1
|
Zhong Q, Zhao B, She X, Liu X. HMGA2 as a prognostic and immune biomarker in hepatocellular carcinoma: Comprehensive analysis of the HMG family and experiments validation. PLoS One 2024; 19:e0311204. [PMID: 39591457 PMCID: PMC11594397 DOI: 10.1371/journal.pone.0311204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/15/2024] [Indexed: 11/28/2024] Open
Abstract
The molecular mechanisms underlying hepatocellular carcinoma (HCC) are complex and not fully understood. This study aims to explore the expression and clinical significance of High Mobility Group (HMG) proteins in HCC to identify potential prognostic biomarkers and therapeutic targets. Bioinformatic analyses were performed using data from The Cancer Genome Atlas (TCGA) and other databases. Expression levels of HMGs were validated in HCC cell lines using qRT-PCR, and functional studies were conducted by knocking down HMGA2.HMG family members, particularly HMGA1, HMGA2, HMGB2, and HMGN1, were significantly upregulated in HCC tissues compared to normal tissues. High expression levels of these proteins were associated with poor overall survival and disease-specific survival in HCC patients. Knockdown of HMGA2 in HCC cell lines led to reduced cell proliferation, migration, and invasion. HMGA2, along with other HMG family members, emerges as a potential prognostic biomarker and therapeutic target in HCC. This study provides new insights into the role of HMG proteins in HCC progression.
Collapse
Affiliation(s)
- Qiangqiang Zhong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- Laboratory of Metabolic Abnormalities and Vascular Aging Huazhong University of Science and Technology, Wuhan, PR China
| | - Baokang Zhao
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xiao She
- Department of Gastroenterology, Xi’an Jiaotong University Second Affiliated Hospital, Xi’an, PR China
| | - Xiangjie Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
2
|
Pozdnyakov IR, Selyuk AO, Kalashnikova VA, Karpov SA. HMG-B transcription factors of unicellular opisthokonts and their relatedness to the Sox-Tcf/Lef-Mata proteins of Metazoa and fungi. Gene 2024; 921:148520. [PMID: 38702020 DOI: 10.1016/j.gene.2024.148520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/05/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
A phylogenetic analysis of transcription factors of the Sox-Tcf/Lef-Mata (STM) family of the HMG-B superfamily was carried out in order to clarify the evolutionary roots of the Wnt signaling pathway in unicellular organisms. The data set for analysis included protein sequences of metazoans, fungi, unicellular opisthokonts, apusomonads and amoebozoans. The topology of the phylogenetic tree suggests that STM-related proteins arose in the common ancestor of Opisthokonta and Amoebozoa, two of amoebozoan STM proteins are sister-related to opisthokont ones and the three known lineages of STM transcription factors (STM family in narrow sence) are found in Opisthokonta only. Of these, the holozoan Sox protein branch is the result of either the first or second branching, that originated in the common ancestor of Opisthokonta. The lineage containing Tcf/Lef proteins (holozoan) and the lineage containing Mata proteins (holomycotan) are sister. They derived either at the time of the Holozoa and Holomycota divergence or originate from two paralogs of the common ancestor of Opisthokonta, which arose after the separation of the Sox lineage. Interaction with Armadillo-like proteins may be an original feature of the STM protein family and existed in the unicellular ancestors of multicellular animals; a connection is possible between the presence of Mata-related proteins in Aphelidium protococcorum and specific genome feature of this species.
Collapse
Affiliation(s)
- Igor R Pozdnyakov
- Zoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russia.
| | - Alexey O Selyuk
- Zoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russia; Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg University, St. Petersburg 199034, Russia
| | - Vera A Kalashnikova
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg University, St. Petersburg 199034, Russia
| | - Sergey A Karpov
- Zoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russia
| |
Collapse
|
3
|
Audoor S, Bilcke G, Pargana K, Belišová D, Thierens S, Van Bel M, Sterck L, Rijsdijk N, Annunziata R, Ferrante MI, Vandepoele K, Vyverman W. Transcriptional chronology reveals conserved genes involved in pennate diatom sexual reproduction. Mol Ecol 2024; 33:e17320. [PMID: 38506152 DOI: 10.1111/mec.17320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/23/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
Sexual reproduction is a major driver of adaptation and speciation in eukaryotes. In diatoms, siliceous microalgae with a unique cell size reduction-restitution life cycle and among the world's most prolific primary producers, sex also acts as the main mechanism for cell size restoration through the formation of an expanding auxospore. However, the molecular regulators of the different stages of sexual reproduction and size restoration are poorly explored. Here, we combined RNA sequencing with the assembly of a 55 Mbp reference genome for Cylindrotheca closterium to identify patterns of gene expression during different stages of sexual reproduction. These were compared with a corresponding transcriptomic time series of Seminavis robusta to assess the degree of expression conservation. Integrative orthology analysis revealed 138 one-to-one orthologues that are upregulated during sex in both species, among which 56 genes consistently upregulated during cell pairing and gametogenesis, and 11 genes induced when auxospores are present. Several early, sex-specific transcription factors and B-type cyclins were also upregulated during sex in other pennate and centric diatoms, pointing towards a conserved core regulatory machinery for meiosis and gametogenesis across diatoms. Furthermore, we find molecular evidence that the pheromone-induced cell cycle arrest is short-lived in benthic diatoms, which may be linked to their active mode of mate finding through gliding. Finally, we exploit the temporal resolution of our comparative analysis to report the first marker genes for auxospore identity called AAE1-3 ("Auxospore-Associated Expression"). Altogether, we introduce a multi-species model of the transcriptional dynamics during size restoration in diatoms and highlight conserved gene expression dynamics during different stages of sexual reproduction.
Collapse
Affiliation(s)
- Sien Audoor
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, University Ghent, Ghent, Belgium
| | - Gust Bilcke
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, University Ghent, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Katerina Pargana
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, University Ghent, Ghent, Belgium
| | - Darja Belišová
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, University Ghent, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Sander Thierens
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Michiel Van Bel
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Lieven Sterck
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Nadine Rijsdijk
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, University Ghent, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | | | - Maria Immacolata Ferrante
- Stazione Zoologica Anton Dohrn, Naples, Italy
- Associate to the National Institute of Oceanography and Applied Geophysics, Trieste, Italy
| | - Klaas Vandepoele
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for AI & Computational Biology, VIB, Ghent, Belgium
| | - Wim Vyverman
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, University Ghent, Ghent, Belgium
| |
Collapse
|
4
|
Akade E, Jalilian S. The role of high mobility group AT-hook 1 in viral infections: Implications for cancer pathogenesis. Int J Biochem Cell Biol 2024; 169:106532. [PMID: 38278412 DOI: 10.1016/j.biocel.2024.106532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/25/2023] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
The crucial role of high mobility group AT-hook 1 (HMGA1) proteins in nuclear processes such as gene transcription, DNA replication, and chromatin remodeling is undeniable. Elevated levels of HMGA1 have been associated with unfavorable clinical outcomes and adverse differentiation status across various cancer types. HMGA1 regulates a diverse array of biological pathways, including tumor necrosis factor-alpha/nuclear factor-kappa B (TNF-α/NF-κB), epidermal growth factor receptor (EGFR), Hippo, Rat sarcoma/extracellular signal-regulated kinase (Ras/ERK), protein kinase B (Akt), wingless-related integration site/beta-catenin (Wnt/beta-catenin), and phosphoinositide 3-kinase/protein kinase B (PI3-K/Akt). While researchers have extensively investigated tumors in the reproductive, digestive, urinary, and hematopoietic systems, mounting evidence suggests that HMGA1 plays a critical role as a tumorigenic factor in tumors across all functional systems. Given its broad interaction network, HMGA1 is an attractive target for viral manipulation. Some viruses, including herpes simplex virus type 1, human herpesvirus 8, human papillomavirus, JC virus, hepatitis B virus, human immunodeficiency virus type 1, severe acute respiratory syndrome Coronavirus 2, and influenza viruses, utilize HMGA1 influence for infection. This interaction, particularly in oncogenesis, is crucial. Apart from the direct oncogenic effect of some of the mentioned viruses, the hit-and-run theory postulates that viruses can instigate cancer even before being completely eradicated from the host cell, implying a potentially greater impact of viruses on cancer development than previously assumed. This review explores the interplay between HMGA1, viruses, and host cellular machinery, aiming to contribute to a deeper understanding of viral-induced oncogenesis, paving the way for innovative strategies in cancer research and treatment.
Collapse
Affiliation(s)
- Esma'il Akade
- Department of Medical Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahram Jalilian
- Department of Medical Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
5
|
Huffines AK, Schneider DA. Hmo1 Promotes Efficient Transcription Elongation by RNA Polymerase I in Saccharomyces cerevisiae. Genes (Basel) 2024; 15:247. [PMID: 38397236 PMCID: PMC10888141 DOI: 10.3390/genes15020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
RNA polymerase I (Pol I) is responsible for synthesizing the three largest eukaryotic ribosomal RNAs (rRNAs), which form the backbone of the ribosome. Transcription by Pol I is required for cell growth and, therefore, is subject to complex and intricate regulatory mechanisms. To accomplish this robust regulation, the cell engages a series of trans-acting transcription factors. One such factor, high mobility group protein 1 (Hmo1), has long been established as a trans-acting factor for Pol I in Saccharomyces cerevisiae; however, the mechanism by which Hmo1 promotes rRNA synthesis has not been defined. Here, we investigated the effect of the deletion of HMO1 on transcription elongation by Pol I in vivo. We determined that Hmo1 is an important activator of transcription elongation, and without this protein, Pol I accumulates across rDNA in a sequence-specific manner. Our results demonstrate that Hmo1 promotes efficient transcription elongation by rendering Pol I less sensitive to pausing in the G-rich regions of rDNA.
Collapse
Affiliation(s)
| | - David A. Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
6
|
Slyskova J, Muniesa-Vargas A, da Silva I, Drummond R, Park J, Häckes D, Poetsch I, Ribeiro-Silva C, Moretton A, Heffeter P, Schärer O, Vermeulen W, Lans H, Loizou J. Detection of oxaliplatin- and cisplatin-DNA lesions requires different global genome repair mechanisms that affect their clinical efficacy. NAR Cancer 2023; 5:zcad057. [PMID: 38058548 PMCID: PMC10696645 DOI: 10.1093/narcan/zcad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
The therapeutic efficacy of cisplatin and oxaliplatin depends on the balance between the DNA damage induction and the DNA damage response of tumor cells. Based on clinical evidence, oxaliplatin is administered to cisplatin-unresponsive cancers, but the underlying molecular causes for this tumor specificity are not clear. Hence, stratification of patients based on DNA repair profiling is not sufficiently utilized for treatment selection. Using a combination of genetic, transcriptomics and imaging approaches, we identified factors that promote global genome nucleotide excision repair (GG-NER) of DNA-platinum adducts induced by oxaliplatin, but not by cisplatin. We show that oxaliplatin-DNA lesions are a poor substrate for GG-NER initiating factor XPC and that DDB2 and HMGA2 are required for efficient binding of XPC to oxaliplatin lesions and subsequent GG-NER initiation. Loss of DDB2 and HMGA2 therefore leads to hypersensitivity to oxaliplatin but not to cisplatin. As a result, low DDB2 levels in different colon cancer cells are associated with GG-NER deficiency and oxaliplatin hypersensitivity. Finally, we show that colon cancer patients with low DDB2 levels have a better prognosis after oxaliplatin treatment than patients with high DDB2 expression. We therefore propose that DDB2 is a promising predictive marker of oxaliplatin treatment efficiency in colon cancer.
Collapse
Affiliation(s)
- Jana Slyskova
- Center for Cancer Research, Medical University of Vienna, A-1090 Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, A-1090 Vienna, Austria
| | - Alba Muniesa-Vargas
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Israel Tojal da Silva
- Laboratory of Bioinformatics and Computational Biology, A.C. Camargo Cancer Center, São Paulo 01508-010, Brazil
| | - Rodrigo Drummond
- Laboratory of Bioinformatics and Computational Biology, A.C. Camargo Cancer Center, São Paulo 01508-010, Brazil
| | - Jiyeong Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - David Häckes
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Isabella Poetsch
- Center for Cancer Research, Medical University of Vienna, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, A-1090 Vienna, Austria
| | - Cristina Ribeiro-Silva
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Amandine Moretton
- Center for Cancer Research, Medical University of Vienna, A-1090 Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, A-1090 Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research, Medical University of Vienna, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, A-1090 Vienna, Austria
| | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Wim Vermeulen
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Joanna I Loizou
- Center for Cancer Research, Medical University of Vienna, A-1090 Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, A-1090 Vienna, Austria
| |
Collapse
|
7
|
Wang Y, Wang F, Lu H, Lin R, Liu J, Liu Y, Xu J, Wu Y, Wang Z, Zhou M, Mo X, Wu Z, Shou H, Zheng S, Mao C. Rice chromatin protein OsHMGB1 is involved in phosphate homeostasis and plant growth by affecting chromatin accessibility. THE NEW PHYTOLOGIST 2023; 240:727-743. [PMID: 37553956 DOI: 10.1111/nph.19189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/12/2023] [Indexed: 08/10/2023]
Abstract
Although phosphorus is one of the most important essential elements for plant growth and development, the epigenetic regulation of inorganic phosphate (Pi) signaling is poorly understood. In this study, we investigated the biological function and mode of action of the high-mobility-group box 1 protein OsHMGB1 in rice (Oryza sativa), using molecular and genetic approaches. We determined that OsHMGB1 expression is induced by Pi starvation and encodes a nucleus-localized protein. Phenotypic analysis of Oshmgb1 mutant and OsHMGB1 overexpression transgenic plants showed that OsHMGB1 positively regulates Pi homeostasis and plant growth. Transcriptome deep sequencing and chromatin immunoprecipitation followed by sequencing indicated that OsHMGB1 regulates the expression of a series of phosphate starvation-responsive (PSR) genes by binding to their promoters. Furthermore, an assay for transposase-accessible chromatin followed by sequencing revealed that OsHMGB1 is involved in maintaining chromatin accessibility. Indeed, OsHMGB1 occupancy positively correlated with genome-wide chromatin accessibility and gene expression levels. Our results demonstrate that OsHMGB1 is a transcriptional facilitator that regulates the expression of a set of PSR genes to maintain Pi homeostasis in rice by increasing the chromatin accessibility, revealing a key epigenetic mechanism that fine-tune plant acclimation responses to Pi-limited environments.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hong Lu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Rongbin Lin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiaming Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yunrong Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhiye Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ming Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaorong Mo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhongchang Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shaojian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute, Yazhou Bay Science and Technology City, Zhejiang University, Yazhou District, Sanya, Hainan, 572024, China
| |
Collapse
|
8
|
Neubert EN, DeRogatis JM, Lewis SA, Viramontes KM, Ortega P, Henriquez ML, Buisson R, Messaoudi I, Tinoco R. HMGB2 regulates the differentiation and stemness of exhausted CD8 + T cells during chronic viral infection and cancer. Nat Commun 2023; 14:5631. [PMID: 37704621 PMCID: PMC10499904 DOI: 10.1038/s41467-023-41352-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/31/2023] [Indexed: 09/15/2023] Open
Abstract
Chronic infections and cancers evade the host immune system through mechanisms that induce T cell exhaustion. The heterogeneity within the exhausted CD8+ T cell pool has revealed the importance of stem-like progenitor (Tpex) and terminal (Tex) exhausted T cells, although the mechanisms underlying their development are not fully known. Here we report High Mobility Group Box 2 (HMGB2) protein expression is upregulated and sustained in exhausted CD8+ T cells, and HMGB2 expression is critical for their differentiation. Through epigenetic and transcriptional programming, we identify HMGB2 as a cell-intrinsic regulator of the differentiation and maintenance of Tpex cells during chronic viral infection and in tumors. Despite Hmgb2-/- CD8+ T cells expressing TCF-1 and TOX, these master regulators were unable to sustain Tpex differentiation and long-term survival during persistent antigen. Furthermore, HMGB2 also had a cell-intrinsic function in the differentiation and function of memory CD8+ T cells after acute viral infection. Our findings show that HMGB2 is a key regulator of CD8+ T cells and may be an important molecular target for future T cell-based immunotherapies.
Collapse
Affiliation(s)
- Emily N Neubert
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, 92697, USA
| | - Julia M DeRogatis
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Sloan A Lewis
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
- La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Karla M Viramontes
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Pedro Ortega
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, 92697, USA
| | - Monique L Henriquez
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Rémi Buisson
- Center for Virus Research, University of California Irvine, Irvine, CA, 92697, USA
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, 92697, USA
| | - Ilhem Messaoudi
- Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, 40536, USA
| | - Roberto Tinoco
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA.
- Center for Virus Research, University of California Irvine, Irvine, CA, 92697, USA.
- Institute for Immunology, University of California, Irvine, Irvine, CA, 92697, USA.
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
9
|
Franco-Losilla M, Nordzieke S, Feldmann I, Limón MC, Avalos J. HmbC, a Protein of the HMG Family, Participates in the Regulation of Carotenoid Biosynthesis in Fusarium fujikuroi. Genes (Basel) 2023; 14:1661. [PMID: 37628712 PMCID: PMC10454146 DOI: 10.3390/genes14081661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
In the fungus Fusarium fujikuroi, carotenoid production is up-regulated by light and down-regulated by the CarS RING finger protein, which modulates the mRNA levels of carotenoid pathway genes (car genes). To identify new potential regulators of car genes, we used a biotin-mediated pull-down procedure to detect proteins capable of binding to their promoters. We focused our attention on one of the proteins found in the screening, belonging to the High-Mobility Group (HMG) family that was named HmbC. The deletion of the hmbC gene resulted in increased carotenoid production due to higher mRNA levels of car biosynthetic genes. In addition, the deletion resulted in reduced carS mRNA levels, which could also explain the partial deregulation of the carotenoid pathway. The mutants exhibited other phenotypic traits, such as alterations in development under certain stress conditions, or reduced sensitivity to cell wall degrading enzymes, revealed by less efficient protoplast formation, indicating that HmbC is also involved in other cellular processes. In conclusion, we identified a protein of the HMG family that participates in the regulation of carotenoid biosynthesis. This is probably achieved through an epigenetic mechanism related to chromatin structure, as is frequent in this class of proteins.
Collapse
Affiliation(s)
- Marta Franco-Losilla
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain; (M.F.-L.); (J.A.)
| | - Steffen Nordzieke
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain; (M.F.-L.); (J.A.)
| | - Ingo Feldmann
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., 44227 Dortmund, Germany;
| | - M. Carmen Limón
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain; (M.F.-L.); (J.A.)
| | - Javier Avalos
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain; (M.F.-L.); (J.A.)
| |
Collapse
|
10
|
Martins JR, Pinheiro DG, Ahmed ACC, Giuliatti S, Mizzen CA, Bitondi MMG. Genome-wide analysis of the chromatin sites targeted by HEX 70a storage protein in the honeybee brain and fat body. INSECT MOLECULAR BIOLOGY 2023; 32:277-304. [PMID: 36630080 DOI: 10.1111/imb.12830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/12/2022] [Indexed: 05/15/2023]
Abstract
Hexamerins, the proteins massively stored in the larval haemolymph of insects, are gradually used throughout metamorphosis as a source of raw material and energy for the development of adult tissues. Such behaviour defined hexamerins as storage proteins. Immunofluorescence experiments coupled with confocal microscopy show a hexamerin, HEX 70a, in the nucleus of the brain and fat body cells from honeybee workers, an unexpected localization for a storage protein. HEX 70a colocalizes with fibrillarin, a nucleolar-specific protein and H3 histone, thus suggesting a potential role as a chromatin-binding protein. This was investigated through chromatin immunoprecipitation and high-throughput DNA sequencing (ChIP-seq). The significant HEX 70a-DNA binding sites were mainly localized at the intergenic, promoter and intronic regions. HEX 70a targeted DNA stretches mapped to the genomic regions encompassing genes with relevant functional attributes. Several HEX 70a targeted genes were associated with H3K27ac or/and H3K27me3, known as active and repressive histone marks. Brain and fat body tissues shared a fraction of the HEX 70 targeted genes, and tissue-specific targets were also detected. The presence of overrepresented DNA motifs in the binding sites is consistent with specific HEX 70a-chromatin association. In addition, a search for HEX 70a targets in RNA-seq public libraries of fat bodies from nurses and foragers revealed differentially expressed targets displaying hex 70a-correlated developmental expression, thus supporting a regulatory activity for HEX 70a. Our results support the premise that HEX 70a is a moonlighting protein that binds chromatin and has roles in the brain and fat body cell nuclei, apart from its canonical role as a storage protein.
Collapse
Affiliation(s)
- Juliana R Martins
- Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, Brazil
| | - Daniel G Pinheiro
- Departamento de Biotecnologia Agropecuária e Ambiental, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Jaboticabal, Brazil
| | - Amy C C Ahmed
- University of Illinois at Urbana-Champaign, Carl R. Woese Institute for Genomic Biology, Urbana, Illinois, USA
| | - Silvana Giuliatti
- Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, Brazil
| | - Craig A Mizzen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Márcia M G Bitondi
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Ribeirão Preto, Brazil
| |
Collapse
|
11
|
Pareek M, Hegedüs B, Hou Z, Csernetics Á, Wu H, Virágh M, Sahu N, Liu XB, Nagy L. Preassembled Cas9 Ribonucleoprotein-Mediated Gene Deletion Identifies the Carbon Catabolite Repressor and Its Target Genes in Coprinopsis cinerea. Appl Environ Microbiol 2022; 88:e0094022. [PMID: 36374019 PMCID: PMC9746306 DOI: 10.1128/aem.00940-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Cre1 is an important transcription factor that regulates carbon catabolite repression (CCR) and is widely conserved across fungi. The cre1 gene has been extensively studied in several Ascomycota species, whereas its role in gene expression regulation in the Basidiomycota species remains poorly understood. Here, we identified and investigated the role of cre1 in Coprinopsis cinerea, a basidiomycete model mushroom that can efficiently degrade lignocellulosic plant wastes. We used a rapid and efficient gene deletion approach based on PCR-amplified split-marker DNA cassettes together with in vitro assembled Cas9-guide RNA ribonucleoproteins (Cas9 RNPs) to generate C. cinerea cre1 gene deletion strains. Gene expression profiling of two independent C. cinerea cre1 mutants showed significant deregulation of carbohydrate metabolism, plant cell wall degrading enzymes (PCWDEs), plasma membrane transporter-related and several transcription factor-encoding genes, among others. Our results support the notion that, like reports in the ascomycetes, Cre1 of C. cinerea orchestrates CCR through a combined regulation of diverse genes, including PCWDEs, transcription factors that positively regulate PCWDEs, and membrane transporters which could import simple sugars that can induce the expression of PWCDEs. Somewhat paradoxically, though in accordance with other Agaricomycetes, genes related to lignin degradation were mostly downregulated in cre1 mutants, indicating they fall under different regulation than other PCWDEs. The gene deletion approach and the data presented here will expand our knowledge of CCR in the Basidiomycota and provide functional hypotheses on genes related to plant biomass degradation. IMPORTANCE Mushroom-forming fungi include some of the most efficient lignocellulosic plant biomass degraders. They degrade dead plant materials by a battery of lignin-, cellulose-, hemicellulose-, and pectin-degrading enzymes, the encoding genes of which are under tight transcriptional control. One of the highest-level regulations of these metabolic enzymes is known as carbon catabolite repression, which is orchestrated by the transcription factor Cre1, and ensures that costly lignocellulose-degrading enzyme genes are expressed only when simple carbon sources (e.g., glucose) are not available. Here, we identified the Cre1 ortholog in a litter decomposer Agaricomycete, Coprinopsis cinerea, knocked it out, and characterized transcriptional changes in the mutants. We identified several dozen lignocellulolytic enzyme genes as well as membrane transporters and other transcription factors as putative target genes of C. cinerea cre1. These results extend knowledge on carbon catabolite repression to litter decomposer Basidiomycota.
Collapse
Affiliation(s)
- Manish Pareek
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Botond Hegedüs
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Zhihao Hou
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Árpád Csernetics
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Hongli Wu
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Máté Virágh
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Neha Sahu
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Xiao-Bin Liu
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - László Nagy
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
12
|
Interactions of HMGB Proteins with the Genome and the Impact on Disease. Biomolecules 2021; 11:biom11101451. [PMID: 34680084 PMCID: PMC8533419 DOI: 10.3390/biom11101451] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 01/01/2023] Open
Abstract
High Mobility Group Box (HMGB) proteins are small architectural DNA binding proteins that regulate multiple genomic processes such as DNA damage repair, nucleosome sliding, telomere homeostasis, and transcription. In doing so they control both normal cellular functions and impact a myriad of disease states, including cancers and autoimmune diseases. HMGB proteins bind to DNA and nucleosomes to modulate the local chromatin environment, which facilitates the binding of regulatory protein factors to the genome and modulates higher order chromosomal organization. Numerous studies over the years have characterized the structure and function of interactions between HMGB proteins and DNA, both biochemically and inside cells, providing valuable mechanistic insight as well as evidence these interactions influence pathological processes. This review highlights recent studies supporting the roles of HMGB1 and HMGB2 in global organization of the genome, as well as roles in transcriptional regulation and telomere maintenance via interactions with G-quadruplex structures. Moreover, emerging models for how HMGB proteins function as RNA binding proteins are presented. Nuclear HMGB proteins have broad regulatory potential to impact numerous aspects of cellular metabolism in normal and disease states.
Collapse
|
13
|
Huang C, Zhang J, Zhou D, Huang Y, Su L, Yang G, Luo W, Chen Z, Wang H, Guo T. Identification and candidate gene screening of qCIR9.1, a novel QTL associated with anther culturability in rice (Oryza sativa L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2097-2111. [PMID: 33713337 DOI: 10.1007/s00122-021-03808-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
A novel QTL, qCIR9.1, that controls callus induction rate in anther culture was identified on chromosome 9 in rice, and based on RNA-seq data, Os09g0551600 was the most promising candidate gene. Anther culture, a doubled haploid (DH) technique, has become an important technology in many plant-breeding programmes. Although anther culturability is the key factor in this technique, its genetic mechanisms in rice remain poorly understood. In this study, we mapped quantitative trait loci (QTLs) responsible for anther culturability by using 192 recombinant inbred lines (RILs) derived from YZX (Oryza sativa ssp. indica) × 02428 (Oryza sativa ssp. japonica) and a high-density bin map. A total of eight QTLs for anther culturability were detected in three environments. Among these QTLs, a novel major QTL for callus induction rate (CIR) named qCIR9.1 was repeatedly mapped to a ~ 100 kb genomic interval on chromosome 9 and explained 8.39-14.14% of the phenotypic variation. Additionally, RNA sequencing (RNA-seq) was performed for the parents (YZX and 02428), low- (L-Pool) and high-CIR RILs (H-Pool) after 16 and 26 days of culture. By using the RNA of the bulked RILs for background normalization, the number of differentially expressed genes (DEGs) both between the parents and between the bulked RILs after 26 days of culture was drastically reduced to only 78. Among these DEGs, only one gene, Os09g0551600, encoding a high-mobility group (HMG) protein, was located in the candidate region of qCIR9.1. qRT-PCR analysis of Os09g0551600 showed the same results as RNA-seq, and the expression of this gene was decreased in the low-callus-induction parent (YZX) and L-Pool. Our results provide a foundational step for further cloning of qCIR9.1 and will be very useful for improving anther culturability in rice.
Collapse
Affiliation(s)
- Cuihong Huang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Jian Zhang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Danhua Zhou
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Yuting Huang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Ling Su
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Guili Yang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Wenlong Luo
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Zhiqiang Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Hui Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
14
|
Mallik R, Prasad P, Kundu A, Sachdev S, Biswas R, Dutta A, Roy A, Mukhopadhyay J, Bag SK, Chaudhuri S. Identification of genome-wide targets and DNA recognition sequence of the Arabidopsis HMG-box protein AtHMGB15 during cold stress response. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194644. [PMID: 33068782 DOI: 10.1016/j.bbagrm.2020.194644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/12/2020] [Accepted: 10/07/2020] [Indexed: 12/27/2022]
Abstract
AtHMGB15 belongs to a group of ARID-HMG proteins which are plant specific. The presence of two known DNA binding domains: AT rich interacting domain (ARID) and High Mobility Group (HMG)-box, in one polypeptide, makes this protein intriguing. Although proteins containing individual HMG and ARID domains have been characterized, not much is known about the role of ARID-HMG proteins. Promoter analysis of AtHMGB15 showed the presence of various stress responsive cis regulatory elements along with MADS-box containing transcription factors. Our result shows that the expression of AtHMGB15 increased significantly upon application of cold stress. Using ChIP-chip approach, we have identified 6128 and 4689 significantly enriched loci having AtHMGB15 occupancy under control and cold stressed condition respectively. GO analysis shows genes belonging to abiotic stress response, cold response and root development were AtHMGB15 targets during cold stress. DNA binding and footprinting assays further identified A(A/C)--ATA---(A/T)(A/T) as AtHMGB15 binding motif. The enriched probe distribution in both control and cold condition shows a bias of AtHMGB15 binding towards the transcribed (gene body) region. Further, the expression of cold stress responsive genes decreased in athmgb15 knockout plants compared to wild-type. Taken together, binding enrichment of AtHMGB15 to the promoter and upstream to stress loci suggest an unexplored role of the protein in stress induced transcription regulation.
Collapse
Affiliation(s)
- Rwitie Mallik
- Division of Plant Biology, Bose Institute, P1/12 C.I.T Scheme VII M, Kolkata 700054, India
| | - Priti Prasad
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NBRI Campus, Lucknow, India; Computational Biology Lab, Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, Uttar Pradesh 226001, India
| | - Anindya Kundu
- Division of Plant Biology, Bose Institute, P1/12 C.I.T Scheme VII M, Kolkata 700054, India
| | - Sonal Sachdev
- Division of Plant Biology, Bose Institute, P1/12 C.I.T Scheme VII M, Kolkata 700054, India
| | - Ruby Biswas
- Division of Plant Biology, Bose Institute, P1/12 C.I.T Scheme VII M, Kolkata 700054, India
| | - Arkajyoti Dutta
- Department of Chemistry, Bose Institute, P1/12 C.I.T Scheme VII M, Kolkata 700054, India
| | - Adrita Roy
- Division of Plant Biology, Bose Institute, P1/12 C.I.T Scheme VII M, Kolkata 700054, India
| | - Jayanta Mukhopadhyay
- Department of Chemistry, Bose Institute, P1/12 C.I.T Scheme VII M, Kolkata 700054, India
| | - Sumit K Bag
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NBRI Campus, Lucknow, India; Computational Biology Lab, Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, Uttar Pradesh 226001, India
| | - Shubho Chaudhuri
- Division of Plant Biology, Bose Institute, P1/12 C.I.T Scheme VII M, Kolkata 700054, India.
| |
Collapse
|