1
|
Gao S, Liu Z, Zeng W, Zhang Y, Zhang F, Wu D, Wang Y. Biocompatible Hydrogel Coating on Silicone Rubber with Improved Antifouling and Durable Lubricious Properties. Gels 2024; 10:647. [PMID: 39451300 PMCID: PMC11507538 DOI: 10.3390/gels10100647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Silicone rubber is widely used in various medical applications. However, silicone rubber is prone to biofouling due to their affinity for lipids and has a high friction coefficient, which can significantly impact their efficacy and performance used as medical devices. Thus, the development of hydrogels with antifouling and lubricious abilities for the modification of silicone rubber is in high demand. We herein prepared a variety of hydrogel coatings mainly based on polyvinylpyrrolidone (PVP) and poly (ethylene glycol) diacrylate (PEGDA). We modified the silicone rubber using the prepared hydrogel coatings and cured it using a heating method. Then, we characterized its surface and evaluated the antifouling property, lubricious property, cytotoxicity, sensitization, and vaginal irritation. The results of water contact angle (WCA), protein adsorption, and friction coefficient indicated the success of the modification of the silicone rubber, leading to a significant decrease in the corresponding test values. Meanwhile, the results of cytotoxicity, sensitization, and vaginal irritation tests showed that the hydrogel coating-modified silicone rubbers have an excellent biocompatibility. This study describes how the silicone rubber could be modified with a biocompatible hydrogel coating. The hydrogel coating-modified silicone rubbers have improved antifouling and durable lubricious properties.
Collapse
Affiliation(s)
- Shuai Gao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; (S.G.); (F.Z.)
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu 611137, China; (Z.L.); (W.Z.); (Y.Z.)
| | - Zheng Liu
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu 611137, China; (Z.L.); (W.Z.); (Y.Z.)
| | - Wei Zeng
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu 611137, China; (Z.L.); (W.Z.); (Y.Z.)
| | - Yunfeng Zhang
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu 611137, China; (Z.L.); (W.Z.); (Y.Z.)
| | - Fanjun Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; (S.G.); (F.Z.)
| | - Dimeng Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; (S.G.); (F.Z.)
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; (S.G.); (F.Z.)
| |
Collapse
|
2
|
Tang H, Wu D, Liu Z, Liu X, Yuan H, Jin X, Gao S, Chen G. Polyvinylpyrrolidone hydrogel coating for ureteral stent: Safety and performance evaluation. Biomed Mater Eng 2024; 35:205-217. [PMID: 38277278 DOI: 10.3233/bme-230179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
BACKGROUND Ureteral stents are commonly used in urology. However, complications such as encrustation and infection on the surface of the stent, and injury to the ureteral mucosa can occur after implantation, causing discomfort for patients. OBJECTIVE We intend to confirm the biosafety of polyvinylpyrrolidone (PVP) hydrophilic coating and its lubrication properties for surface modification of ureteral stents to reduce friction and improve patient comfort. METHODS Based on our previous studies, we have developed a PVP hydrophilic coating for surface modification of ureteral stents. We firstly investigated the cytotoxicity, intradermal irritation, delayed type hypersensitivity, and acute systemic reactions of stent coating extracts. We further characterized the break strength, retention strength, and dynamic friction of the stent. RESULTS The cell survival rate of all experimental groups was greater than 70%. No hypersensitivity reaction, systemic toxicity reaction, or obvious intradermal reaction were observed. The above results indicate that the test results of the modified stent meet the requirements of ISO 10993-5: 2009 (Cytotoxicity); ISO 10993-10:2021 (Sensitization and Irritation); ISO 10993-11:2017 (Acute Systemic Toxicity). After soaking in artificial urine for an extended period, there was no obvious change in its super-slip performance. CONCLUSION Our results confirm the safety and lubrication characteristics of PVP hydrophilic coating for ureteral stent surface modification. The performance of this coating has the potential to reduce complications after stent implantation, thereby improving patient comfort, reducing medical burden, and has a good clinical application prospect.
Collapse
Affiliation(s)
- Haibin Tang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dimeng Wu
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Zheng Liu
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, China
| | - Xi Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Heng Yuan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaosong Jin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuai Gao
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Gang Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Chen W, Xu B, Tang Q, Qian S, Bian D, Li H. Preparation and Properties of PDMS Surface Coating for Ultra-Low Friction Characteristics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14605-14615. [PMID: 37788007 DOI: 10.1021/acs.langmuir.3c01846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Polydimethylsiloxane (PDMS) has excellent physical-chemical properties and good biocompatibility. Thus, PDMS has been widely applied in biomedical applications. However, the low surface free energy and surface hydrophobicity of PDMS can easily lead to adverse symptoms, such as tissue damage and ulceration, during medical treatment. Therefore, the construction of a hydrophilic low-friction surface on the PDMS surface could be helpful for alleviating patient discomfort and would be of great significance for broadening the application of PDMS in the field of interventional medical catheters. Existing surface modification methods such as hydrogel coatings and chemical grafting suffer from several deficiencies including uncontrollable thickness, surface fragility, and low surface strength. In this study, a hydrophilic surface with ultra-low friction properties was prepared on the surface of PDMS by an ultraviolet light (UV) curing method. The monomer acrylamide (AM) was induced by a photoinitiator to form a coating on the surface of the silicone rubber by in situ polymerization. The surface roughness of the as-prepared coatings was regulated by adding different concentrations of 2-acrylamido-2-methylpropanesulfonic acid (AMPS) to the monomer solution, and the coating properties were systematically characterized. The results indicated that the roughness and thickness of the as-prepared coatings decreased with increasing AMPS concentration and the as-prepared coatings had good hydrophilicity and low-friction properties. The Coefficient of Friction (CoF) was as low as 0.0075 in the deionized water solution, which was 99.7% lower than that of the unmodified PDMS surface. Moreover, the coating with a lower surface roughness exhibited better low-friction properties. The results reported herein provide new insight into the preparation of hydrophilic, low-friction coatings on polymer surfaces.
Collapse
Affiliation(s)
- Weiwei Chen
- School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Bo Xu
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qichen Tang
- School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shanhua Qian
- School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Da Bian
- School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hui Li
- Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou 450001, China
| |
Collapse
|
4
|
Hydrogel-Crosslinked Microneedles Based on Microwave-Assisted Drying Method. ADVANCES IN POLYMER TECHNOLOGY 2022. [DOI: 10.1155/2022/2220918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We present a method and several applications for the synthesis of hydrogel-crosslinked microneedle arrays utilizing microwave-assisted drying, ensuring a significant reduction in reaction preparation time while maintaining quality. We demonstrate the feasibility of drying hydrogels using microwaves and thus extend to crosslinked microneedle fabrication. Crosslinking was performed using 1,4-butanediol diglycidyl ether (BDDE) as a crosslinking agent. Infrared spectra of the microneedle arrays were measured with attenuated total reflection-Fourier transform infrared (ATR-FTIR). The surface morphology of the microneedle arrays was observed with scanning electron microscopy (SEM). The microneedle arrays were evaluated in terms of mechanical strength, swelling kinetics, rheological properties, degradation rate, and glucose iontophoresis. The results show that this method can shorten the reaction preparation time by 5 hours, and the prepared crosslinked microneedle array has better crosslinking efficiency, swelling effect, and greater mechanical strength than traditional methods.
Collapse
|
5
|
Abdelghany S, Alshaer W, Al Thaher Y, Al Fawares M, Al-Bakri AG, Zuriekat S, Mansour RSH. Ciprofloxacin-loaded dissolving polymeric microneedles as a potential therapeutic for the treatment of S. aureus skin infections. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:517-527. [PMID: 35812251 PMCID: PMC9235833 DOI: 10.3762/bjnano.13.43] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/01/2022] [Indexed: 05/09/2023]
Abstract
Microneedles have been widely studied for many topical and transdermal therapeutics due to their ability to painlessly puncture the skin, thereby bypassing the stratum corneum, the main skin barrier. In this study, ciprofloxacin (CIP) was loaded into dissolving polymeric microneedles prepared by a two-layer centrifugation method as a potential treatment of skin infections such as cellulitis. The polymers used were polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP). Two formulations were investigated, namely CIP_MN1, composed of 10 mg ciprofloxacin incorporated into a polymer matrix of PVA and PVP with a weight ratio of (9:1), and CIP_MN2, composed of 10 mg ciprofloxacin incorporated into PVA polymer. CIP_MN1 and CIP_MN2 showed a mean microneedle height of 188 and 179 µm, respectively. Since Parafilm has been proven as a model to examine the perforation of microneedles in skin, it was used to evaluate the ability of microneedles to perforate the skin. CIP_MN1 showed almost complete perforation of Parafilm, 190 pores, compared to CIP_MN2 which created only 85 pores in Parafilm, and therefore CIP_MN1 was used for subsequent studies. Examining CIP_MN1 on agarose gel as an in vitro model of human skin showed that the formula was able to fully perforate the agarose gel. Moreover, this formula showed significantly greater antimicrobial activity (p < 0.0001) compared to a free gel of ciprofloxacin against Staphylococcus aureus in an agarose gel-based model. This was evidenced by a zone of inhibition of 29 mm for the microneedle formulation of ciprofloxacin (CIP_MN1) compared to 2 mm for the free gel of ciprofloxacin. Furthermore, the CIP_MN1 showed complete dissolution in human skin after 60 min from application. Finally, the skin deposition of CIP_MN1 was investigated in ex vivo excised human skin. CIP_MN1 showed significantly more deposition of ciprofloxacin in deeper skin layers compared to the free gel of ciprofloxacin, and the released ciprofloxacin from the microneedles tends to migrate to deeper layers with time. Collectively, these results suggest that CIP_MN1 can be a potential delivery system for the treatment of S. aureus skin infections.
Collapse
Affiliation(s)
| | - Walhan Alshaer
- Cell Therapy Center, University of Jordan, Amman, 11942, Jordan
| | - Yazan Al Thaher
- Faculty of Pharmacy, Philadelphia University, Amman, 19392, Jordan
| | | | - Amal G Al-Bakri
- School of Pharmacy, University of Jordan, Amman, 11942, Jordan
| | - Saja Zuriekat
- School of Pharmacy, University of Jordan, Amman, 11942, Jordan
| | - Randa SH Mansour
- Faculty of Pharmacy, Philadelphia University, Amman, 19392, Jordan
| |
Collapse
|
6
|
Nasri N, Rusli A, Teramoto N, Jaafar M, Ku Ishak KM, Shafiq MD, Abdul Hamid ZA. Past and Current Progress in the Development of Antiviral/Antimicrobial Polymer Coating towards COVID-19 Prevention: A Review. Polymers (Basel) 2021; 13:4234. [PMID: 34883737 PMCID: PMC8659939 DOI: 10.3390/polym13234234] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023] Open
Abstract
The astonishing outbreak of SARS-CoV-2 coronavirus, known as COVID-19, has attracted numerous research interests, particularly regarding fabricating antimicrobial surface coatings. This initiative is aimed at overcoming and minimizing viral and bacterial transmission to the human. When contaminated droplets from an infected individual land onto common surfaces, SARS-CoV-2 coronavirus is able to survive on various surfaces for up to 9 days. Thus, the possibility of virus transmission increases after touching or being in contact with contaminated surfaces. Herein, we aim to provide overviews of various types of antiviral and antimicrobial coating agents, such as antimicrobial polymer-based coating, metal-based coating, functional nanomaterial, and nanocomposite-based coating. The action mode for each type of antimicrobial agent against pathogens is elaborated. In addition, surface properties of the designed antiviral and antimicrobial polymer coating with their influencing factors are discussed in this review. This paper also exhibits several techniques on surface modification to improve surface properties. Various developed research on the development of antiviral/antimicrobial polymer coating to curb the COVID-19 pandemic are also presented in this review.
Collapse
Affiliation(s)
- Nazihah Nasri
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Arjulizan Rusli
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Naozumi Teramoto
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino 275-0016, Chiba, Japan;
| | - Mariatti Jaafar
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Ku Marsilla Ku Ishak
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Mohamad Danial Shafiq
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Zuratul Ain Abdul Hamid
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| |
Collapse
|
7
|
Teepakakorn AP, Ogawa M. Composition-Dependent Thermal Stability and Water-Induced Self-Healing Behavior of Smectite/Waterborne Polymer Hybrid Film. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12887-12896. [PMID: 34694821 DOI: 10.1021/acs.langmuir.1c01908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
By casting an aqueous suspension containing a water-soluble polymer, polyvinylpyrrolidone, and a layered silicate, synthetic hectorite, on the solid substrate, films with varied interlayer expansion were obtained depending on the composition. The thermal stability, water resistance, water-induced self-healing behavior, and adhesion were examined to find their composition dependence, which is thought to be originated from the nanostructure variation. Polyvinylpyrrolidone was thermally stable up to 300 °C for the hybrid with the polymer/clay weight ratio of 0.36 and 260 °C for the weight ratios of 1.08 and 1.80 as shown by the changes in the appearance and structure after heat treatment. The hybrid film with the polymer/clay ratio of 0.36 maintained the film shape when it was soaked in water for 24 h. The hybrids with the polymer/clay ratios of 1.08 and 1.80 were re-dispersed/dissolved into water after the immersion, while the water resistance of the films was enhanced by the thermal treatment at 200 °C for 2 h and showed very fast water-induced self-healing.
Collapse
Affiliation(s)
- Aranee Pleng Teepakakorn
- School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| |
Collapse
|
8
|
Nathanael AJ, Oh TH. Biopolymer Coatings for Biomedical Applications. Polymers (Basel) 2020; 12:E3061. [PMID: 33371349 PMCID: PMC7767366 DOI: 10.3390/polym12123061] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023] Open
Abstract
Biopolymer coatings exhibit outstanding potential in various biomedical applications, due to their flexible functionalization. In this review, we have discussed the latest developments in biopolymer coatings on various substrates and nanoparticles for improved tissue engineering and drug delivery applications, and summarized the latest research advancements. Polymer coatings are used to modify surface properties to satisfy certain requirements or include additional functionalities for different biomedical applications. Additionally, polymer coatings with different inorganic ions may facilitate different functionalities, such as cell proliferation, tissue growth, repair, and delivery of biomolecules, such as growth factors, active molecules, antimicrobial agents, and drugs. This review primarily focuses on specific polymers for coating applications and different polymer coatings for increased functionalization. We aim to provide broad overview of latest developments in the various kind of biopolymer coatings for biomedical applications, in order to highlight the most important results in the literatures, and to offer a potential outline for impending progress and perspective. Some key polymer coatings were discussed in detail. Further, the use of polymer coatings on nanomaterials for biomedical applications has also been discussed, and the latest research results have been reported.
Collapse
Affiliation(s)
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
9
|
Demeter M, Călina I, Vancea C, Şen M, Kaya MGA, Mănăilă E, Dumitru M, Meltzer V. E-Beam Processing of Collagen-Poly(N-vinyl-2-pyrrolidone) Double-Network Superabsorbent Hydrogels: Structural and Rheological Investigations. Macromol Res 2019. [DOI: 10.1007/s13233-019-7041-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|