1
|
Bryan MR, Bowman AB. Manganese and the Insulin-IGF Signaling Network in Huntington's Disease and Other Neurodegenerative Disorders. ADVANCES IN NEUROBIOLOGY 2017; 18:113-142. [PMID: 28889265 PMCID: PMC6559248 DOI: 10.1007/978-3-319-60189-2_6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease resulting in motor impairment and death in patients. Recently, several studies have demonstrated insulin or insulin-like growth factor (IGF) treatment in models of HD, resulting in potent amelioration of HD phenotypes via modulation of the PI3K/AKT/mTOR pathways. Administration of IGF and insulin can rescue microtubule transport, metabolic function, and autophagy defects, resulting in clearance of Huntingtin (HTT) aggregates, restoration of mitochondrial function, amelioration of motor abnormalities, and enhanced survival. Manganese (Mn) is an essential metal to all biological systems but, in excess, can be toxic. Interestingly, several studies have revealed the insulin-mimetic effects of Mn-demonstrating Mn can activate several of the same metabolic kinases and increase peripheral and neuronal insulin and IGF-1 levels in rodent models. Separate studies have shown mouse and human striatal neuroprogenitor cell (NPC) models exhibit a deficit in cellular Mn uptake, indicative of a Mn deficiency. Furthermore, evidence from the literature reveals a striking overlap between cellular consequences of Mn deficiency (i.e., impaired function of Mn-dependent enzymes) and known HD endophenotypes including excitotoxicity, increased reactive oxygen species (ROS) accumulation, and decreased mitochondrial function. Here we review published evidence supporting a hypothesis that (1) the potent effect of IGF or insulin treatment on HD models, (2) the insulin-mimetic effects of Mn, and (3) the newly discovered Mn-dependent perturbations in HD may all be functionally related. Together, this review will present the intriguing possibility that intricate regulatory cross-talk exists between Mn biology and/or toxicology and the insulin/IGF signaling pathways which may be deeply connected to HD pathology and, perhaps, other neurodegenerative diseases (NDDs) and other neuropathological conditions.
Collapse
Affiliation(s)
- Miles R Bryan
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| | - Aaron B Bowman
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Center in Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
2
|
Wang D, Yu Y, Li Y, Wang Y, Wang D. Dopamine receptors antagonistically regulate behavioral choice between conflicting alternatives in C. elegans. PLoS One 2014; 9:e115985. [PMID: 25536037 PMCID: PMC4275273 DOI: 10.1371/journal.pone.0115985] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/03/2014] [Indexed: 11/18/2022] Open
Abstract
Caenorhabditis elegans is a useful model to study the neuronal or molecular basis for behavioral choice, a specific form of decision-making. Although it has been implied that both D1-like and D2-like dopamine receptors may contribute to the control of decision-making in mammals, the genetic interactions between D1-like and D2-like dopamine receptors in regulating decision-making are still largely unclear. In the present study, we investigated the molecular control of behavioral choice between conflicting alternatives (diacetyl and Cu2+) by D1-like and D2-like dopamine receptors and their possible genetic interactions with C. elegans as the assay system. In the behavioral choice assay system, mutation of dop-1 gene encoding D1-like dopamine receptor resulted in the enhanced tendency to cross the Cu2+ barrier compared with wild-type. In contrast, mutations of dop-2 or dop-3 gene encoding D2-like dopamine receptor caused the weak tendency to cross the Cu2+ barrier compared with wild-type. During the control of behavioral choice, DOP-3 antagonistically regulated the function of DOP-1. The behavioral choice phenotype of dop-2; dop-1dop-3 triple mutant further confirmed the possible antagonistic function of D2-like dopamine receptor on D1-like dopamine receptor in regulating behavioral choice. The genetic assays further demonstrate that DOP-3 might act through Gαo signaling pathway encoded by GOA-1 and EGL-10, and DOP-1 might act through Gαq signaling pathway encoded by EGL-30 and EAT-16 to regulate the behavioral choice. DOP-1 might function in cholinergic neurons to regulate the behavioral choice, whereas DOP-3 might function in GABAergic neurons, RIC, and SIA neurons to regulate the behavioral choice. In this study, we provide the genetic evidence to indicate the antagonistic relationship between D1-like dopamine receptor and D2-like dopamine receptor in regulating the decision-making of animals. Our data will be useful for understanding the complex functions of dopamine receptors in regulating decision-making in animals.
Collapse
Affiliation(s)
- Daoyong Wang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School of Southeast University, Nanjing, 210009, China
| | - Yonglin Yu
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School of Southeast University, Nanjing, 210009, China
| | - Yinxia Li
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School of Southeast University, Nanjing, 210009, China
| | - Yang Wang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School of Southeast University, Nanjing, 210009, China
| | - Dayong Wang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School of Southeast University, Nanjing, 210009, China
- * E-mail:
| |
Collapse
|
3
|
Gkikas I, Petratou D, Tavernarakis N. Longevity pathways and memory aging. Front Genet 2014; 5:155. [PMID: 24926313 PMCID: PMC4044971 DOI: 10.3389/fgene.2014.00155] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/10/2014] [Indexed: 12/28/2022] Open
Abstract
The aging process has been associated with numerous pathologies at the cellular, tissue, and organ level. Decline or loss of brain functions, including learning and memory, is one of the most devastating and feared aspects of aging. Learning and memory are fundamental processes by which animals adjust to environmental changes, evaluate various sensory signals based on context and experience, and make decisions to generate adaptive behaviors. Age-related memory impairment is an important phenotype of brain aging. Understanding the molecular mechanisms underlying age-related memory impairment is crucial for the development of therapeutic strategies that may eventually lead to the development of drugs to combat memory loss. Studies in invertebrate animal models have taught us much about the physiology of aging and its effects on learning and memory. In this review we survey recent progress relevant to conserved molecular pathways implicated in both aging and memory formation and consolidation.
Collapse
Affiliation(s)
- Ilias Gkikas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion Crete, Greece
| | - Dionysia Petratou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion Crete, Greece ; Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion Crete, Greece
| |
Collapse
|
4
|
Yue Y, Sheng Y, Zhang HN, Yu Y, Huo L, Feng W, Xu T. The CC1-FHA dimer is essential for KIF1A-mediated axonal transport of synaptic vesicles in C. elegans. Biochem Biophys Res Commun 2013; 435:441-6. [DOI: 10.1016/j.bbrc.2013.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 05/02/2013] [Indexed: 01/05/2023]
|
5
|
Wang Y, Liu L. Recent progress of sensory system research in China. SCIENCE CHINA. LIFE SCIENCES 2012; 55:1026-1028. [PMID: 23160831 DOI: 10.1007/s11427-012-4402-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 10/11/2012] [Indexed: 06/01/2023]
Affiliation(s)
- Yijin Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | |
Collapse
|
6
|
Palouzier-Paulignan B, Lacroix MC, Aimé P, Baly C, Caillol M, Congar P, Julliard AK, Tucker K, Fadool DA. Olfaction under metabolic influences. Chem Senses 2012; 37:769-97. [PMID: 22832483 PMCID: PMC3529618 DOI: 10.1093/chemse/bjs059] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Recently published work and emerging research efforts have suggested that the olfactory system is intimately linked with the endocrine systems that regulate or modify energy balance. Although much attention has been focused on the parallels between taste transduction and neuroendocrine controls of digestion due to the novel discovery of taste receptors and molecular components shared by the tongue and gut, the equivalent body of knowledge that has accumulated for the olfactory system, has largely been overlooked. During regular cycles of food intake or disorders of endocrine function, olfaction is modulated in response to changing levels of various molecules, such as ghrelin, orexins, neuropeptide Y, insulin, leptin, and cholecystokinin. In view of the worldwide health concern regarding the rising incidence of diabetes, obesity, and related metabolic disorders, we present a comprehensive review that addresses the current knowledge of hormonal modulation of olfactory perception and how disruption of hormonal signaling in the olfactory system can affect energy homeostasis.
Collapse
Affiliation(s)
- Brigitte Palouzier-Paulignan
- Centre de Recherche des Neurosciences de Lyon, Equipe Olfaction du Codage à la Mémoire, INSERM U 1028/CNRS 5292, Université de Lyon150 Ave. Tony Garnier, 69366, Lyon, Cedex 07,France
- Equal contribution
| | - Marie-Christine Lacroix
- INRA, UR1197 Neurobiologie de l’Olfaction et Modélisation en ImagerieF-78350, Jouy-en-JosasFrance
- IFR 144NeuroSud Paris, 91190 Gif-Sur-YvetteFrance
- Equal contribution
| | - Pascaline Aimé
- Centre de Recherche des Neurosciences de Lyon, Equipe Olfaction du Codage à la Mémoire, INSERM U 1028/CNRS 5292, Université de Lyon150 Ave. Tony Garnier, 69366, Lyon, Cedex 07,France
| | - Christine Baly
- INRA, UR1197 Neurobiologie de l’Olfaction et Modélisation en ImagerieF-78350, Jouy-en-JosasFrance
- IFR 144NeuroSud Paris, 91190 Gif-Sur-YvetteFrance
| | - Monique Caillol
- INRA, UR1197 Neurobiologie de l’Olfaction et Modélisation en ImagerieF-78350, Jouy-en-JosasFrance
- IFR 144NeuroSud Paris, 91190 Gif-Sur-YvetteFrance
| | - Patrice Congar
- INRA, UR1197 Neurobiologie de l’Olfaction et Modélisation en ImagerieF-78350, Jouy-en-JosasFrance
- IFR 144NeuroSud Paris, 91190 Gif-Sur-YvetteFrance
| | - A. Karyn Julliard
- Centre de Recherche des Neurosciences de Lyon, Equipe Olfaction du Codage à la Mémoire, INSERM U 1028/CNRS 5292, Université de Lyon150 Ave. Tony Garnier, 69366, Lyon, Cedex 07,France
| | - Kristal Tucker
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburgh, PA 15261USAand
| | - Debra Ann Fadool
- Department of Biological Science, Programs in Neuroscience and Molecular Biophysics, The Florida State UniversityTallahassee, FL 32306-4295USA
| |
Collapse
|
7
|
Yang X, Zhang P, Wu J, Xiong S, Jin N, Huang Z. The neuroprotective and lifespan-extension activities of Damnacanthus officinarum extracts in Caenorhabditis elegans. JOURNAL OF ETHNOPHARMACOLOGY 2012; 141:41-47. [PMID: 22370553 DOI: 10.1016/j.jep.2012.01.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 12/21/2011] [Accepted: 01/16/2012] [Indexed: 05/31/2023]
Abstract
AIM OF THE STUDY This study was aimed to evaluate the neuroprotective and anti-aging activity of extracts in Caenorhabditis elegans from the roots and leaves of Damnacanthus officinarum Huang to provide the pharmacological basis in traditional medicine. MATERIALS AND METHODS Investigations on the neuroprotective and lifespan activity were carried out, which were observed by utilizing the following models: observing the worms' chemosensory behavior test based on the aversion index in the assay plate, neuroprotective activity of nematode by evaluating the ASH neuron survival and lifespan test in C. elegans. RESULTS It has been shown that the ethanol, n-butanol and aqueous extracts in the roots possessed significantly neuroprotective effect both in chemosensory behavior test and ASH neuron survival model. The same extracts in the leaves showed similar activities in two models, but have less potency revealing by the data. Four candidate extracts, possessing excellent neuroprotective activity, extend lifespan in C. elegans. The n-butanol extracts in the root part showed best efficacy among them. CONCLUSION The results show the n-butanol and aqueous extracts are the major pharmacological plant extracts. Moreover, the neuroprotective and lifespan-extension activity effects of root extracts are superior to leave extracts, supporting the traditional application of above-ground parts of DOH in treating various diseases associated with brain disorders and anti-aging.
Collapse
Affiliation(s)
- Xiliang Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | |
Collapse
|
8
|
Fernandez AM, Torres-Alemán I. The many faces of insulin-like peptide signalling in the brain. Nat Rev Neurosci 2012; 13:225-39. [PMID: 22430016 DOI: 10.1038/nrn3209] [Citation(s) in RCA: 636] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Central and peripheral insulin-like peptides (ILPs), which include insulin, insulin-like growth factor 1 (IGF1) and IGF2, exert many effects in the brain. Through their actions on brain growth and differentiation, ILPs contribute to building circuitries that subserve metabolic and behavioural adaptation to internal and external cues of energy availability. In the adult brain each ILP has distinct effects, but together their actions ultimately regulate energy homeostasis - they affect nutrient sensing and regulate neuronal plasticity to modulate adaptive behaviours involved in food seeking, including high-level cognitive operations such as spatial memory. In essence, the multifaceted activity of ILPs in the brain may be viewed as a system organization involved in the control of energy allocation.
Collapse
Affiliation(s)
- Ana M Fernandez
- Cajal Institute, CSIC and Ciberned, Avenida Doctor Arce, 37, Madrid 28002, Spain
| | | |
Collapse
|
9
|
Jiu Y, Jin C, Liu Y, Holmberg CI, Jäntti J. Exocyst subunits Exo70 and Exo84 cooperate with small GTPases to regulate behavior and endocytic trafficking in C. elegans. PLoS One 2012; 7:e32077. [PMID: 22389680 PMCID: PMC3289633 DOI: 10.1371/journal.pone.0032077] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 01/22/2012] [Indexed: 11/19/2022] Open
Abstract
The exocyst complex is required for cell polarity regulation and the targeting and tethering of transport vesicles to the plasma membrane. The complex is structurally well conserved, however, the functions of individual subunits and their regulation is poorly understood. Here we characterize the mutant phenotypes for the exocyst complex genes exoc-7 (exo70) and exoc-8 (exo84) in Caenorhabditis elegans. The mutants display pleiotropic behavior defects that resemble those observed in cilia mutants (slow growth, uncoordinated movement, defects in chemo-, mechano- and thermosensation). However, no obvious morphological defects in cilia were observed. A targeted RNAi screen for small GTPases identified eleven genes with enhanced phenotypes when combined with exoc-7, exoc-8 single and exoc-7;exoc-8 double mutants. The screen verified previously identified functional links between the exocyst complex and small GTPases and, in addition, identified several novel potential regulators of exocyst function. The exoc-8 and exoc-7;exoc-8 mutations caused a significant size increase in the rab-10 RNAi-induced endocytic vacuoles in the intestinal epithelial cells. In addition, exoc-8 and exoc-7;exoc-8 mutations resulted in up-regulation of RAB-10 expression and affected the accumulation of endocytic marker proteins in these cells in response to rab-10 RNAi. The findings identify novel, potential regulators for exocyst function and show that exoc-7 and exoc-8 are functionally linked to rab-10 in endosomal trafficking in intestinal epithelial cells in C. elegans.
Collapse
Affiliation(s)
- Yaming Jiu
- Research Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Congyu Jin
- Research Programs Unit, Molecular Cancer Biology, and Institute of Biomedicine, University of Helsinki, Helsinki, Finland
| | - Yanbo Liu
- Research Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Carina I. Holmberg
- Research Programs Unit, Molecular Cancer Biology, and Institute of Biomedicine, University of Helsinki, Helsinki, Finland
| | - Jussi Jäntti
- Research Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|