1
|
Kong E, Hua T, Li J, Li Y, Yang M, Ding R, Wang H, Wei H, Feng X, Han C, Yuan H. HSV-1 reactivation results in post-herpetic neuralgia by upregulating Prmt6 and inhibiting cGAS-STING. Brain 2024; 147:2552-2565. [PMID: 38366606 PMCID: PMC11224619 DOI: 10.1093/brain/awae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/31/2023] [Accepted: 01/19/2024] [Indexed: 02/18/2024] Open
Abstract
Chronic varicella zoster virus (VZV) infection induced neuroinflammatory condition is the critical pathology of post-herpetic neuralgia (PHN). The immune escape mechanism of VZV remains elusive. As to mice have no VZV infection receptor, herpes simplex virus type 1 (HSV-1) infection is a well established PHN mice model. Transcriptional expression analysis identified that the protein arginine methyltransferases 6 (Prmt6) was upregulated upon HSV-1 infection, which was further confirmed by immunofluorescence staining in spinal dorsal horn. Prmt6 deficiency decreased HSV-1-induced neuroinflammation and PHN by enhancing antiviral innate immunity and decreasing HSV-1 load in vivo and in vitro. Overexpression of Prmt6 in microglia dampened antiviral innate immunity and increased HSV-1 load. Mechanistically, Prmt6 methylated and inactivated STING, resulting in reduced phosphorylation of TANK binding kinase-1 (TBK1) and interferon regulatory factor 3 (IRF3), diminished production of type I interferon (IFN-I) and antiviral innate immunity. Furthermore, intrathecal or intraperitoneal administration of the Prmt6 inhibitor EPZ020411 decreased HSV-1-induced neuroinflammation and PHN by enhancing antiviral innate immunity and decreasing HSV-1 load. Our findings revealed that HSV-1 escapes antiviral innate immunity and results in PHN by upregulating Prmt6 expression and inhibiting the cGAS-STING pathway, providing novel insights and a potential therapeutic target for PHN.
Collapse
Affiliation(s)
- Erliang Kong
- Department of Anesthesiology, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
- Department of Anesthesiology, The 988th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Zhengzhou, Henan 450042, China
| | - Tong Hua
- Department of Anesthesiology, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Jian Li
- Department of Anesthesiology, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Yongchang Li
- Department of Anesthesiology, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Mei Yang
- Department of Anesthesiology, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Ruifeng Ding
- Department of Anesthesiology, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Haowei Wang
- Department of Anesthesiology, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Huawei Wei
- Department of Anesthesiology, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Xudong Feng
- Department of Anesthesiology, The 988th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Zhengzhou, Henan 450042, China
| | - Chaofeng Han
- Department of Histology and Embryology, Naval Medical University, Shanghai 200433, China
| | - Hongbin Yuan
- Department of Anesthesiology, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| |
Collapse
|
2
|
Chen Z, Liu H, Zhu J, Duan X, Wang H, Li X, Zhou X, Zhao A, Yang S. Porcine promyelocytic leukemia protein isoforms suppress Japanese encephalitis virus replication in PK15 cells. Virol J 2023; 20:280. [PMID: 38031162 PMCID: PMC10687900 DOI: 10.1186/s12985-023-02212-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Promyelocytic leukemia protein (PML) is a primary component of PML nuclear bodies (PML-NBs). PML and PML-NBs play critical roles in processes like the cell cycle, DNA damage repair, apoptosis, and the antiviral immune response. Previously, we identified five porcine PML alternative splicing variants and observed an increase in the expression of these PML isoforms following Japanese encephalitis virus (JEV) infection. In this study, we examined the functional roles of these PML isoforms in JEV infection. METHODS PML isoforms were either knocked down or overexpressed in PK15 cells, after which they were infected with JEV. Subsequently, we analyzed the gene expression of PML isoforms, JEV, and the interferon (IFN)-β signaling pathway using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot. Viral titers were determined through 50% tissue culture infectious dose (TCID50) assays. RESULTS Our results demonstrated that the knockdown of endogenous PML promoted JEV replication, while the overexpression of PML isoforms 1, 3, 4, and 5 (PML1, PML3, PML4, and PML5) inhibited JEV replication. Further investigation revealed that PML1, PML3, PML4, and PML5 negatively regulated the expression of genes involved in the interferon (IFN)-β signaling pathway by inhibiting IFN regulatory factor 3 (IRF3) post-JEV infection. CONCLUSIONS These findings demonstrate that porcine PML isoforms PML1, PML3, PML4, and PML5 negatively regulate IFN-β and suppress viral replication during JEV infection. The results of this study provide insight into the functional roles of porcine PML isoforms in JEV infection and the regulation of the innate immune response.
Collapse
Affiliation(s)
- Zhenyu Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Huaijin Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Jingjing Zhu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Xing Duan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Han Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Xiangchen Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Xiaolong Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Ayong Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China.
| | - Songbai Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China.
| |
Collapse
|
3
|
Tian R, Ju F, Yu M, Liang Z, Xu Z, Zhao M, Qin Y, Lin Y, Huang X, Chang Y, Li S, Ren W, Lin C, Xia N, Huang C. A potent neutralizing and protective antibody against a conserved continuous epitope on HSV glycoprotein D. Antiviral Res 2022; 201:105298. [PMID: 35341808 DOI: 10.1016/j.antiviral.2022.105298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 11/25/2022]
Abstract
Infections caused by herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) remain a serious global health issue, and the medical countermeasures available thus far are limited. Virus-neutralizing monoclonal antibodies (NAbs) are crucial tools for studying host-virus interactions and designing effective vaccines, and the discovery and development of these NAbs could be one approach to treat or prevent HSV infection. Here, we report the isolation of five HSV NAbs from mice immunized with both HSV-1 and HSV-2. Among these were two antibodies that potently cross-neutralized both HSV-1 and HSV-2 with the 50% virus-inhibitory concentrations (IC50) below 200 ng/ml, one of which (4A3) exhibited high potency against HSV-2, with an IC50 of 59.88 ng/ml. 4A3 neutralized HSV at the prebinding stage and prevented HSV infection and cell-to-cell spread. Significantly, administration of 4A3 completely prevented weight loss and improved survival of mice challenged with a lethal dose of HSV-2. Using structure-guided molecular modeling combined with alanine-scanning mutagenesis, we observed that 4A3 bound to a highly conserved continuous epitope (residues 216 to 220) within the receptor-binding domain of glycoprotein D (gD) that is essential for viral infection and the triggering of membrane fusion. Our results provide guidance for developing NAb drugs and vaccines against HSV.
Collapse
Affiliation(s)
- Rui Tian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Fei Ju
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Mengqin Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zhiqi Liang
- School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zilong Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Min Zhao
- School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yaning Qin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yanhua Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiaoxuan Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yating Chang
- School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shaopeng Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Wenfeng Ren
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chaolong Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chenghao Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
4
|
Chelbi-Alix MK, Thibault P. Crosstalk Between SUMO and Ubiquitin-Like Proteins: Implication for Antiviral Defense. Front Cell Dev Biol 2021; 9:671067. [PMID: 33968942 PMCID: PMC8097047 DOI: 10.3389/fcell.2021.671067] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Interferon (IFN) is a crucial first line of defense against viral infection. This cytokine induces the expression of several IFN-Stimulated Genes (ISGs), some of which act as restriction factors. Upon IFN stimulation, cells also express ISG15 and SUMO, two key ubiquitin-like (Ubl) modifiers that play important roles in the antiviral response. IFN itself increases the global cellular SUMOylation in a PML-dependent manner. Mass spectrometry-based proteomics enables the large-scale identification of Ubl protein conjugates to determine the sites of modification and the quantitative changes in protein abundance. Importantly, a key difference amongst SUMO paralogs is the ability of SUMO2/3 to form poly-SUMO chains that recruit SUMO ubiquitin ligases such RING finger protein RNF4 and RNF111, thus resulting in the proteasomal degradation of conjugated substrates. Crosstalk between poly-SUMOylation and ISG15 has been reported recently, where increased poly-SUMOylation in response to IFN enhances IFN-induced ISGylation, stabilizes several ISG products in a TRIM25-dependent fashion, and results in enhanced IFN-induced antiviral activities. This contribution will highlight the relevance of the global SUMO proteome and the crosstalk between SUMO, ubiquitin and ISG15 in controlling both the stability and function of specific restriction factors that mediate IFN antiviral defense.
Collapse
Affiliation(s)
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Montréal, QC, Canada
- Department of Chemistry, University of Montreal, Montréal, QC, Canada
| |
Collapse
|
5
|
Wang L, Ning S. TRIMming Type I Interferon-Mediated Innate Immune Response in Antiviral and Antitumor Defense. Viruses 2021; 13:279. [PMID: 33670221 PMCID: PMC7916971 DOI: 10.3390/v13020279] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
The tripartite motif (TRIM) family comprises at least 80 members in humans, with most having ubiquitin or SUMO E3 ligase activity conferred by their N-terminal RING domain. TRIMs regulate a wide range of processes in ubiquitination- or sumoylation-dependent manners in most cases, and fewer as adaptors. Their roles in the regulation of viral infections, autophagy, cell cycle progression, DNA damage and other stress responses, and carcinogenesis are being increasingly appreciated, and their E3 ligase activities are attractive targets for developing specific immunotherapeutic strategies for immune diseases and cancers. Given their importance in antiviral immune response, viruses have evolved sophisticated immune escape strategies to subvert TRIM-mediated mechanisms. In this review, we focus on their regulation of IFN-I-mediated innate immune response, which plays key roles in antiviral and antitumor defense.
Collapse
Affiliation(s)
- Ling Wang
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA;
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Shunbin Ning
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA;
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
6
|
Fan D, Wang M, Cheng A, Jia R, Yang Q, Wu Y, Zhu D, Zhao X, Chen S, Liu M, Zhang S, Ou X, Mao S, Gao Q, Sun D, Wen X, Liu Y, Yu Y, Zhang L, Tian B, Pan L, Chen X. The Role of VP16 in the Life Cycle of Alphaherpesviruses. Front Microbiol 2020; 11:1910. [PMID: 33013729 PMCID: PMC7461839 DOI: 10.3389/fmicb.2020.01910] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
The protein encoded by the UL48 gene of alphaherpesviruses is named VP16 or alpha-gene-transactivating factor (α-TIF). In the early stage of viral replication, VP16 is an important transactivator that can activate the transcription of viral immediate-early genes, and in the late stage of viral replication, VP16, as a tegument, is involved in viral assembly. This review will explain the mechanism of VP16 acting as α-TIF to activate the transcription of viral immediate-early genes, its role in the transition from viral latency to reactivation, and its effects on viral assembly and maturation. In addition, this review also provides new insights for further research on the life cycle of alphaherpesviruses and the role of VP16 in the viral life cycle.
Collapse
Affiliation(s)
- Dengjian Fan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xingjian Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
7
|
Collin V, Gravel A, Kaufer BB, Flamand L. The Promyelocytic Leukemia Protein facilitates human herpesvirus 6B chromosomal integration, immediate-early 1 protein multiSUMOylation and its localization at telomeres. PLoS Pathog 2020; 16:e1008683. [PMID: 32658923 PMCID: PMC7394443 DOI: 10.1371/journal.ppat.1008683] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/31/2020] [Accepted: 06/04/2020] [Indexed: 02/05/2023] Open
Abstract
Human herpesvirus 6B (HHV-6B) is a betaherpesvirus capable of integrating its genome into the telomeres of host chromosomes. Until now, the cellular and/or viral proteins facilitating HHV-6B integration have remained elusive. Here we show that a cellular protein, the promyelocytic leukemia protein (PML) that forms nuclear bodies (PML-NBs), associates with the HHV-6B immediate early 1 (IE1) protein at telomeres. We report enhanced levels of SUMOylated IE1 in the presence of PML and have identified a putative SUMO Interacting Motif (SIM) within IE1, essential for its nuclear distribution, overall SUMOylation and association with PML to nuclear bodies. Furthermore, using PML knockout cell lines we made the original observation that PML is required for efficient HHV-6B integration into host chromosomes. Taken together, we could demonstrate that PML-NBs are important for IE1 multiSUMOylation and that PML plays an important role in HHV-6B integration into chromosomes, a strategy developed by this virus to maintain its genome in its host over long periods of time. Human herpesvirus 6B (HHV-6B) is a ubiquitous virus that can be life threatening in immunocompromised patients. HHV-6B is among a few other herpesviruses that integrate their genome in host chromosomes as a mean to establish dormancy. Integration of HHV-6B occurs in host telomeres, a region that protects our genome from deterioration and controls the cellular lifespan. To date, the mechanisms leading to HHV-6B integration remain elusive. Our laboratory has identified that the IE1 protein of HHV-6B associates with PML, a cellular protein that is responsible for the regulation of important cellular mechanisms including DNA recombination and repair. With the objective of understanding how IE1 is brought to PML, we discovered that PML aids the SUMOylation of IE1. This finding led us to identify a putative SUMO interaction motif on IE1 that is essentials for both its SUMOylation and IE1 oligomerization with PML-NBs. We next studied the role of PML on HHV-6B integration and identified that cells that are deficient for PML were less susceptible to HHV-6B integration. These results correlate with the fact that PML influences IE1 localization at telomeres, the site of HHV-6B integration. Our study further contributes to our understanding of the mechanisms leading to HHV-6B chromosomal integration.
Collapse
Affiliation(s)
- Vanessa Collin
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec City, Quebec, Canada
| | - Annie Gravel
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec City, Quebec, Canada
| | | | - Louis Flamand
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec City, Quebec, Canada
- Department of microbiology, infectious disease and immunology, Faculty of Medicine, Université Laval, Quebec City, Québec, Canada
- * E-mail:
| |
Collapse
|
8
|
Immune Response to Herpes Simplex Virus Infection and Vaccine Development. Vaccines (Basel) 2020; 8:vaccines8020302. [PMID: 32545507 PMCID: PMC7350219 DOI: 10.3390/vaccines8020302] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
Herpes simplex virus (HSV) infections are among the most common viral infections and usually last for a lifetime. The virus can potentially be controlled with vaccines since humans are the only known host. However, despite the development and trial of many vaccines, this has not yet been possible. This is normally attributed to the high latency potential of the virus. Numerous immune cells, particularly the natural killer cells and interferon gamma and pathways that are used by the body to fight HSV infections have been identified. On the other hand, the virus has developed different mechanisms, including using different microRNAs to inhibit apoptosis and autophagy to avoid clearance and aid latency induction. Both traditional and new methods of vaccine development, including the use of live attenuated vaccines, replication incompetent vaccines, subunit vaccines and recombinant DNA vaccines are now being employed to develop an effective vaccine against the virus. We conclude that this review has contributed to a better understanding of the interplay between the immune system and the virus, which is necessary for the development of an effective vaccine against HSV.
Collapse
|
9
|
Disturbed Yin-Yang balance: stress increases the susceptibility to primary and recurrent infections of herpes simplex virus type 1. Acta Pharm Sin B 2020; 10:383-398. [PMID: 32140387 PMCID: PMC7049575 DOI: 10.1016/j.apsb.2019.06.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/27/2019] [Accepted: 05/31/2019] [Indexed: 12/19/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1), a neurotropic herpes virus, is able to establish a lifelong latent infection in the human host. Following primary replication in mucosal epithelial cells, the virus can enter sensory neurons innervating peripheral tissues via nerve termini. The viral genome is then transported to the nucleus where it can be maintained without producing infectious progeny, and thus latency is established in the cell. Yin–Yang balance is an essential concept in traditional Chinese medicine (TCM) theory. Yin represents stable and inhibitory factors, and Yang represents the active and aggressive factors. When the organism is exposed to stress, especially psychological stress caused by emotional stimulation, the Yin–Yang balance is disturbed and the virus can re-engage in productive replication, resulting in recurrent diseases. Therefore, a better understanding of the stress-induced susceptibility to HSV-1 primary infection and reactivation is needed and will provide helpful insights into the effective control and treatment of HSV-1. Here we reviewed the recent advances in the studies of HSV-1 susceptibility, latency and reactivation. We included mechanisms involved in primary infection and the regulation of latency and described how stress-induced changes increase the susceptibility to primary and recurrent infections.
Collapse
Key Words
- 4E-BP, eIF4E-binding protein
- AD, Alzheimer's disease
- AKT, protein kinase B
- AMPK, AMP-dependent kinase
- BCL-2, B-cell lymphoma 2
- CNS, central nervous system
- CORT, corticosterone
- CPE, cytopathic effect
- CTCF, CCCTC-binding factor
- CTL, cytotoxic T lymphocyte
- CoREST, REST corepressor 1
- DAMPs, damage-associated molecular patterns
- DCs, dendritic cells
- DEX, dexamethasone
- GREs, GR response elements
- GRs, glucocorticoid receptors
- H3K9, histone H3 on lysines 9
- HCF-1, host cell factor 1
- HDACs, histone deacetylases
- HPA axis, hypothalamo–pituitary–adrenal axis
- HPK, herpetic simplex keratitis
- HPT axis, hypothalamic–pituitary–thyroid axis
- HSV-1
- HSV-1, herpes simplex virus type 1
- Herpes simplex virus type 1
- ICP, infected cell polypeptide
- IRF3, interferon regulatory factor 3
- KLF15, Krüppel-like transcription factor 15
- LAT, latency-associated transcripts
- LRF, Luman/CREB3 recruitment factor
- LSD1, lysine-specific demethylase 1
- Latency
- MAVS, mitochondrial antiviral-signaling protein
- MOI, multiplicity of infection
- ND10, nuclear domains 10
- NGF, nerve growth factor
- NK cells, natural killer cells
- OCT-1, octamer binding protein 1
- ORFs, open reading frames
- PAMPs, pathogen-associated molecular patterns
- PDK1, pyruvate dehydrogenase lipoamide kinase isozyme 1
- PI3K, phosphoinositide 3-kinases
- PML, promyelocytic leukemia protein
- PNS, peripheral nervous system
- PRC1, protein regulator of cytokinesis 1
- PRRs, pattern-recognition receptors
- PTMs, post-translational modifications
- RANKL, receptor activator of NF-κB ligands
- REST, RE1-silencing transcription factor
- ROS, reactive oxygen species
- Reactivation
- SGKs, serum and glucocorticoid-regulated protein kinases
- SIRT1, sirtuin 1
- Stress
- Susceptibility
- T3, thyroid hormone
- TCM, traditional Chinese medicine
- TG, trigeminal ganglia
- TK, thymidine kinase
- TRIM14, tripartite motif-containing 14
- TRKA, tropomyosin receptor kinase A
- TRM, tissue resident memory T cells
- cGAS, cyclic GMP-AMP synthase
- mTOR, mammalian target of rapamycin
- sncRNAs, small non-coding RNAs
Collapse
|
10
|
Chung YL, Wu ML. The Role of Promyelocytic Leukemia Protein in Steatosis-Associated Hepatic Tumors Related to Chronic Hepatitis B virus Infection. Transl Oncol 2018; 11:743-754. [PMID: 29684791 PMCID: PMC6050444 DOI: 10.1016/j.tranon.2018.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 02/08/2023] Open
Abstract
The persistence of hepatitis B surface antigen (HBsAg) is a risk factor for the development of steatosis-associated tumors in chronic hepatitis B virus (HBV) infection, yet little is known about the metabolic link with this factor. We correlated HBV-related pathogenesis in genetically engineered mice and human carriers with metabolic proteomics and lipogenic gene expression profiles. The immunohistochemistry showed that the promyelocytic leukemia protein (PML, a tumor suppressor involved in genome maintenance and fatty acid oxidation), being inversely influenced by the dynamic HBsAg levels from acute phase to seroclearance, appeared as a lipo-metabolic switch linking HBsAg-induced steatosis (lipogenesis) to HBsAg-lost fat-burning hepatocarcinogenesis (lipolysis). Knockdown of PML in HBsAg-transgenic mice predisposed to obesity and drove early steatosis-specific liver tumorigenesis. Proteome analysis revealed that the signaling pathways corresponding to energy metabolism and its regulators were frequently altered by suppression or depletion of PML in the HBsAg-transgenic mice, mainly including oxidative phosphorylation and fatty acid metabolism. Expression profiling further identified upregulation of stearoyl-CoA desaturase 1 (Scd1) and epigenetic methylation of NDUFA13 in the mitochondrial respiratory chain and the cell cycle inhibitor CDKN1c in concordance to the increased severity of lipodystrophy and neoplasia in the livers of HBsAg-transgenic mice with PML insufficiency. The defect in lipolysis in PML-deficient HBsAg-transgenic mice made the HBsAg-induced adipose-like liver tumors vulnerable to synthetic lethality from toxic saturated fat accumulation with a Scd1 inhibitor. Our findings provide mechanistic insights into the evolution of steatosis-associated hepatic tumors driven by reciprocal interactions of HBsAg and PML, and a potential utility of lipid metabolic reprogramming as a treatment target.
Collapse
Affiliation(s)
- Yih-Lin Chung
- Department of Radiation Oncology, Koo Foundation Sun-Yat-Sen Cancer Center, Taipei 112, Taiwan.
| | - Mei-Ling Wu
- Department of Pathology and Laboratory Medicine, Koo Foundation Sun-Yat-Sen Cancer Center, Taipei 112, Taiwan
| |
Collapse
|
11
|
Neumann F, Czech-Sioli M, Dobner T, Grundhoff A, Schreiner S, Fischer N. Replication of Merkel cell polyomavirus induces reorganization of promyelocytic leukemia nuclear bodies. J Gen Virol 2016; 97:2926-2938. [PMID: 27580912 DOI: 10.1099/jgv.0.000593] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is associated with Merkel cell carcinoma (MCC), a rare but aggressive skin cancer. The virus is highly prevalent: 60-80 % of adults are seropositive; however, cells permissive for MCPyV infection are unknown. Consequently, very little information about the MCPyV life cycle is available. Until recently, MCPyV replication could only be studied using a semi-permissive in vitro replication system (Neumann et al., 2011; Feng et al., 2011, Schowalter et al., 2011). MCPyV replication most likely depends on subnuclear structures such as promyelocytic leukemia protein nuclear bodies (PML-NBs), which are known to play regulatory roles in the infection of many DNA viruses. Here, we investigated PML-NB components as candidate host factors to control MCPyV DNA replication. We showed that PML-NBs change in number and size in cells actively replicating MCPyV proviral DNA. We observed a significant increase in PML-NBs in cells positive for MCPyV viral DNA replication. Interestingly, a significant amount of cells actively replicating MCPyV did not show any Sp100 expression. While PML and Daxx had no effect on MCPyV DNA replication, MCPyV replication was increased in cells depleted for Sp100, strongly suggesting that Sp100 is a negative regulator of MCPyV DNA replication.
Collapse
MESH Headings
- Antigens, Nuclear/genetics
- Antigens, Nuclear/metabolism
- Autoantigens/genetics
- Autoantigens/metabolism
- Carcinoma, Merkel Cell/genetics
- Carcinoma, Merkel Cell/metabolism
- Carcinoma, Merkel Cell/virology
- DNA Replication
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Humans
- Inclusion Bodies, Viral/genetics
- Inclusion Bodies, Viral/metabolism
- Inclusion Bodies, Viral/virology
- Merkel cell polyomavirus/genetics
- Merkel cell polyomavirus/physiology
- Polyomavirus Infections/genetics
- Polyomavirus Infections/metabolism
- Polyomavirus Infections/virology
- Promyelocytic Leukemia Protein/genetics
- Promyelocytic Leukemia Protein/metabolism
- Tumor Virus Infections/genetics
- Tumor Virus Infections/metabolism
- Tumor Virus Infections/virology
- Virus Replication
Collapse
Affiliation(s)
- Friederike Neumann
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manja Czech-Sioli
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Dobner
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Adam Grundhoff
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Sabrina Schreiner
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Nicole Fischer
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
12
|
Inhibition of HSV-1 Replication by Gene Editing Strategy. Sci Rep 2016; 6:23146. [PMID: 27064617 PMCID: PMC4827394 DOI: 10.1038/srep23146] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/29/2016] [Indexed: 02/06/2023] Open
Abstract
HSV-1 induced illness affects greater than 85% of adults worldwide with no permanent curative therapy. We used RNA-guided CRISPR/Cas9 gene editing to specifically target for deletion of DNA sequences of the HSV-1 genome that span the region directing expression of ICP0, a key viral protein that stimulates HSV-1 gene expression and replication. We found that CRISPR/Cas9 introduced InDel mutations into exon 2 of the ICP0 gene profoundly reduced HSV-1 infectivity in permissive human cell culture models and protected permissive cells against HSV-1 infection. CRISPR/Cas9 mediated targeting ICP0 prevented HSV-1-induced disintegration of promonocytic leukemia (PML) nuclear bodies, an intracellular event critical to productive HSV-1 infection that is initiated by interaction of the ICP0 N-terminus with PML. Combined treatment of cells with CRISPR targeting ICP0 plus the immediate early viral proteins, ICP4 or ICP27, completely abrogated HSV-1 infection. We conclude that RNA-guided CRISPR/Cas9 can be used to develop a novel, specific and efficacious therapeutic and prophylactic platform for targeted viral genomic ablation to treat HSV-1 diseases.
Collapse
|
13
|
Simões M, Rino J, Pinheiro I, Martins C, Ferreira F. Alterations of Nuclear Architecture and Epigenetic Signatures during African Swine Fever Virus Infection. Viruses 2015; 7:4978-96. [PMID: 26389938 PMCID: PMC4584302 DOI: 10.3390/v7092858] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 12/11/2022] Open
Abstract
Viral interactions with host nucleus have been thoroughly studied, clarifying molecular mechanisms and providing new antiviral targets. Considering that African swine fever virus (ASFV) intranuclear phase of infection is poorly understood, viral interplay with subnuclear domains and chromatin architecture were addressed. Nuclear speckles, Cajal bodies, and promyelocytic leukaemia nuclear bodies (PML-NBs) were evaluated by immunofluorescence microscopy and Western blot. Further, efficient PML protein knockdown by shRNA lentiviral transduction was used to determine PML-NBs relevance during infection. Nuclear distribution of different histone H3 methylation marks at lysine’s 9, 27 and 36, heterochromatin protein 1 isoforms (HP1α, HPβ and HPγ) and several histone deacetylases (HDACs) were also evaluated to assess chromatin status of the host. Our results reveal morphological disruption of all studied subnuclear domains and severe reduction of viral progeny in PML-knockdown cells. ASFV promotes H3K9me3 and HP1β foci formation from early infection, followed by HP1α and HDAC2 nuclear enrichment, suggesting heterochromatinization of host genome. Finally, closeness between DNA damage response factors, disrupted PML-NBs, and virus-induced heterochromatic regions were identified. In sum, our results demonstrate that ASFV orchestrates spatio-temporal nuclear rearrangements, changing subnuclear domains, relocating Ataxia Telangiectasia Mutated Rad-3 related (ATR)-related factors and promoting heterochromatinization, probably controlling transcription, repressing host gene expression, and favouring viral replication.
Collapse
Affiliation(s)
- Margarida Simões
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida Universidade Técnica, 1300-477 Lisboa, Portugal.
| | - José Rino
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| | - Inês Pinheiro
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.
| | - Carlos Martins
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida Universidade Técnica, 1300-477 Lisboa, Portugal.
| | - Fernando Ferreira
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida Universidade Técnica, 1300-477 Lisboa, Portugal.
| |
Collapse
|
14
|
Lang FC, Li X, Vladmirova O, Li ZR, Chen GJ, Xiao Y, Li LH, Lu DF, Han HB, Zhou JM. Selective recruitment of host factors by HSV-1 replication centers. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2015; 36:142-51. [PMID: 26018857 PMCID: PMC4790689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/09/2015] [Indexed: 06/04/2023]
Abstract
Herpes simplex virus type 1 (HSV-1) enters productive infection after infecting epithelial cells, where it controls the host nucleus to make viral proteins, starts viral DNA synthesis and assembles infectious virions. In this process, replicating viral genomes are organized into replication centers to facilitate viral growth. HSV-1 is known to use host factors, including host chromatin and host transcription regulators, to transcribe its genes; however, the invading virus also encounters host defense and stress responses to inhibit viral growth. Recently, we found that HSV-1 replication centers recruit host factor CTCF but exclude γH2A.X. Thus, HSV-1 replication centers may selectively recruit cellular factors needed for viral growth, while excluding host factors that are deleterious for viral transcription or replication. Here we report that the viral replication centers selectively excluded modified histone H3, including heterochromatin mark H3K9me3, H3S10P and active chromatin mark H3K4me3, but not unmodified H3. We found a dynamic association between the viral replication centers and host RNA polymerase II. The centers also recruited components of the DNA damage response pathway, including 53BP1, BRCA1 and host antiviral protein SP100. Importantly, we found that ATM kinase was needed for the recruitment of CTCF to the viral centers. These results suggest that the HSV-1 replication centers took advantage of host signaling pathways to actively recruit or exclude host factors to benefit viral growth.
Collapse
Affiliation(s)
- Feng-Chao Lang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China;University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China;University of Chinese Academy of Sciences, Beijing 100049, China
| | - Olga Vladmirova
- The Wistar Institute, Gene Expression and Regulation Program, Philadelphia PA 19104, USA
| | - Zhuo-Ran Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China;University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gui-Jun Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Yu Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Li-Hong Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Dan-Feng Lu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China;University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Bo Han
- Biology & Chemistry Engineering College, Panzhihua University, Panzhihua Sichuan 617000, China
| | - Ju-Min Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China.
| |
Collapse
|
15
|
Zebboudj A, Maroui MA, Dutrieux J, Touil-Boukoffa C, Bourouba M, Chelbi-Alix MK, Nisole S. Sodium arsenite induces apoptosis and Epstein-Barr virus reactivation in lymphoblastoid cells. Biochimie 2014; 107 Pt B:247-56. [PMID: 25241256 DOI: 10.1016/j.biochi.2014.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/04/2014] [Indexed: 12/09/2022]
Abstract
Epstein-Barr virus (EBV) is associated with several malignancies, including carcinomas, such as nasopharyngeal carcinoma, and lymphomas, such as Burkitt's lymphoma and Hodgkin's lymphoma. The Latent Membrane Protein 1 (LMP1) is the major oncogene protein of EBV as its expression is responsible for the induction of cell transformation, immortalization and proliferation. Arsenic trioxide was shown to induce a cytotoxic effect on nasopharyngeal cancer cells associated with LMP1 down-regulation. However, the effect of arsenic on EBV-associated lymphoproliferative malignancies has been less studied. We investigated the effect of two different arsenical compounds, arsenic trioxide (As2O3) and sodium arsenite (NaAsO2) on the induction of cell death in P3HR1 cells, an Epstein-Barr virus-positive Burkitt lymphoma derived cell line. Both compounds inhibited cell growth and induced cell death. By flow-cytometry and Western blot analysis, we provide evidence that NaAsO2 induced caspase-dependent apoptosis whereas As2O3 triggered autophagic cell death. Furthermore, we show that NaAsO2 treatment led to a dramatic decrease of the expression level of LMP1 and the cellular protein PML. Importantly, this down-regulation was associated with a reactivation of EBV lytic cycle through the induction of immediate-early proteins Zta and Rta. These results are in agreement with a model in which LMP1 maintains EBV in a latent state by stabilizing PML expression. Altogether, our results suggest that NaAsO2 would represent a better therapeutic candidate than As2O3 in EBV-induced B lymphoma for its capacity to promote viral reactivation.
Collapse
Affiliation(s)
- Abderezak Zebboudj
- LBCM, FSB, Université des Sciences et de la Technologie Houari Boumediene (USTHB), BP 32, El Alia, Bab Ezzouar, 16111 Algiers, Algeria; INSERM UMR-S 1124, Université Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France
| | - Mohamed Ali Maroui
- INSERM UMR-S 1124, Université Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France
| | - Jacques Dutrieux
- INSERM UMR-S 1124, Université Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France
| | - Chafia Touil-Boukoffa
- LBCM, FSB, Université des Sciences et de la Technologie Houari Boumediene (USTHB), BP 32, El Alia, Bab Ezzouar, 16111 Algiers, Algeria
| | - Mehdi Bourouba
- LBCM, FSB, Université des Sciences et de la Technologie Houari Boumediene (USTHB), BP 32, El Alia, Bab Ezzouar, 16111 Algiers, Algeria
| | - Mounira K Chelbi-Alix
- INSERM UMR-S 1124, Université Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France
| | - Sébastien Nisole
- INSERM UMR-S 1124, Université Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France.
| |
Collapse
|
16
|
Imani-Saber Z, Ghafouri-Fard S. Promyelocytic Leukemia Gene Functions and Roles in Tumorigenesis. Asian Pac J Cancer Prev 2014. [DOI: 10.7314/apjcp.2014.15.19.8019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
17
|
JC virus inclusions in progressive multifocal leukoencephalopathy: scaffolding promyelocytic leukemia nuclear bodies grow with cell cycle transition through an S-to-G2-like state in enlarging oligodendrocyte nuclei. J Neuropathol Exp Neurol 2014; 73:442-53. [PMID: 24709678 PMCID: PMC3995394 DOI: 10.1097/nen.0000000000000066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In progressive multifocal leukoencephalopathy, JC virus–infected oligodendroglia display 2 distinct patterns of intranuclear viral inclusions: full inclusions in which progeny virions are present throughout enlarged nuclei and dot-shaped inclusions in which virions are clustered in subnuclear domains termed “promyelocytic leukemia nuclear bodies” (PML-NBs). Promyelocytic leukemia nuclear bodies may serve a scaffolding role in viral progeny production. We analyzed the formation process of intranuclear viral inclusions by morphometry and assessed PML-NB alterations in the brains of 2 patients with progressive multifocal leukoencephalopathy. By immunohistochemistry, proliferating cell nuclear antigen was most frequently detected in smaller nuclei; cyclin A was detected in larger nuclei. This suggests an S-to-G2 cell cycle transition in infected cells associated with nuclear enlargement. Sizes of PML-NBs were variable, but they were usually either small speckles 200 to 400 nm in diameter or distinct spherical shells with a diameter of 1 μm or more. By confocal microscopy, JC virus capsid proteins were associated with both small and large PML-NBs, but disruption of large PML-NBs was observed by ground-state depletion fluorescence nanoscopy. Clusters of progeny virions were also detected by electron microscopy. Our data suggest that, in progressive multifocal leukoencephalopathy, JC virus produces progeny virions in enlarging oligodendrocyte nuclei in association with growing PML-NBs and with cell cycle transition through an S-to-G2-like state.
Collapse
|
18
|
Abstract
The ORF75c tegument protein of murine gammaherpesvirus 68 (MHV68) promotes the degradation of the antiviral promyelocytic leukemia (PML) protein. Surprisingly, MHV68 expressing a degradation-deficient ORF75c replicated in cell culture and in mice similar to the wild-type virus. However, in cells infected with this mutant virus, PML formed novel track-like structures that are induced by ORF61, the viral ribonucleotide reductase large subunit. These findings may explain why ORF75c mutant viruses unable to degrade PML had no demonstrable phenotype after infection.
Collapse
|
19
|
Promyelocytic leukemia protein modulates establishment and maintenance of latent gammaherpesvirus infection in peritoneal cells. J Virol 2013; 87:12151-7. [PMID: 23986598 DOI: 10.1128/jvi.01696-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Promyelocytic leukemia protein (PML) is an essential organizer of PML nuclear bodies (NBs), which carry out a variety of activities, including antiviral functions. Herpesviruses from all subfamilies encode proteins that counteract PML NB-mediated antiviral defenses by multiple mechanisms. However, because of the species specificity of herpesviruses, only a limited number of in vivo studies have been undertaken to investigate the effect of PML or PML NBs on herpesvirus infection. To address this central issue in herpesvirus biology, we studied the course of infection in wild-type and PML⁻/⁻ mice using murine gammaherpesvirus 68 (MHV68), which encodes a tegument protein that induces PML degradation. While acute infection in PML⁻/⁻ mice progressed similarly to that in wild-type mice, the lytic reactivation frequency was higher in peritoneal exudate cells, due to both an increase of MHV68 genome-positive cells and greater reactivation efficiency. We also detected a higher frequency of persistent infection in PML⁻/⁻ peritoneal cells. These findings suggest that the PML protein can repress the establishment or maintenance of gammaherpesvirus latency in vivo. Further use of the PML⁻/⁻ mouse model should aid in dissecting the molecular mechanisms that underlie the role of PML in gammaherpesvirus latency and may yield clues for how PML modulates herpesvirus latency in general.
Collapse
|