1
|
Wen L, Man X, Luan J, Zhang S, Zhao C, Bao Y, Liu C, Feng X. Early-life exposure to five biodegradable plastics impairs eye development and visually-mediated behavior through disturbing hypothalamus-pituitary-thyroid (HPT) axis in zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2024; 284:109981. [PMID: 39033795 DOI: 10.1016/j.cbpc.2024.109981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/26/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Biodegradable plastics have been commonly developed and applied as an alternative to traditional plastics, which cause environmental plastic pollution. However, biodegradable plastics still present limitations such as stringent degradation conditions and slow degradation rate, and may cause harm to the environment and organisms. Consequently, in this study, zebrafish was used to evaluate the effects of five biodegradable microplastics (MPs), polyglycolic acid (PGA), polylactic acid (PLA), polybutylene succinate (PBS), polyhydroxyalkanoate (PHA) and polybutylene adipate terephthalate (PBAT) exposure on the early development, retina morphology, visually-mediated behavior, and thyroid signaling at concentrations of 1 mg/L and 100 mg/L. The results indicated that all MPs induced decreased survival rate, reduced body length, smaller eyes, and smaller heads, affecting the early development of zebrafish larvae. Moreover, the thickness of retinal layers, including inner plexiform layer (IPL), outer nuclear layer (ONL), and retinal ganglion layer (RGL) was decreased, and the expression of key genes related to eye and retinal development was abnormally altered after all MPs exposure. Exposure to PBS and PBAT led to abnormal visually-mediated behavior, indicating likely affected the visual function. All MPs could also cause thyroid system disorders, among which alterations in the thyroid hormone receptors (TRs) genes could affect the retinal development of zebrafish larvae. In summary, biodegradable MPs exhibited eye developmental toxicity and likely impaired the visual function in zebrafish larvae. This provided new evidence for revealing the effects of biodegradable plastics on aquatic organism development and environmental risks to aquatic ecosystems.
Collapse
Affiliation(s)
- Liang Wen
- China Shenhua Coal to Liquid and Chemical CO., LTD. of China Energy, Beijing 100011, China
| | - Xiaoting Man
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Jialu Luan
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Shuhui Zhang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Chengtian Zhao
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yehua Bao
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Congzhi Liu
- China Shenhua Coal to Liquid and Chemical CO., LTD. of China Energy, Beijing 100011, China.
| | - Xizeng Feng
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
Zhang S, Mi P, Luan J, Sun M, Zhao X, Feng X. Fluorene-9-bisphenol acts on the gut-brain axis by regulating oxytocin signaling to disturb social behaviors in zebrafish. ENVIRONMENTAL RESEARCH 2024; 255:119169. [PMID: 38763277 DOI: 10.1016/j.envres.2024.119169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/13/2024] [Revised: 04/21/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Previous studies have identified the exposure to ubiquitous environmental endocrine disruptors may be a risk factor of neurological disorders. However, the effects of fluorene-9-bisphenol (BHPF) in environmental exposure concentrations associated with these disorders are poorly understood. In this study, classic light-dark and social behavior tests were performed on zebrafish larvae and adults exposed BHPF exposure to evaluate social behavioral disorders and the microbiota-gut-brain axis was assessed to reveal the potential mechanisms underlying the behavioral abnormalities observed. Our results demonstrated that zebrafish larvae exposed to an environmentally relevant concentration (0.1 nM) of BHPF for 7 days showed a diminished response to external environmental factors (light or dark). Zebrafish larvae exposed to BHPF for 7 days or adults exposed to BHPF for 30 days at 1 μM displayed significant behavioral inhibition and altered social behaviors, including social recognition, social preference, and social fear contagion, indicating autism-like behaviors were induced by the exposure. BHPF exposure reduced the distribution of Nissl bodies in midbrain neurons and significantly reduced 5-hydroxytryptamine signaling. Oxytocin (OXT) levels and expression of its receptor oxtra in the gut and brain were down-regulated by BHPF exposure. In addition, the expression levels of genes related to the excitation-inhibitory balance of synaptic transmission changed. Microbiomics revealed increased community diversity and altered abundance of some microflora, such as an elevation in Bacillota and Bacteroidota and a decline in Mycoplasmatota in zebrafish guts, which might contribute to the abnormal neural circuits and autism-like behaviors induced by BHPF. Finally, the rescue effect of exogenous OXT on social behavioral defects induced by BHPF exposure was verified in zebrafish, highlighting the crucial role of OXT signaling through gut-brain axis in the regulatory mechanisms of social behaviors affected by BHPF. This study contributes to understanding the effects of environmental BHPF exposure on neuropsychiatric disorders and attracts public attention to the health risks posed by chemicals in aquatic organisms. The potential mental disorders should be considered in the safety assessments of environmental pollutants.
Collapse
Affiliation(s)
- Shuhui Zhang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education. Nankai University, Tianjin, 300071, China
| | - Ping Mi
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Jialu Luan
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education. Nankai University, Tianjin, 300071, China
| | - Mingzhu Sun
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, 300071, China
| | - Xin Zhao
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, 300071, China.
| | - Xizeng Feng
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education. Nankai University, Tianjin, 300071, China.
| |
Collapse
|
3
|
Rasheed PA, Rasool K, Younes N, Nasrallah GK, Mahmoud KA. Ecotoxicity and environmental safety assessment of two-dimensional niobium carbides (MXenes). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174563. [PMID: 38981534 DOI: 10.1016/j.scitotenv.2024.174563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/26/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
Two-dimensional (2D) MXenes have gained great interest in water treatment, biomedical, and environmental applications. The antimicrobial activity and cell toxicity of several MXenes including Nb4C3Tx and Nb2CTx have already been explored. However, potential side effects related to Nb-MXene toxicity, especially on aquatic pneuma, have rarely been studied. Using zebrafish embryos, we investigated and compared the potential acute toxicity between two forms of Nb-MXene: the multilayer (ML-Nb4C3Tx, ML-Nb2CTx) and the delaminated (DL-Nb2CTx, and DL-Nb4C3Tx) Nb-MXene. The LC50 of ML-Nb4C3Tx, ML-Nb2CTx, DL-Nb2CTx, and DL-Nb4C3Tx were estimated to be 220, 215, 225, and 128 mg/L, respectively. Although DL-Nb2CTx, and DL-Nb4C3Tx derivatives have similar sizes, DL-Nb4C3Tx not only shows the higher mortality (LC50 = 128 mg/L Vs 225 mg/L), but also the highest teratogenic effect (NOEC = 100 mg/L Vs 200 mg/L). LDH release assay suggested more cell membrane damage and a higher superoxide anion production in DL-Nb4C3Tx than DL-Nb2CTx,. Interestingly, both DL-Nb-MXene nanosheets showed insignificant cardiac, hepatic, or behavioral toxic effects compared to the negative control. Embryos treated with the NOEC of DL-Nb2CTx presented hyperlocomotion, while embryos treated with the NOEC of DL-Nb4C3Tx presented hyperlocomotion, suggesting developmental neurotoxic effect and muscle impairment induced by both DL-Nb-MXene. According to the Fish and Wildlife Service (FSW) Acute Toxicity Rating Scale, all tested Nb-MXene nanosheets were classified as "Practically not toxic". However, DL-Nb4C3Tx should be treated with caution as it might cause a neurotoxic effect on fauna when it ends up in wastewater in high concentrations.
Collapse
Affiliation(s)
- P Abdul Rasheed
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P. O. Box 34110, Doha, Qatar; Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 623, India
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P. O. Box 34110, Doha, Qatar
| | - Nadine Younes
- Biomedical Research Center, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Gheyath K Nasrallah
- Biomedical Research Center, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Khaled A Mahmoud
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P. O. Box 34110, Doha, Qatar; Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
4
|
Rasheed R, Thaher M, Younes N, Bounnit T, Schipper K, Nasrallah GK, Al Jabri H, Gifuni I, Goncalves O, Pruvost J. Solar cultivation of microalgae in a desert environment for the development of techno-functional feed ingredients for aquaculture in Qatar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155538. [PMID: 35489502 DOI: 10.1016/j.scitotenv.2022.155538] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/06/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
The demand for aquaculture feed will increase in the coming years in order to ensure food security for a growing global population. Microalgae represent a potential fish-feed ingredient; however, the feasibility of their sustainable production has great influence on its successful application. Geographical locations offering high light and temperature, such as Qatar, are ideal to cultivate microalgae with high productivities. For that, the environmental and biological interactions, including field and laboratory optimization, for solar production and application of two native microalgae, Picochlorum maculatum and Nannochloris atomus, were investigated as potential aquaculture feed ingredients. After validating pilot-scale outdoor cultivation, both strains were further investigated under simulated seasonal conditions using a thermal model to predict light and culture temperature cycles for the major climatic seasons in Qatar. Applied thermal and light variations ranged from 36 °C and 2049 μmol/m2/s in extreme summer, to as low as 15 °C and 1107 μmol/m2/s in winter, respectively. Biomass productivities of both strains varied significantly with maximum productivities of 32.9 ± 2.5 g/m2/d and 17.1 ± 0.8 g/m2/d found under moderate summer conditions for P. maculatum and N. atomus, respectively. These productivities were significantly reduced under both extreme summer, as well as winter conditions. To improve annual biomass productivities, the effect of implementation of a simple ground heat exchanger for thermal regulation of raceway ponds was also studied. Biomass productivities increased significantly, during extreme seasons due to respective cooling and heating of the culture. Both strains produced high amounts of proteins during winter, 54.5 ± 0.55% and 44 ± 2.25%, while lipid contents were high during summer reaching up to 29.6 ± 0.75 and 28.65 ± 0.65%, for P. maculatum and N. atomus respectively. Finally, using acute toxicity assay with zebra fish embryos, both strains showed no toxicity even at the highest concentrations tested, and is considered safe for use as feed ingredient and to the environment.
Collapse
Affiliation(s)
- Rihab Rasheed
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
| | - Mahmoud Thaher
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Nadin Younes
- Biomedical Research Center, Qatar University, Doha 2713, Qatar; Department of Biomedical Sciences, College of Health Sciences, Member of QU Health, Qatar University, Doha 2713, Qatar
| | - Touria Bounnit
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Kira Schipper
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Gheyath K Nasrallah
- Biomedical Research Center, Qatar University, Doha 2713, Qatar; Department of Biomedical Sciences, College of Health Sciences, Member of QU Health, Qatar University, Doha 2713, Qatar
| | - Hareb Al Jabri
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar; Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Imma Gifuni
- Algosource Technologies, 7, Rue Eugène Cornet, 44600 Saint-Nazaire, France
| | - Olivier Goncalves
- CNRS, GEPEA, UMR 6144, Université de Nantes, Oniris, F-44600 Saint-Nazaire, France
| | - Jeremy Pruvost
- CNRS, GEPEA, UMR 6144, Université de Nantes, Oniris, F-44600 Saint-Nazaire, France
| |
Collapse
|
5
|
Lei L, Zhu B, Qiao K, Zhou Y, Chen X, Men J, Yang L, Wang Q, Han J, Zhou B. New evidence for neurobehavioral toxicity of deltamethrin at environmentally relevant levels in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153623. [PMID: 35124052 DOI: 10.1016/j.scitotenv.2022.153623] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Deltamethrin, a widely used type II pyrethroid insecticide, was reported with neurotoxicity to aquatic organisms, such as fish. However, the effects and potential mechanisms on the central nervous system remain largely unknown, especially under environmental concentrations. Therefore, we exposed adult female zebrafish to environmentally relevant levels of deltamethrin (30, 100, and 333 ng/L) for 21 days to assess neurobehavioral changes related to the central nervous system and explore the modes of action. Behavioral assays revealed significant increases in the swimming speeds, residence time near other fish and the shoaling cohesion in exposed fish. Transcriptomic results enriched the disrupted neural functions involving the glutamatergic and dopaminergic synapses in the brain. The qRT-PCR confirmed the upregulation of the factors for promoting the glutamate release. The measurement of neurotransmitters showed significantly increased content of the excitatory neurotransmitter glutamate in the brain. Taken together, deltamethrin exposure increased the glutamate level and promoted the release of such an excitatory neurotransmitter between the glutamatergic synapses in the brain, which eventually led to hyperactivity of social behaviors in adult zebrafish.
Collapse
Affiliation(s)
- Lei Lei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Biran Zhu
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Kun Qiao
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Yuxi Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangping Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jun Men
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qidong Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
6
|
Zhang S, Xu Y, Zhang S, Zhao C, Feng D, Feng X. Fluorene-9-bisphenol exposure decreases locomotor activity and induces lipid-metabolism disorders by impairing fatty acid oxidation in zebrafish. Life Sci 2022; 294:120379. [PMID: 35134438 DOI: 10.1016/j.lfs.2022.120379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/11/2021] [Revised: 01/19/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
AIMS Fluorene-9-bisphenol (BHPF), as a substitute for bisphenol A, is used in many industries in daily life. Many studies have clarified its effects as an endocrine disruptor on organisms, but its effect on lipid metabolism of zebrafish larvae is not clear. Patients with non-alcoholic fatty liver disease (NAFLD) are more susceptible to external pollutants. It is not clear how BHPF perturbs lipid metabolism or promotes NAFLD progression. MAIN METHODS We explored the biological effects of BHPF on locomotor activity, inflammatory response, endoplasmic reticulum (ER) stress and lipid metabolism in zebrafish, especially in the mechanism of lipid homeostasis disorder. In addition, the role of BHPF in the progression of non-alcoholic fatty liver disease (NAFLD) was further explored. KEY FINDINGS We found that high concentration (100 nmol/L) BHPF caused retarded growth, mild lipid accumulation and reduced the locomotive activity of zebrafish larvae, accompanied by a decrease in endogenous cortisol level. At the same time, it caused the full activation of inflammation and ER stress. Rescue experiments by 25(OH)D3 demonstrated that high concentration of BHPF caused defects in 1,25(OH)2D3 metabolic pathway through downregulation of cyp2r1, which further damaged pgc1a-mediated fatty acid oxidation and mitochondrial function, resulting in lipid accumulation. In summary, exposure to BHPF could damage lipid homeostasis and worsen the diet-induced NAFLD. SIGNIFICANCE Our findings provide new insights into the role of BHPF in development of overweight and obesity and also improve understanding of its toxicological mechanism. Our results play a warning role in the administration of environmental pollutants.
Collapse
Affiliation(s)
- Shuhui Zhang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education. College of Life Science, Nankai University, Tianjin 300071, China
| | - Yixin Xu
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education. College of Life Science, Nankai University, Tianjin 300071, China
| | - Shaozhi Zhang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education. College of Life Science, Nankai University, Tianjin 300071, China
| | - Chengtian Zhao
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education. College of Life Science, Nankai University, Tianjin 300071, China
| | - Daofu Feng
- Department of General Surgery, Tianjin Medical University General Hospital, No.154 Anshan Road, Tianjin 300052, China.
| | - Xizeng Feng
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education. College of Life Science, Nankai University, Tianjin 300071, China.
| |
Collapse
|
7
|
Sturgeon ML, Langton R, Sharma S, Cornell RA, Glykys J, Bassuk AG. The opioid antagonist naltrexone decreases seizure-like activity in genetic and chemically induced epilepsy models. Epilepsia Open 2021; 6:528-538. [PMID: 34664432 PMCID: PMC8408599 DOI: 10.1002/epi4.12512] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/16/2021] [Revised: 04/23/2021] [Accepted: 05/18/2021] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE A significant number of epileptic patients fail to respond to available anticonvulsive medications. To find new anticonvulsive medications, we evaluated FDA-approved drugs not known to be anticonvulsants. Using zebrafish larvae as an initial model system, we found that the opioid antagonist naltrexone exhibited an anticonvulsant effect. We validated this effect in three other epilepsy models and present naltrexone as a promising anticonvulsive candidate. METHODS Candidate anticonvulsant drugs, determined by our prior transcriptomics analysis of hippocampal tissue, were evaluated in a larval zebrafish model of human Dravet syndrome (scn1Lab mutants), in wild-type zebrafish larvae treated with the pro-convulsant drug pentylenetetrazole (PTZ), in wild-type C57bl/6J acute brain slices exposed to PTZ, and in wild-type mice treated with PTZ in vivo. Abnormal locomotion was determined behaviorally in zebrafish and mice and by field potential in neocortex layer IV/V and CA1 stratum pyramidale in the hippocampus. RESULTS The opioid antagonist naltrexone decreased abnormal locomotion in the larval zebrafish model of human Dravet syndrome (scn1Lab mutants) and wild-type larvae treated with the pro-convulsant drug PTZ. Naltrexone also decreased seizure-like events in acute brain slices of wild-type mice, and the duration and number of seizures in adult mice injected with PTZ. SIGNIFICANCE Our data reveal that naltrexone has anticonvulsive properties and is a candidate drug for seizure treatment.
Collapse
Affiliation(s)
| | - Rachel Langton
- Department of PediatricsDivision of Child NeurologyUniversity of IowaIowa CityIAUSA
- Iowa Neuroscience InstituteUniversity of IowaIowa CityIAUSA
| | | | - Robert A. Cornell
- Department of Anatomy and Cell BiologyUniversity of IowaIowa CityIAUSA
| | - Joseph Glykys
- Department of PediatricsDivision of Child NeurologyUniversity of IowaIowa CityIAUSA
- Iowa Neuroscience InstituteUniversity of IowaIowa CityIAUSA
- Department of NeurologyUniversity of IowaIowa CityIAUSA
| | - Alexander G. Bassuk
- Department of PediatricsDivision of Child NeurologyUniversity of IowaIowa CityIAUSA
- Iowa Neuroscience InstituteUniversity of IowaIowa CityIAUSA
- Department of NeurologyUniversity of IowaIowa CityIAUSA
| |
Collapse
|
8
|
Muhsen M, Youngs J, Riu A, Gustafsson JÅ, Kondamadugu VS, Garyfalidis E, Bondesson M. Folic acid supplementation rescues valproic acid-induced developmental neurotoxicity and behavioral alterations in zebrafish embryos. Epilepsia 2021; 62:1689-1700. [PMID: 33997963 DOI: 10.1111/epi.16915] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/17/2020] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Fetal exposure to the anticonvulsant drug valproic acid (VPA), used to treat certain types of epilepsy, increases the risk for birth defects, including neural tube defects, as well as learning difficulties and behavioral problems. Here, we investigated neurotoxic effects of VPA exposure using zebrafish as a model organism. The capacity of folic acid (FA) supplementation to rescue the VPA-induced neuronal and behavioral perturbations was also examined. METHODS Zebrafish embryos of different transgenic lines with neuronal green fluorescent protein expression were exposed to increasing concentrations of VPA with or without FA supplementation. Fluorescence microscopy was used to visualize alterations in brain structures and neural progenitor cells, as well as motor neurons and neurite sprouting. A twitching behavioral assay was used to examine the functional consequences of VPA and FA treatment. RESULTS In zebrafish embryos, VPA exposure caused a decrease in the midbrain size, an increase in the midline gap of the hindbrain, and perturbed neurite sprouting of secondary motor neurons, in a concentration-dependent manner. VPA exposure also decreased the fluorescence intensity of neuronal progenitor cells in early developmental stages, indicating fewer cells. Furthermore, VPA exposure significantly altered embryonic twitching activity, causing hyperactivity in dark and hypoactivity in light. Supplementation of FA rescued the VPA-induced smaller midbrain size and hindbrain midline gap defects. FA treatment also increased the number of neuronal progenitor cells in VPA-treated embryos and salvaged neurite sprouting of the secondary motor neurons. FA rescued the VPA-induced alterations in twitching activity in light but not in dark. SIGNIFICANCE We conclude that VPA exposure induces specific neurotoxic perturbations in developing zebrafish embryos, and that FA reversed most of the identified defects. The results demonstrate that zebrafish is a promising model to study VPA-induced teratogenesis and to screen for countermeasures.
Collapse
Affiliation(s)
- Maram Muhsen
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, USA
| | - Jaclyn Youngs
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, USA
| | - Anne Riu
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
| | - Jan-Åke Gustafsson
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA.,Department of Biosciences and Nutrition, Karolinska Institute, Solna, Sweden
| | - Vijay Sai Kondamadugu
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, USA
| | - Elefterios Garyfalidis
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, USA
| | - Maria Bondesson
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
9
|
Gong G, Chen H, Kam H, Chan G, Tang YX, Wu M, Tan H, Tse YC, Xu HX, Lee SMY. In Vivo Screening of Xanthones from Garcinia oligantha Identified Oliganthin H as a Novel Natural Inhibitor of Convulsions. JOURNAL OF NATURAL PRODUCTS 2020; 83:3706-3716. [PMID: 33296199 DOI: 10.1021/acs.jnatprod.0c00963] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/21/2023]
Abstract
Epilepsy is a chronic neurological disorder, characterized by recurrent, spontaneous, and transient seizures, and affects more than 70 million people worldwide. Although two dozen antiepileptic drugs (AEDs) are approved and available in the market, seizures remain poorly controlled in one-third of epileptic patients who are suffering from drug resistance or various adverse effects. Recently, the xanthone skeleton has been regarded as an attractive scaffold for the discovery and development of emerging anticonvulsants. We had isolated several dihydroxanthone derivatives previously, including oliganthin H, oliganthin I, and oliganthin N, whose structures were similar and delicately elucidated by spectrum analysis or X-ray crystallographic data, from extracts of leaves of Garcinia oligantha. These xanthone analogues were evaluated for anticonvulsant activity, and a novel xanthone, oliganthin H, has been identified as a sound and effective natural inhibitor of convulsions in zebrafish in vivo. A preliminary structure-activity relationship analysis on the relationship between structures of the xanthone analogues and their activities was also conducted. Oliganthin H significantly suppressed convulsant behavior and reduced to about 25% and 50% of PTZ-induced activity, in 12.5 and 25 μM treatment groups (P < 0.01 and 0.001), respectively. Meanwhile, it reduced seizure activity, velocity, seizure duration, and number of bursts in zebrafish larvae (P < 0.05). Pretreatment of oliganthin H significantly restored aberrant induction of gene expressions including npas4a, c-fos, pyya, and bdnf, as well as gabra1, gad1, glsa, and glula, upon PTZ treatment. In addition, in silico analysis revealed the stability of the oliganthin H-GABAA receptor complex and their detailed binding pattern. Therefore, direct interactions with the GABAA receptor and involvement of downstream GABA-glutamate pathways were possible mechanisms of the anticonvulsant action of oliganthin H. Our findings present the anticonvulsant activity of oliganthin H, provide a novel scaffold for further modifications, and highlight the xanthone skeleton as an attractive and reliable resource for the development of emerging AEDs.
Collapse
Affiliation(s)
- Guiyi Gong
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
- The Second Affiliated Hospital, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Hanbin Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Hiotong Kam
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Ging Chan
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yue-Xun Tang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Man Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hongsheng Tan
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China
| | - Yu-Chung Tse
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Hong-Xi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
10
|
A Microfluidic System for Stable and Continuous EEG Monitoring from Multiple Larval Zebrafish. SENSORS 2020; 20:s20205903. [PMID: 33086704 PMCID: PMC7590171 DOI: 10.3390/s20205903] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 09/14/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 01/03/2023]
Abstract
Along with the increasing popularity of larval zebrafish as an experimental animal in the fields of drug screening, neuroscience, genetics, and developmental biology, the need for tools to deal with multiple larvae has emerged. Microfluidic channels have been employed to handle multiple larvae simultaneously, even for sensing electroencephalogram (EEG). In this study, we developed a microfluidic chip capable of uniform and continuous drug infusion across all microfluidic channels during EEG recording. Owing to the modular design of the microfluidic channels, the number of animals under investigation can be easily increased. Using the optimized design of the microfluidic chip, liquids could be exchanged uniformly across all channels without physically affecting the larvae contained in the channels, which assured a stable environment maintained all the time during EEG recording, by eliminating environmental artifacts and leaving only biological effects to be seen. To demonstrate the usefulness of the developed system in drug screening, we continuously measured EEG from four larvae without and with pentylenetetrazole application, up to 60 min. In addition, we recorded EEG from valproic acid (VPA)-treated zebrafish and demonstrated the suppression of seizure by VPA. The developed microfluidic system could contribute to the mass screening of EEG for drug development to treat neurological disorders such as epilepsy in a short time, owing to its handy size, cheap fabrication cost, and the guaranteed uniform drug infusion across all channels with no environmentally induced artifacts.
Collapse
|
11
|
Lee Y, Lee KJ, Jang JW, Lee SI, Kim S. An EEG system to detect brain signals from multiple adult zebrafish. Biosens Bioelectron 2020; 164:112315. [DOI: 10.1016/j.bios.2020.112315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/29/2020] [Revised: 04/27/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022]
|
12
|
Clozapine-induced transcriptional changes in the zebrafish brain. NPJ SCHIZOPHRENIA 2020; 6:3. [PMID: 32015324 PMCID: PMC6997376 DOI: 10.1038/s41537-019-0092-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 08/21/2019] [Accepted: 12/12/2019] [Indexed: 12/20/2022]
Abstract
Clozapine is an atypical antipsychotic medication that is used to treat schizophrenia patients who are resistant to other antipsychotic drugs. The molecular mechanisms mediating the effects of clozapine are not well understood and its use is often associated with severe side-effects. In this study, we exposed groups of wild-type zebrafish to two doses of clozapine (‘low’ (20 µg/L) and ‘high’ (70 µg/L)) over a 72-h period, observing dose-dependent effects on behaviour. Using RNA sequencing (RNA-seq) we identified multiple genes differentially expressed in the zebrafish brain following exposure to clozapine. Network analysis identified co-expression modules characterised by striking changes in module connectivity in response to clozapine, and these were enriched for regulatory pathways relevant to the etiology of schizophrenia. Our study highlights the utility of zebrafish as a model for assessing the molecular consequences of antipsychotic medications and identifies genomic networks potentially involved in schizophrenia.
Collapse
|
13
|
Younes N, Salem R, Al-Asmakh M, Altamash T, Pintus G, Khraisheh M, Nasrallah GK. Toxicity evaluation of selected ionic liquid compounds on embryonic development of Zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:17-24. [PMID: 29857229 DOI: 10.1016/j.ecoenv.2018.05.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/11/2018] [Revised: 05/17/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
Hydrate formation in seafloor pipelines is considered an economic and flow assurance issue for the oil and gas industries. Ionic liquids (ILs) have been recently used as potential hydrate inhibitors. Although branded as green compounds, their ecotoxicity in case of leakage from pipelines onto the aquatic environment needs more deep evaluations. Here, we investigate the impacts of three ILs previously used as successful thermodynamic hydrate inhibitors namely choline chloride (ChC1), 1-methyl-1-propyl pyrrolidinium triflate (PMPy [triflate]) and tetra-methyl ammonium acetate (TMAA). Mortality (including LC50), teratogenicity, locomotion and neurotoxicity, and hatching rate were utilized to investigate any potential acute toxicity of these ILs on embryonic development of zebrafish. No significant mortality or teratogenic effects were found for all tested compounds in a concentration range between 50 and 200 mg/L. The LC50 was significantly higher than the tested dose >200 mg/L. While, up to 200 mg/L all compound had no impact on the survival rate, ChCl showed a significant effect on neuromuscular development as judged by the increase of spontaneous tail coiling activity (25 VS 4 burst/ minutes of the negative control-treated embryos). Further, apart from PMPy [triflate], ChC1 and TMAA had a significant adverse effect on the hatching rate of the treated embryos at concentrations of 200 mg/L. However, this effect was very mild at lower concentrations (≤100 mg/L). Our data indicate that within the tested concentrations both TMAA and PMPy [triflate] had no or little potential harmful effect on embryonic development of aquatic fauna "green", while ChC1 should be used with caution.
Collapse
Affiliation(s)
- Nadin Younes
- Department of Biomedical Science, College of Health Sciences, Qatar University, Women's Science building, C01, P.O Box: 2713, Doha, Qatar.
| | - Rola Salem
- Department of Biomedical Science, College of Health Sciences, Qatar University, Women's Science building, C01, P.O Box: 2713, Doha, Qatar; Biomedical Research Center, Qatar University, P.O Box: 2713, Doha, Qatar.
| | - Maha Al-Asmakh
- Department of Biomedical Science, College of Health Sciences, Qatar University, Women's Science building, C01, P.O Box: 2713, Doha, Qatar; Biomedical Research Center, Qatar University, P.O Box: 2713, Doha, Qatar.
| | - Tausif Altamash
- Department of Chemical Engineering, College of Engineering, Qatar University, P.O Box: 2713, Doha, Qatar.
| | - Gianfranco Pintus
- Department of Biomedical Science, College of Health Sciences, Qatar University, Women's Science building, C01, P.O Box: 2713, Doha, Qatar; Biomedical Research Center, Qatar University, P.O Box: 2713, Doha, Qatar.
| | - Majeda Khraisheh
- Department of Chemical Engineering, College of Engineering, Qatar University, P.O Box: 2713, Doha, Qatar.
| | - Gheyath K Nasrallah
- Department of Biomedical Science, College of Health Sciences, Qatar University, Women's Science building, C01, P.O Box: 2713, Doha, Qatar; Biomedical Research Center, Qatar University, P.O Box: 2713, Doha, Qatar.
| |
Collapse
|