technologies. Acta Biomater 2023; 168:42-77. [PMID: 37481193 DOI: 10.1016/j.actbio.2023.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
To tackle antimicrobial resistance, a global threat identified by the United Nations, is a common cause of healthcare-associated infections (HAI) and is responsible for significant costs on healthcare systems, a substantial amount of research has been devoted to developing polysaccharide-based strategies that prevent bacterial attachment and biofilm formation on surfaces. Polysaccharides are essential building blocks for life and an abundant renewable resource that have attracted much attention due to their intrinsic remarkable biological potential antibacterial activities. If converted into efficient antibacterial coatings that could be applied to a broad range of surfaces and applications, polysaccharide-based coatings could have a significant potential global impact. However, the ultimate success of polysaccharide-based antibacterial materials will be determined by their potential for use in manufacturing processes that are scalable, versatile, and affordable. Therefore, in this review we focus on recent advances in polysaccharide-based antibacterial coatings from the perspective of fabrication methods. We first provide an overview of strategies for designing polysaccharide-based antimicrobial formulations and methods to assess the antibacterial properties of coatings. Recent advances on manufacturing polysaccharide-based coatings using some of the most common polysaccharides and fabrication methods are then detailed, followed by a critical comparative overview of associated challenges and opportunities for future developments. STATEMENT OF SIGNIFICANCE: Our review presents a timely perspective by being the first review in the field to focus on advances on polysaccharide-based antibacterial coatings from the perspective of fabrication methods along with an overview of strategies for designing polysaccharide-based antimicrobial formulations, methods to assess the antibacterial properties of coatings as well as a critical comparative overview of associated challenges and opportunities for future developments. Meanwhile this work is specifically targeted at an audience focused on featuring critical information and guidelines for developing polysaccharide-based coatings. Including such a complementary work in the journal could lead to further developments on polysaccharide antibacterial applications.
Collapse
Affiliation(s)
- Hengzhi Ruan
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Alexandra Aulova
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Viney Ghai
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Santosh Pandit
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Martin Lovmar
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; Wellspect Healthcare AB, 431 21 Mölndal, Sweden
| | - Ivan Mijakovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Roland Kádár
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden; Wallenberg Wood Science Centre (WWSC), Chalmers University of Technology, 412 96 Göteborg, Sweden.
| |
Collapse
|
2
|
Mechanisms and technology of marine oligosaccharides to control postharvest disease of fruits. Food Chem 2023; 404:134664. [DOI: 10.1016/j.foodchem.2022.134664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/18/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
3
|
Lee S, Hao LT, Park J, Oh DX, Hwang DS. Nanochitin and Nanochitosan: Chitin Nanostructure Engineering with Multiscale Properties for Biomedical and Environmental Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203325. [PMID: 35639091 DOI: 10.1002/adma.202203325] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Nanochitin and nanochitosan (with random-copolymer-based multiscale architectures of glucosamine and N-acetylglucosamine units) have recently attracted immense attention for the development of green, sustainable, and advanced functional materials. Nanochitin and nanochitosan are multiscale materials from small oligomers, rod-shaped nanocrystals, longer nanofibers, to hierarchical assemblies of nanofibers. Various physical properties of chitin and chitosan depend on their molecular- and nanostructures; translational research has utilized them for a wide range of applications (biomedical, industrial, environmental, and so on). Instead of reviewing the entire extensive literature on chitin and chitosan, here, recent developments in multiscale-dependent material properties and their applications are highlighted; immune, medical, reinforcing, adhesive, green electrochemical materials, biological scaffolds, and sustainable food packaging are discussed considering the size, shape, and assembly of chitin nanostructures. In summary, new perspectives for the development of sustainable advanced functional materials based on nanochitin and nanochitosan by understanding and engineering their multiscale properties are described.
Collapse
Affiliation(s)
- Suyoung Lee
- Division of Environmental Science and Engineering, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, 37673, Republic of Korea
| | - Lam Tan Hao
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Jeyoung Park
- Division of Environmental Science and Engineering, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, 37673, Republic of Korea
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Dongyeop X Oh
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Dong Soo Hwang
- Division of Environmental Science and Engineering, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, 37673, Republic of Korea
| |
Collapse
|
4
|
Preparation of nano/microcapsules of ozonated olive oil in chitosan matrix and analysis of physicochemical and microbiological properties of the obtained films. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Antimicrobial and Photoantimicrobial Activities of Chitosan/CNPPV Nanocomposites. Int J Mol Sci 2022; 23:ijms232012519. [DOI: 10.3390/ijms232012519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Multidrug-resistant bacteria represent a global health and economic burden that urgently calls for new technologies to combat bacterial antimicrobial resistance. Here, we developed novel nanocomposites (NCPs) based on chitosan that display different degrees of acetylation (DAs), and conjugated polymer cyano-substituted poly(p-phenylene vinylene) (CNPPV) as an alternative approach to inactivate Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria. Chitosan’s structure was confirmed through FT-Raman spectroscopy. Bactericidal and photobactericidal activities of NCPs were tested under dark and blue-light irradiation conditions, respectively. Hydrodynamic size and aqueous stability were determined by DLS, zeta potential (ZP) and time-domain NMR. TEM micrographs of NCPs were obtained, and their capacity of generating reactive oxygen species (ROS) under blue illumination was also characterized. Meaningful variations on ZP and relaxation time T2 confirmed successful physical attachment of chitosan/CNPPV. All NCPs exhibited a similar and shrunken spherical shape according to TEM. A lower DA is responsible for driving higher bactericidal performance alongside the synergistic effect from CNPPV, lower nanosized distribution profile and higher positive charged surface. ROS production was proportionally found in NCPs with and without CNPPV by decreasing the DA, leading to a remarkable photobactericidal effect under blue-light irradiation. Overall, our findings indicate that chitosan/CNPPV NCPs may constitute a valuable asset for the development of innovative strategies for inactivation and/or photoinactivation of bacteria.
Collapse
|
6
|
Hemmingsen LM, Škalko-Basnet N, Jøraholmen MW. The Expanded Role of Chitosan in Localized Antimicrobial Therapy. Mar Drugs 2021; 19:697. [PMID: 34940696 PMCID: PMC8704789 DOI: 10.3390/md19120697] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Chitosan is one of the most studied natural origin polymers for biomedical applications. This review focuses on the potential of chitosan in localized antimicrobial therapy to address the challenges of current rising antimicrobial resistance. Due to its mucoadhesiveness, chitosan offers the opportunity to prolong the formulation residence time at mucosal sites; its wound healing properties open possibilities to utilize chitosan as wound dressings with multitargeted activities and more. We provide an unbiased overview of the state-of-the-art chitosan-based delivery systems categorized by the administration site, addressing the site-related challenges and evaluating the representative formulations. Specifically, we offer an in-depth analysis of the current challenges of the chitosan-based novel delivery systems for skin and vaginal infections, including its formulations optimizations and limitations. A brief overview of chitosan's potential in treating ocular, buccal and dental, and nasal infections is included. We close the review with remarks on toxicity issues and remaining challenges and perspectives.
Collapse
Affiliation(s)
- Lisa Myrseth Hemmingsen
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway;
| | | | - May Wenche Jøraholmen
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway;
| |
Collapse
|
7
|
Control of Surface Properties of Hyaluronan/Chitosan Multilayered Coatings for Tumor Cell Capture. POLYSACCHARIDES 2021. [DOI: 10.3390/polysaccharides2020025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer (PCa) is a slow-growing neoplasm that has, when diagnosed in its early stages, great chances of cure. During initial tumor development, current diagnostic methods fail to have the desired accuracy, thus, it is necessary to develop or improve current detection methods and prognostic markers for PCa. In this scenario, films composed of hyaluronic acid (HA) and chitosan (CHI) have demonstrated significant capture potential of prostate tumor cells (PC3 line), exploring HA as a CD44 receptor ligand and direct mediator in cell-film adhesion. Here, we present a strategy to control structural and cell adhesion properties of HA/CHI films based on film assembly conditions. Films were built via Layer-by-layer (LbL) deposition, where the pH conditions (3.0 and 5.0) and number of bilayers (3.5, 10.5, and 20.5) were controlled. The characterization of these films was carried out using profilometry, ultraviolet-visible (UV-VIS), atomic force microscopy (AFM) and contact angle measurements. Multilayer HA/CHI films produced at pH 3.0 gave optimum surface wettability and availability of free carboxyl groups. In turn, at pH 5.0, the coverings were thinner and presented a smoother surface. Films prepared with 3.5 bilayers showed greater tumor cell capture regardless of the pH condition, while films containing 10.5 and 20.5 bilayers presented a significant swelling process, which compromised their cell adhesion potential. This study shows that surface chemistry and morphology are critical factors for the development of biomaterials designed for several cell adhesion applications, such as rapid diagnostic, cell signaling, and biosensing mechanisms.
Collapse
|
8
|
Orellano MS, Bohl LP, Breser ML, Isaac P, Falcone RD, Porporatto C. A comparative study of antimicrobial activity of differently-synthesized chitosan nanoparticles against bovine mastitis pathogens. SOFT MATTER 2021; 17:694-703. [PMID: 33216104 DOI: 10.1039/d0sm01179g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The greatest concern in dairy farming nowadays is bovine mastitis (BM), which results mainly from bacterial colonization of the mammary gland. Antibiotics are the most widely used strategy for its prevention and treatment, but overuse has led to growing antimicrobial resistance. Pathogens have also developed other mechanisms to persist in the udder, such as biofilm formation and internalization into bovine epithelial cells. New therapies are therefore needed to reduce or replace antibiotic therapies. In a previous study, we found that chitosan nanoparticles (Ch-NPs) have considerable potential for the treatment of BM. The aim of the present study was to evaluate the antimicrobial activity of differently-synthesized Ch-NPs against BM pathogens and their toxicity in bovine cells in vitro, to further explore the attributes of Ch-NPs for the prevention and treatment of intramammary infections. We also looked into their ability to inhibit biofilm formation and prevent the internalization of S. aureus into mammary epithelial cells. Finally, since an interesting approach for BM prevention is to enhance the host's immune response, we studied whether Ch-NPs could promote the release of pro-inflammatory cytokines in mammary epithelial cells. The results reveal that the bactericidal effect of Ch-NPs on BM pathogens and their ability to inhibit biofilm formation are size-dependent, with smaller particles being more efficient. In contrast, their effect on the viability of the cell lines is not size-dependent and all samples tested were non-toxic. The smallest Ch-NPs successfully prevented the internalization of S. aureus into the cells, but did not promote the production of pro-inflammatory cytokines. These findings make it possible to conclude that Ch-NPs are a great bactericidal agent which can prevent the main mechanisms developed by BM pathogens to persist in the udder.
Collapse
Affiliation(s)
- M Soledad Orellano
- Centro de Investigaciones y Transferencia de Villa María (CIT-VM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María (UNVM), Villa María, Argentina. and Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), CONICET. Departamento de Química, Universidad Nacional de Río Cuarto (UNRC), Agencia Postal # 3. C.P. X5804BYA, Río Cuarto, Argentina
| | - Luciana P Bohl
- Centro de Investigaciones y Transferencia de Villa María (CIT-VM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María (UNVM), Villa María, Argentina.
| | - María L Breser
- Centro de Investigaciones y Transferencia de Villa María (CIT-VM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María (UNVM), Villa María, Argentina.
| | - Paula Isaac
- Centro de Investigaciones y Transferencia de Villa María (CIT-VM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María (UNVM), Villa María, Argentina.
| | - R Darío Falcone
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), CONICET. Departamento de Química, Universidad Nacional de Río Cuarto (UNRC), Agencia Postal # 3. C.P. X5804BYA, Río Cuarto, Argentina
| | - Carina Porporatto
- Centro de Investigaciones y Transferencia de Villa María (CIT-VM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María (UNVM), Villa María, Argentina.
| |
Collapse
|
9
|
Li J, Zhuang S. Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: Current state and perspectives. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109984] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Ge Y, Tang J, Fu H, Fu Y. Terpinen‐4‐ol liposomes‐incorporated chitosan/polyethylene oxide electrospun nanofibrous film ameliorates the external microenvironment of healing cutaneous wounds. J Appl Polym Sci 2020. [DOI: 10.1002/app.49670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yan Ge
- School of Textile and Clothing, Nantong University Nantong Jiangsu China
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University Nantong Jiangsu China
| | - Jiapeng Tang
- Institute of Special Environmental Medicine, Nantong University Nantong Jiangsu China
| | - Haihong Fu
- School of Textile and Clothing, Nantong University Nantong Jiangsu China
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University Nantong Jiangsu China
| | - Yijun Fu
- School of Textile and Clothing, Nantong University Nantong Jiangsu China
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University Nantong Jiangsu China
| |
Collapse
|
11
|
Lin D, Yang Y, Wang J, Yan W, Wu Z, Chen H, Zhang Q, Wu D, Qin W, Tu Z. Preparation and characterization of TiO 2-Ag loaded fish gelatin-chitosan antibacterial composite film for food packaging. Int J Biol Macromol 2020; 154:123-133. [PMID: 32171840 DOI: 10.1016/j.ijbiomac.2020.03.070] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 11/25/2022]
Abstract
In this study, fish gelatin and chitosan were used as the film-forming substrate, and different concentrations of TiO2-Ag were added to prepare composite films. The physicochemical characteristics and microstructure of the films were studied. The results showed that the addition of TiO2-Ag significantly increased the water solubility of the film. When the TiO2-Ag concentration was increased to 0.5%, the film had the best antibacterial ability and the lowest light transmittance (54.6%), but the tensile strength of the film was the lowest, decreased from 17.39 MPa to 9.014 MPa. The water vapor permeability of film first decreased and then increased, and the minimum value was 2.63 × 10-12 g·cm/cm2·s·Pa when the concentration of TiO2-Ag was 0.4%. XRD, XPS, and ATR-FTIR results showed that the presence of TiO2-Ag crystals in the film could enhance the interaction between the components, and FE-SEM results showed that the film had a very smooth and uniform surface. In general, FG/Ch/TiO2-Ag composite film is expected to be used in the food packaging industry.
Collapse
Affiliation(s)
- Derong Lin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Yuanmeng Yang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Jie Wang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Wenjing Yan
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhijun Wu
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an 625014, China.
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Dingtao Wu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zongcai Tu
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; Engineering Research Center for Freshwater Fish High-value Utilization of Jiangxi, Jiangxi Normal University, Nanchang 330022, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
12
|
Riaz Rajoka MS, Mehwish HM, Wu Y, Zhao L, Arfat Y, Majeed K, Anwaar S. Chitin/chitosan derivatives and their interactions with microorganisms: a comprehensive review and future perspectives. Crit Rev Biotechnol 2020; 40:365-379. [PMID: 31948287 DOI: 10.1080/07388551.2020.1713719] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Chitosan, obtained as a result of the deacetylation of chitin, one of the most important naturally occurring polymers, has antimicrobial properties against fungi, and bacteria. It is also useful in other fields, including: food, biomedicine, biotechnology, agriculture, and the pharmaceutical industries. A literature survey shows that its antimicrobial activity depends upon several factors such as: the pH, temperature, molecular weight, ability to chelate metals, degree of deacetylation, source of chitosan, and the type of microorganism involved. This review will focus on the in vitro and in vivo antimicrobial properties of chitosan and its derivatives, along with a discussion on its mechanism of action during the treatment of infectious animal diseases, as well as its importance in food safety. We conclude with a summary of the challenges associated with the uses of chitosan and its derivatives.
Collapse
Affiliation(s)
- Muhammad Shahid Riaz Rajoka
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, People's Republic of China.,Key Laboratory of Optoelectronic Devices and System of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, People's Republic of China
| | - Hafiza Mahreen Mehwish
- Department of Pharmacy, School of Medicine, Key Laboratory of Novel Health Care Product; Engineering Laboratory of Shenzhen Natural Small Molecules Innovative Drugs, Shenzhen University, Shenzhen, People's Republic of China
| | - Yiguang Wu
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, People's Republic of China
| | - Liqing Zhao
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, People's Republic of China
| | - Yasir Arfat
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Ministry of Education, Northwest University, People's Republic of China
| | - Kashif Majeed
- The Department of Applied Chemistry School of Science, Northwestern Polytechnical University, X'ian, People's Republic of China
| | - Shoaib Anwaar
- School of Medicine, Institute of Biological Therapy, Shenzhen University, Shenzhen, People's Republic of China
| |
Collapse
|
13
|
Matica MA, Aachmann FL, Tøndervik A, Sletta H, Ostafe V. Chitosan as a Wound Dressing Starting Material: Antimicrobial Properties and Mode of Action. Int J Mol Sci 2019; 20:E5889. [PMID: 31771245 PMCID: PMC6928789 DOI: 10.3390/ijms20235889] [Citation(s) in RCA: 350] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Fighting bacterial resistance is one of the concerns in modern days, as antibiotics remain the main resource of bacterial control. Data shows that for every antibiotic developed, there is a microorganism that becomes resistant to it. Natural polymers, as the source of antibacterial agents, offer a new way to fight bacterial infection. The advantage over conventional synthetic antibiotics is that natural antimicrobial agents are biocompatible, non-toxic, and inexpensive. Chitosan is one of the natural polymers that represent a very promising source for the development of antimicrobial agents. In addition, chitosan is biodegradable, non-toxic, and most importantly, promotes wound healing, features that makes it suitable as a starting material for wound dressings. This paper reviews the antimicrobial properties of chitosan and describes the mechanisms of action toward microbial cells as well as the interactions with mammalian cells in terms of wound healing process. Finally, the applications of chitosan as a wound-dressing material are discussed along with the current status of chitosan-based wound dressings existing on the market.
Collapse
Affiliation(s)
- Mariana Adina Matica
- Advanced Environmental Research Laboratories, Department of Biology—Chemistry, West University of Timisoara, Oituz 4, 300086 Timisoara, Romania;
| | - Finn Lillelund Aachmann
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Sciences, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, 7491 Trondheim, Norway;
| | - Anne Tøndervik
- SINTEF Industry, Department of Biotechnology and Nanomedicine, Richard Birkelands veg 3 B, 7034 Trondheim, Norway; (A.T.); (H.S.)
| | - Håvard Sletta
- SINTEF Industry, Department of Biotechnology and Nanomedicine, Richard Birkelands veg 3 B, 7034 Trondheim, Norway; (A.T.); (H.S.)
| | - Vasile Ostafe
- Advanced Environmental Research Laboratories, Department of Biology—Chemistry, West University of Timisoara, Oituz 4, 300086 Timisoara, Romania;
| |
Collapse
|
14
|
Edis Z, Haj Bloukh S, Abu Sara H, Bhakhoa H, Rhyman L, Ramasami P. "Smart" Triiodide Compounds: Does Halogen Bonding Influence Antimicrobial Activities? Pathogens 2019; 8:E182. [PMID: 31658760 PMCID: PMC6963602 DOI: 10.3390/pathogens8040182] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/27/2019] [Accepted: 10/08/2019] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial agents containing symmetrical triiodides complexes with halogen bonding may release free iodine molecules in a controlled manner. This happens due to interactions with the plasma membrane of microorganisms which lead to changes in the structure of the triiodide anion. To verify this hypothesis, the triiodide complex [Na(12-crown-4)2]I3 was prepared by an optimized one-pot synthesis and tested against 18 clinical isolates, 10 reference strains of pathogens and five antibiotics. The antimicrobial activities of this symmetrical triiodide complex were determined by zone of inhibition plate studies through disc- and agar-well-diffusion methods. The triiodide complex proved to be a broad spectrum microbicidal agent. The biological activities were related to the calculated partition coefficient (octanol/water). The microstructural analysis of SEM and EDS undermined the purity of the triiodide complex. The anionic structure consists of isolated, symmetrical triiodide anions [I-I-I]- with halogen bonding. Computational methods were used to calculate the energy required to release iodine from [I-I-I]- and [I-I···I]-. The halogen bonding in the triiodide ion reduces the antibacterial activities in comparison to the inhibitory actions of pure iodine but increases the long term stability of [Na(12-crown-4)2]I3.
Collapse
Affiliation(s)
- Zehra Edis
- College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, UAE.
| | - Samir Haj Bloukh
- College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, UAE.
| | - Hamed Abu Sara
- College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, UAE.
| | - Hanusha Bhakhoa
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius.
| | - Lydia Rhyman
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius.
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa.
| | - Ponnadurai Ramasami
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius.
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa.
| |
Collapse
|
15
|
Pan C, Qian J, Fan J, Guo H, Gou L, Yang H, Liang C. Preparation nanoparticle by ionic cross-linked emulsified chitosan and its antibacterial activity. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.02.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
16
|
Abstract
Abstract
The chitin and chitosan market worldwide has shown tremendous growth, propelled by the expansion in the application domain. The market volume is projected to be more than 155 thousand metric tons by the year 2022. The global market for chitin and chitosan derivatives is expected to reach $4.2 billion by 2021 up from $2.0 billion in 2016 at a compound annual growth rate (CAGR) of 15.4%, from 2016 to 2021. Among chitin derivatives, chitosan is projected to offer the highest growth potential. The demand for a reliable source of high quality chitosan is rapidly increasing as new value added products enter the market. At the same time the growth of value added chitosan based products are limited by the availability of a sustainable supply chain. Antimicrobial properties are of special interest in the packaging, cosmetic, food and biomedical sector. Most of the latter applications warrants high-volume and low cost materials. However, the process chemistry for bulk chitosan manufacturing is currently not very environmentally friendly. Green technologies for chitosan modification have increased in recent years and now face the challenge of economic viability. In this review the status of antimicrobial chitosan derivatives will be reported with a critical review of the chemical technologies that would mitigate the commercialisation of these biopolymers in the antimicrobial biopolymer market sector. The amount of publications per annum has increased exponentially and the lack of global standardised antimicrobial test protocols make it rather challenging to properly evaluate the relative efficacy of these polymers.
Collapse
Affiliation(s)
- Anwar Jardine
- Department of Chemistry , University of Cape Town , Rondebosch 7701, Western Cape , South Africa
| | - Shakeela Sayed
- Department of Chemistry , University of Cape Town , Rondebosch 7701, Western Cape , South Africa
| |
Collapse
|
17
|
Kim SH, Eom SH, Yu D, Lee MS, Kim YM. Oligochitosan as a potential anti-acne vulgaris agent: combined antibacterial effects against Propionibacterium acnes. Food Sci Biotechnol 2017; 26:1029-1036. [PMID: 30263633 DOI: 10.1007/s10068-017-0118-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/20/2017] [Accepted: 04/29/2017] [Indexed: 01/05/2023] Open
Abstract
To develop an antibacterial treatment for acne vulgaris using natural substance with few side effects, we investigated the antibacterial activities of oligochitosan against acne-related bacteria, particularly Propionibacterium acnes. Oligochitosan showed potent antibacterial effect on P. acnes. Especially, 10 kDa oligochitosan presented the highest antimicrobial effect with minimum inhibitory concentration values of 32-64 μg/mL on P. acnes. In addition, oligochitosan clearly reversed the antibacterial effect of tetracycline and erythromycin on P. acnes in the combination mode. The combination of tetracycline- or erythromycine-10 kDa oligochitosan resulted in a median ΣFIC range of 0.02-0.56, suggesting that the antibiotics-oligochitosan combination resulted in an antibacterial synergy against P. acnes. Thus, the results obtained in this research strongly supported that erythromycin and tetracycline will restore the antibacterial activity against P. acnes in the combination mode with 10 kDa oligochitosan.
Collapse
Affiliation(s)
- Song-Hee Kim
- 1Department of Food Science and Technology, Pukyong National University, Busan, 48513 Korea
| | - Sung-Hwan Eom
- 2Korea Food Research Institute, Sungnam, Gyeonggi 13539 Korea
| | - Daeung Yu
- 3Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Myung-Suk Lee
- 4Department of Microbiology, Pukyong National University, Busan, 48513 Korea
| | - Young-Mog Kim
- 1Department of Food Science and Technology, Pukyong National University, Busan, 48513 Korea.,5Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513 Korea
| |
Collapse
|
18
|
Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydr Polym 2017; 164:268-283. [DOI: 10.1016/j.carbpol.2017.02.001] [Citation(s) in RCA: 447] [Impact Index Per Article: 63.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 01/10/2023]
|
19
|
Croce M, Conti S, Maake C, Patzke GR. Synthesis and screening of N-acyl thiolated chitosans for antibacterial applications. Carbohydr Polym 2016; 151:1184-1192. [PMID: 27474669 DOI: 10.1016/j.carbpol.2016.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/31/2016] [Accepted: 06/02/2016] [Indexed: 02/01/2023]
Abstract
Low-molecular weight chitosan-thioglycolic acid has shown significant antibacterial properties against different microorganisms. In order to explore the potential and structure-activity relationships of newly synthesized alkyl thiomers, chitosan has been functionalized with a series of thio-acids with increasing alkyl chain length. All thiomers were characterized with special emphasis on the determination of their degree of deacetylation and substitution, as well as on their molecular weight and amount of thiol groups. The pre-screened chitosan-thiomers were further investigated with plate counting on Pseudomonas aeruginosa, Streptococcus sobrinus and Streptococcus mutans. Furthermore, LIVE/DEAD assays supported the efficiency of chitosan-thiomers against the above microorganisms. All fully characterized chitosan-thiomers showed comparable or enhanced antimicrobial activity compared to pristine chitosan. Our comprehensive approach paves the way to detailed explorations of much sought-after structure activity relationships in the complex chitosan parameter room, starting from correlations between alkyl chain length and antimicrobial activity.
Collapse
Affiliation(s)
- Matteo Croce
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Simona Conti
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Caroline Maake
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
20
|
Antimicrobial action of water-soluble β-chitosan against clinical multi-drug resistant bacteria. Int J Mol Sci 2015; 16:7995-8007. [PMID: 25867474 PMCID: PMC4425063 DOI: 10.3390/ijms16047995] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 03/30/2015] [Accepted: 04/07/2015] [Indexed: 02/07/2023] Open
Abstract
Recently, the number of patients infected by drug-resistant pathogenic microbes has increased remarkably worldwide, and a number of studies have reported new antibiotics from natural sources. Among them, chitosan, with a high molecular weight and α-conformation, exhibits potent antimicrobial activity, but useful applications as an antibiotic are limited by its cytotoxicity and insolubility at physiological pH. In the present study, the antibacterial activity of low molecular weight water-soluble (LMWS) α-chitosan (α1k, α5k, and α10k with molecular masses of 1, 5, and 10 kDa, respectively) and β-chitosan (β1k, β5k, and β10k) was compared using a range of pathogenic bacteria containing drug-resistant bacteria isolated from patients at different pH. Interestingly, β5k and β10k exhibited potent antibacterial activity, even at pH 7.4, whereas only α10k was effective at pH 7.4. The active target of β-chitosan is the bacterial membrane, where the leakage of calcein is induced in artificial PE/PG vesicles, bacterial mimetic membrane. Moreover, scanning electron microscopy showed that they caused significant morphological changes on the bacterial surfaces. An in vivo study utilizing a bacteria-infected mouse model found that LMWS β-chitosan could be used as a candidate in anti-infective or wound healing therapeutic applications.
Collapse
|
21
|
Dong H, Wang Y, Zhao L, Zhou J, Xia Q, Qiu Y. Key Technologies of Enzymatic Preparation for DP 6-8 Chitooligosaccharides. J FOOD PROCESS ENG 2014. [DOI: 10.1111/jfpe.12159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Huizhong Dong
- State Key Laboratory of Bioreactor Engineering; R&D Center of Separation and Extraction Technology in Fermentation Industry; East China University of Science and Technology; Shanghai 200237 China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology; Shanghai China
| | - Yaosong Wang
- State Key Laboratory of Bioreactor Engineering; R&D Center of Separation and Extraction Technology in Fermentation Industry; East China University of Science and Technology; Shanghai 200237 China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology; Shanghai China
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering; R&D Center of Separation and Extraction Technology in Fermentation Industry; East China University of Science and Technology; Shanghai 200237 China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology; Shanghai China
| | - Jiachun Zhou
- State Key Laboratory of Bioreactor Engineering; R&D Center of Separation and Extraction Technology in Fermentation Industry; East China University of Science and Technology; Shanghai 200237 China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology; Shanghai China
| | - Quanming Xia
- State Key Laboratory of Bioreactor Engineering; R&D Center of Separation and Extraction Technology in Fermentation Industry; East China University of Science and Technology; Shanghai 200237 China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology; Shanghai China
| | - Yongjun Qiu
- State Key Laboratory of Bioreactor Engineering; R&D Center of Separation and Extraction Technology in Fermentation Industry; East China University of Science and Technology; Shanghai 200237 China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology; Shanghai China
| |
Collapse
|