1
|
Li Y, Huang X, Li Y, Qiao Q, Chen C, Chen Y, Zhong W, Liu H, Sun T. WRN Nuclease-Mediated EcDNA Clearance Enhances Antitumor Therapy in Conjunction with Trehalose Dimycolate/Mesoporous Silica Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407026. [PMID: 39206698 PMCID: PMC11516056 DOI: 10.1002/advs.202407026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Current research on tumor fibrosis has focused on cancer-associated fibroblasts, which may exert dual functions of tumor promotion and inhibition. Little attention has been paid to whether tumor cells themselves can undergo fibrotic transformation and whether they can inhibit parenchymal cells similar to pulmonary fibrosis, thus achieving the goal of inhibiting the malignant progression of tumors. To explore the significance of inducing tumor fibrosis for cancer treatment. This study utilizes mesoporous silica nanoparticles (MSN) loaded with Trehalose dimycolate (TDM) to induce tumor cell fibrosis through the dual effects of TDM-induced inflammatory granuloma and MSN-induced foreign body granuloma. The results show that TDM/MSN (TM) can effectively induce tumor fibrosis, manifested specifically by collagen internalization, and suppression of proliferation and invasion capabilities, suggesting the potential role of tumor fibrosis therapy. However, further investigation reveals that extrachromosomal DNA (ecDNA) mediates resistance to fibrosis induction. To comprehensively enhance the efficacy, WRN exonuclease is conjugated to TM to form new nanoparticles (TMW) capable of effectively eliminating ecDNA, globally promoting tumor cell fibroblast-like transformation, and validated in a PDX model to inhibit cancer progression. Therefore, TMW, through inducing tumor cell fibrosis to inhibit its malignant progression, holds great potential as a clinical treatment strategy.
Collapse
Affiliation(s)
- Yinan Li
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| | - Xiu Huang
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative DrugsTianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjin300450China
| | - Yingying Li
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative DrugsTianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjin300450China
| | - Qingqing Qiao
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| | - Caihong Chen
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| | - Yang Chen
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| | - Weilong Zhong
- Tianjin Key Laboratory of Digestive DiseasesDepartment of Gastroenterology and HepatologyTianjin Institute of Digestive DiseasesTianjin Medical University General HospitalTianjin300052China
| | - Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative DrugsTianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjin300450China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| |
Collapse
|
2
|
Hirpara J, Thuya WL, Cheow SH, Fernando K, Eu JQ, Wang L, Wong ALA, Fong ELS, Ali AB, Ding LW, Zhuoran W, Lim YC, Pervaiz S, Goh BC. Tumor-derived extracellular vesicles convey solute transporters to induce bioenergetic dependence shift contributing to treatment resistance. Theranostics 2024; 14:6350-6369. [PMID: 39431017 PMCID: PMC11488098 DOI: 10.7150/thno.100374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/06/2024] [Indexed: 10/22/2024] Open
Abstract
Rationale: Growing evidence points to the tumor microenvironment's role in developing drug resistance. A key element of this microenvironment is inter-cellular communication, which includes the release of membrane-encapsulated vesicles containing various cargo, known as extracellular vesicles (EVs). Understanding how EVs contribute to acquired resistance holds significant clinical implications. Methods: Differential centrifugation-based methods were used to isolate EVs from established cell lines and human plasma. TMT labeling proteomics analysis of EVs revealed an abundance of metabolic transporter proteins. Increased expression of SLC1A5 in EVs of patient-derived plasma and cell lines rendered resistant to tyrosine kinase inhibitors and its relationship with progression-free survival was assessed using Kaplan-Meier survival plot. Gene knockdown and overexpression of SLC1A5 were used to validate its effect on Tyrosine kinase inhibitor (TKI) resistance. Co-culture assays using inserts was used to evaluate the effect of resistant EVs on normal fibroblasts and epithelial cells. Next, mouse-derived tumor slices (MDTS) were cultured in vitro to assess the effect of resistant EVs. Results: We report here that TKI-sensitive cells are rendered resistant upon incubation with EVs derived from TKI-resistant cell lines. Metabolic transporters, in particular SLC1A5 and SLC25A5, are upregulated in EVs derived from TKI-resistant cells and plasma from patients harbouring TKI-resistant tumors and in TKI-resistant cell lines. Furthermore, we also provide evidence for the increased abundance of pSTAT3 and the stemness marker ALDH1A1 upon EV-induced resistance. Notably, resistant EVs trigger phenotypic and functional switching of lung-derived fibroblasts into tumor-associated fibroblasts, significantly increasing their migratory and invasive capacities. Conclusions: Our findings support the role of metabolic transporters within tumor-derived EVs in reshaping the tumor microenvironment to promote therapy resistance, which could have potential diagnostic, prognostic, and therapeutic implications.
Collapse
Affiliation(s)
- Jayshree Hirpara
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Win Lwin Thuya
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Sok-Hwee Cheow
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Kanishka Fernando
- Departmental of Biomedical Engineering, National University of Singapore, Singapore
| | - Jie Qing Eu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Pharmacology, National University of Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andrea Li-Ann Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Haematology-Oncology, National University Hospital, Singapore
| | - Eliza Li Shan Fong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Departmental of Biomedical Engineering, National University of Singapore, Singapore
- The N. 1 Institute of Health, National University of Singapore
| | - Azhar Bin Ali
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ling-wen Ding
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Wu Zhuoran
- Departmental of Biomedical Engineering, National University of Singapore, Singapore
| | - Yaw-Chyn Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Shazib Pervaiz
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Boon-Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Pharmacology, National University of Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Haematology-Oncology, National University Hospital, Singapore
| |
Collapse
|
3
|
Fuchs V, Sobarzo A, Msamra M, Kezerle Y, Linde L, Sevillya G, Anoze A, Refaely Y, Cohen AY, Melamed I, Azriel A, Shoukrun R, Raviv Y, Porgador A, Peled N, Roisman LC. Personalizing non-small cell lung cancer treatment through patient-derived xenograft models: preclinical and clinical factors for consideration. Clin Transl Oncol 2024; 26:2227-2239. [PMID: 38553659 PMCID: PMC11333550 DOI: 10.1007/s12094-024-03450-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/05/2024] [Indexed: 08/20/2024]
Abstract
PURPOSE In the pursuit of creating personalized and more effective treatment strategies for lung cancer patients, Patient-Derived Xenografts (PDXs) have been introduced as preclinical platforms that can recapitulate the specific patient's tumor in an in vivo model. We investigated how well PDX models can preserve the tumor's clinical and molecular characteristics across different generations. METHODS A Non-Small Cell Lung Cancer (NSCLC) PDX model was established in NSG-SGM3 mice and clinical and preclinical factors were assessed throughout subsequent passages. Our cohort consisted of 40 NSCLC patients, which were used to create 20 patient-specific PDX models in NSG-SGM3 mice. Histopathological staining and Whole Exome Sequencing (WES) analysis were preformed to understand tumor heterogeneity throughout serial passages. RESULTS The main factors that contributed to the growth of the engrafted PDX in mice were a higher grade or stage of disease, in contrast to the long duration of chemotherapy treatment, which was negatively correlated with PDX propagation. Successful PDX growth was also linked to poorer prognosis and overall survival, while growth pattern variability was affected by the tumor aggressiveness, primarily affecting the first passage. Pathology analysis showed preservation of the histological type and grade; however, WES analysis revealed genomic instability in advanced passages, leading to the inconsistencies in clinically relevant alterations between the PDXs and biopsies. CONCLUSIONS Our study highlights the impact of multiple clinical and preclinical factors on the engraftment success, growth kinetics, and tumor stability of patient-specific NSCLC PDXs, and underscores the importance of considering these factors when guiding and evaluating prolonged personalized treatment studies for NSCLC patients in these models, as well as signaling the imperative for additional investigations to determine the full clinical potential of this technique.
Collapse
Affiliation(s)
- Vered Fuchs
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ariel Sobarzo
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Maha Msamra
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yarden Kezerle
- Institute of Pathology, Soroka University Medical Center, Beer-Sheva, Israel
| | - Liat Linde
- Biomedical Core Facility, Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gur Sevillya
- Biomedical Core Facility, Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Alaa Anoze
- The Oncology Institute, Helmsley Cancer Center, Precision Oncology and Innovation, Shaare Zedek Medical Center, 12, Shmuel Beit St, 9103102, Jerusalem, Israel
| | - Yael Refaely
- Department of Cardiothoracic Surgery, Soroka University Medical Center, Beer-Sheva, Israel
| | | | - Israel Melamed
- Department of Neurosurgery, Soroka University Medical Center, Beer Sheva, Israel
| | - Amit Azriel
- Department of Neurosurgery, Soroka University Medical Center, Beer Sheva, Israel
| | - Rami Shoukrun
- Department of Ears, Nose & Throat, Head & Neck Surgery, Soroka University Medical Center, Beer Sheva, Israel
| | - Yael Raviv
- Pulmonary Institute, Soroka University Medical Center, Beer-Sheva, Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Nir Peled
- The Oncology Institute, Helmsley Cancer Center, Precision Oncology and Innovation, Shaare Zedek Medical Center, 12, Shmuel Beit St, 9103102, Jerusalem, Israel.
| | - Laila Catalina Roisman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
- The Oncology Institute, Helmsley Cancer Center, Precision Oncology and Innovation, Shaare Zedek Medical Center, 12, Shmuel Beit St, 9103102, Jerusalem, Israel.
| |
Collapse
|
4
|
Sposito M, Eccher S, Pasqualin L, Scaglione IM, Avancini A, Tregnago D, Trestini I, Insolda J, Bonato A, Ugel S, Derosa L, Milella M, Pilotto S, Belluomini L. Characterizing the immune tumor microenvironment in ALK fusion-positive lung cancer: state-of-the-art and therapeutical implications. Expert Rev Clin Immunol 2024; 20:959-970. [PMID: 38913940 DOI: 10.1080/1744666x.2024.2372327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
INTRODUCTION Approximately 5% of non-small cell lung cancer (NSCLC), exhibits anaplastic lymphoma kinase (ALK) rearrangements. EML4-ALK fusions account for over 90% of ALK rearrangements in NSCLC. The advent of treatment targeting ALK has significantly improved survival rates in patients with advanced ALK-positive NSCLC. However, the emergence of resistance mechanisms and the subsequent progression disease inevitably occurs. The tumor immune microenvironment (TIME) plays a pivotal role in lung cancer, influencing disease development, patient's outcomes, and response to treatments. AREAS COVERED The aim of this review is to provide a comprehensive characterization of the TIME in ALK rearranged NSCLC and its intrinsic plasticity under treatment pressure. EXPERT OPINION Recognizing the fundamental role of the TIME in cancer progression has shifted the paradigm from a tumor cell-centric perspective to the understanding of a complex tumor ecosystem. Understanding the intricate dynamics of the TIME, its influence on treatment response, and the potential of immunotherapy in patients with ALK-positive NSCLC are currently among the primary research objectives in this patient population.
Collapse
Affiliation(s)
- Marco Sposito
- Section of Oncology, Department of Engineering for Innovation Medicine (DIMI), University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Serena Eccher
- Section of Oncology, Department of Engineering for Innovation Medicine (DIMI), University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Luca Pasqualin
- Section of Oncology, Department of Engineering for Innovation Medicine (DIMI), University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Ilaria Mariangela Scaglione
- Section of Oncology, Department of Engineering for Innovation Medicine (DIMI), University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Alice Avancini
- Section of Oncology, Department of Engineering for Innovation Medicine (DIMI), University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Daniela Tregnago
- Section of Oncology, Department of Engineering for Innovation Medicine (DIMI), University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Ilaria Trestini
- Dietetic Service, Hospital Medical Direction, University and Hospital Trust (AOUI) of Verona, Verona, Italy
| | - Jessica Insolda
- Section of Oncology, Department of Engineering for Innovation Medicine (DIMI), University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Adele Bonato
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Santa Chiara Hospital, Pisa, Italy
| | - Stefano Ugel
- Immunology Section, University Hospital and Department of Medicine, University of Verona, Verona, Italy
| | - Lisa Derosa
- INSERM U1015 Gustave Roussy Cancer Campus, Villejuif Cedex, Villejuif, France
- Faculté de Médicine, Université Paris-Saclay, Le Kremlin-Bicetre, France
| | - Michele Milella
- Section of Oncology, Department of Engineering for Innovation Medicine (DIMI), University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Sara Pilotto
- Section of Oncology, Department of Engineering for Innovation Medicine (DIMI), University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Lorenzo Belluomini
- Section of Oncology, Department of Engineering for Innovation Medicine (DIMI), University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| |
Collapse
|
5
|
Guo X, Bian X, Li Y, Zhu X, Zhou X. The intricate dance of tumor evolution: Exploring immune escape, tumor migration, drug resistance, and treatment strategies. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167098. [PMID: 38412927 DOI: 10.1016/j.bbadis.2024.167098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/14/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
Recent research has unveiled fascinating insights into the intricate mechanisms governing tumor evolution. These studies have illuminated how tumors adapt and proliferate by exploiting various factors, including immune evasion, resistance to therapeutic drugs, genetic mutations, and their ability to adapt to different environments. Furthermore, investigations into tumor heterogeneity and chromosomal aberrations have revealed the profound complexity that underlies the evolution of cancer. Emerging findings have also underscored the role of viral influences in the development and progression of cancer, introducing an additional layer of complexity to the field of oncology. Tumor evolution is a dynamic and complex process influenced by various factors, including immune evasion, drug resistance, tumor heterogeneity, and viral influences. Understanding these elements is indispensable for developing more effective treatments and advancing cancer therapies. A holistic approach to studying and addressing tumor evolution is crucial in the ongoing battle against cancer. The main goal of this comprehensive review is to explore the intricate relationship between tumor evolution and critical aspects of cancer biology. By delving into this complex interplay, we aim to provide a profound understanding of how tumors evolve, adapt, and respond to treatment strategies. This review underscores the pivotal importance of comprehending tumor evolution in shaping effective approaches to cancer treatment.
Collapse
Affiliation(s)
- Xiaojun Guo
- Department of Immunology, School of Medicine, Nantong University, Nantong, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Xiaonan Bian
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Yitong Li
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China.
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, China.
| |
Collapse
|
6
|
Yan HJ, Lin SC, Xu SH, Gao YB, Zhou BJ, Zhou R, Chen FM, Li FR. Proteomic analysis reveals LRPAP1 as a key player in the micropapillary pattern metastasis of lung adenocarcinoma. Heliyon 2024; 10:e23913. [PMID: 38226250 PMCID: PMC10788494 DOI: 10.1016/j.heliyon.2023.e23913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
Objectives Lung adenocarcinomas have different prognoses depending on their histological growth patterns. Micropapillary growth within lung adenocarcinoma, particularly metastasis, is related to dismal prognostic outcome. Metastasis accounts for a major factor leading to mortality among lung cancer patients. Understanding the mechanisms underlying early stage metastasis can help develop novel treatments for improving patient survival. Methods Here, quantitative mass spectrometry was conducted for comparing protein expression profiles among various histological subtypes, including adenocarcinoma in situ, minimally invasive adenocarcinoma, and invasive adenocarcinoma (including acinar and micropapillary [MIP] types). To determine the mechanism of MIP-associated metastasis, we identified a protein that was highly expressed in MIP. The expression of the selected highly expressed MIP protein was verified via immunohistochemical (IHC) analysis and its function was validated by an in vitro migration assay. Results Proteomic data revealed that low-density lipoprotein receptor-related protein-associated protein 1 (LRPAP1) was highly expressed in MIP group, which was confirmed by IHC. The co-expressed proteins in this study, PSMD1 and HSP90AB1, have been reported to be highly expressed in different cancers and play an essential role in metastasis. We observed that LRPAP1 promoted lung cancer progression, including metastasis, invasion and proliferation in vitro and in vivo. Conclusion LRPAP1 is necessary for MIP-associated metastasis and is the candidate novel anti-metastasis therapeutic target.
Collapse
Affiliation(s)
- Hao-jie Yan
- Translational Medicine Collaborative Innovation Center, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020, Shenzhen, China
- Post-doctoral Scientific Research Station of Basic Medicine, Jinan University, 510632, Guangzhou, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, 518020, Shenzhen, China
| | - Sheng-cheng Lin
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 518172, Shenzhen, China
| | | | - Yu-biao Gao
- Translational Medicine Collaborative Innovation Center, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020, Shenzhen, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, 518020, Shenzhen, China
| | - Bao-jin Zhou
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Ruo Zhou
- Deepxomics Co., Ltd, 518112, Shenzhen, China
| | - Fu-ming Chen
- Translational Medicine Collaborative Innovation Center, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020, Shenzhen, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, 518020, Shenzhen, China
| | - Fu-rong Li
- Translational Medicine Collaborative Innovation Center, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020, Shenzhen, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, 518020, Shenzhen, China
- Institute of Health Medicine, Southern University of Science and Technology, 518055, Shenzhen, China
| |
Collapse
|
7
|
Li K, Qiang M, Xu Y. Cell-type-specific alternative polyadenylation as a therapeutic biomarker in lung cancer progression. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102030. [PMID: 37766793 PMCID: PMC10520420 DOI: 10.1016/j.omtn.2023.102030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Affiliation(s)
- Kang Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Min Qiang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Yungang Xu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| |
Collapse
|
8
|
Kemper M, Krekeler C, Menck K, Lenz G, Evers G, Schulze AB, Bleckmann A. Liquid Biopsies in Lung Cancer. Cancers (Basel) 2023; 15:1430. [PMID: 36900221 PMCID: PMC10000706 DOI: 10.3390/cancers15051430] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023] Open
Abstract
As lung cancer has the highest cancer-specific mortality rates worldwide, there is an urgent need for new therapeutic and diagnostic approaches to detect early-stage tumors and to monitor their response to the therapy. In addition to the well-established tissue biopsy analysis, liquid-biopsy-based assays may evolve as an important diagnostic tool. The analysis of circulating tumor DNA (ctDNA) is the most established method, followed by other methods such as the analysis of circulating tumor cells (CTCs), microRNAs (miRNAs), and extracellular vesicles (EVs). Both PCR- and NGS-based assays are used for the mutational assessment of lung cancer, including the most frequent driver mutations. However, ctDNA analysis might also play a role in monitoring the efficacy of immunotherapy and its recent accomplishments in the landscape of state-of-the-art lung cancer therapy. Despite the promising aspects of liquid-biopsy-based assays, there are some limitations regarding their sensitivity (risk of false-negative results) and specificity (interpretation of false-positive results). Hence, further studies are needed to evaluate the usefulness of liquid biopsies for lung cancer. Liquid-biopsy-based assays might be integrated into the diagnostic guidelines for lung cancer as a tool to complement conventional tissue sampling.
Collapse
Affiliation(s)
- Marcel Kemper
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149 Muenster, Germany
| | - Carolin Krekeler
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149 Muenster, Germany
| | - Kerstin Menck
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149 Muenster, Germany
| | - Georg Lenz
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149 Muenster, Germany
| | - Georg Evers
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149 Muenster, Germany
| | - Arik Bernard Schulze
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149 Muenster, Germany
| | - Annalen Bleckmann
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149 Muenster, Germany
| |
Collapse
|
9
|
Predictive value of intratumor metabolic and heterogeneity parameters on [ 18F]FDG PET/CT for EGFR mutations in patients with lung adenocarcinoma. Jpn J Radiol 2023; 41:209-218. [PMID: 36219311 DOI: 10.1007/s11604-022-01347-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/30/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE This study aimed to investigate the value of metabolic and heterogeneity parameters of 2-deoxy-2[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography/computed tomography (PET/CT) in predicting epidermal growth factor receptor (EGFR) mutations in patients with lung adenocarcinoma (ADC). MATERIALS AND METHODS A retrospective analysis was performed on 157 patients with lung ADC between September 2015 and June 2021, who had undergone both EGFR mutation testing and [18F]FDG PET/CT examination. Metabolic and heterogeneity parameters were measured and calculated, including maximum diameter (Dmax), maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean), metabolic tumor volume (MTV), total lesion glycolysis (TLG), and heterogeneity factor (HF). Relationships between PET/CT parameters and EGFR mutation status were evaluated and a multivariate logistic regression analysis was analyzed to establish a combined prediction model. RESULTS 108 (68.8%) patients exhibited EGFR mutations. EGFR mutations were more likely to occur in females (51.9% vs. 48.1%, P = 0.007), non-smokers (83.3% vs. 16.7%, P < 0.001) and right lobes (55.6% vs. 44.4%, P = 0.017). High Dmax, MTV and HF and low SUVmean were significantly correlated with EGFR mutations, and the areas under the ROC curve (AUCs) measuring 0.647, 0.701, 0.757, and 0.661, respectively. Multivariate logistic regression analysis suggested that non-smokers (OR = 0.30, P = 0.034), low SUVmean (≤ 7.75, OR = 0.63, P < 0.001) and high HF (≥ 4.21, OR = 1.80, P = 0.027) were independent predictors of EGFR mutations. The AUC of the combined prediction model measured up to 0.863, significantly higher than that of a single parameter. CONCLUSIONS EGFR mutant in lung ADC patients showed more intratumor heterogeneity (HF) than EGFR wild type, which was combined clinical feature (non-smokers), and metabolic parameter (SUVmean) may be helpful in predicting EGFR mutation status, thus playing a guiding role in EGFR-tyrosine kinase inhibitors (EGFR-TKIs) targeted therapies.
Collapse
|
10
|
Altıntop MD, Akalın Çiftçi G, Yılmaz Savaş N, Ertorun İ, Can B, Sever B, Temel HE, Alataş Ö, Özdemir A. Discovery of Small Molecule COX-1 and Akt Inhibitors as Anti-NSCLC Agents Endowed with Anti-Inflammatory Action. Int J Mol Sci 2023; 24:ijms24032648. [PMID: 36768971 PMCID: PMC9916685 DOI: 10.3390/ijms24032648] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 02/01/2023] Open
Abstract
Targeted therapies have come into prominence in the ongoing battle against non-small cell lung cancer (NSCLC) because of the shortcomings of traditional chemotherapy. In this context, indole-based small molecules, which were synthesized efficiently, were subjected to an in vitro colorimetric assay to evaluate their cyclooxygenase (COX) inhibitory profiles. Compounds 3b and 4a were found to be the most selective COX-1 inhibitors in this series with IC50 values of 8.90 µM and 10.00 µM, respectively. In vitro and in vivo assays were performed to evaluate their anti-NSCLC and anti-inflammatory action, respectively. 2-(1H-Indol-3-yl)-N'-(4-morpholinobenzylidene)acetohydrazide (3b) showed selective cytotoxic activity against A549 human lung adenocarcinoma cells through apoptosis induction and Akt inhibition. The in vivo experimental data revealed that compound 3b decreased the serum myeloperoxidase and nitric oxide levels, pointing out its anti-inflammatory action. Moreover, compound 3b diminished the serum aminotransferase (particularly aspartate aminotransferase) levels. Based on the in vitro and in vivo experimental data, compound 3b stands out as a lead anti-NSCLC agent endowed with in vivo anti-inflammatory action, acting as a dual COX-1 and Akt inhibitor.
Collapse
Affiliation(s)
- Mehlika Dilek Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Correspondence: (M.D.A.); (A.Ö.); Tel.: +90-222-335-0580 (ext. 3772) (M.D.A); +90-222-335-0580 (ext. 3780) (A.Ö.)
| | - Gülşen Akalın Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Graduate School of Health Sciences, Anadolu University, 26470 Eskişehir, Turkey
| | - Nalan Yılmaz Savaş
- Graduate School of Health Sciences, Anadolu University, 26470 Eskişehir, Turkey
| | - İpek Ertorun
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, 26480 Eskişehir, Turkey
| | - Betül Can
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, 26480 Eskişehir, Turkey
| | - Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Halide Edip Temel
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Özkan Alataş
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, 26480 Eskişehir, Turkey
| | - Ahmet Özdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Correspondence: (M.D.A.); (A.Ö.); Tel.: +90-222-335-0580 (ext. 3772) (M.D.A); +90-222-335-0580 (ext. 3780) (A.Ö.)
| |
Collapse
|
11
|
Wang H, Mi K. Emerging roles of endoplasmic reticulum stress in the cellular plasticity of cancer cells. Front Oncol 2023; 13:1110881. [PMID: 36890838 PMCID: PMC9986440 DOI: 10.3389/fonc.2023.1110881] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Cellular plasticity is a well-known dynamic feature of tumor cells that endows tumors with heterogeneity and therapeutic resistance and alters their invasion-metastasis progression, stemness, and drug sensitivity, thereby posing a major challenge to cancer therapy. It is becoming increasingly clear that endoplasmic reticulum (ER) stress is a hallmark of cancer. The dysregulated expression of ER stress sensors and the activation of downstream signaling pathways play a role in the regulation of tumor progression and cellular response to various challenges. Moreover, mounting evidence implicates ER stress in the regulation of cancer cell plasticity, including epithelial-mesenchymal plasticity, drug resistance phenotype, cancer stem cell phenotype, and vasculogenic mimicry phenotype plasticity. ER stress influences several malignant characteristics of tumor cells, including epithelial-to-mesenchymal transition (EMT), stem cell maintenance, angiogenic function, and tumor cell sensitivity to targeted therapy. The emerging links between ER stress and cancer cell plasticity that are implicated in tumor progression and chemoresistance are discussed in this review, which may aid in formulating strategies to target ER stress and cancer cell plasticity in anticancer treatments.
Collapse
Affiliation(s)
- Hao Wang
- Breast Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Kun Mi
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
12
|
Li J, Zhang B, Ge S, Deng S, Hu C, Sang S. Prognostic value of 18F-FDG PET/CT radiomic model based on primary tumor in patients with non-small cell lung cancer: A large single-center cohort study. Front Oncol 2022; 12:1047905. [DOI: 10.3389/fonc.2022.1047905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
ObjectivesIn the present study, we aimed to determine the prognostic value of the 18F-FDG PET/CT-based radiomics model when predicting progression-free survival (PFS) and overall survival (OS) in patients with non-small cell lung cancer (NSCLC).MethodsA total of 368 NSCLC patients who underwent 18F-FDG PET/CT before treatment were randomly assigned to the training (n = 257) and validation (n = 111) cohorts. Radiomics signatures from PET and CT images were obtained using LIFEx software, and then clinical and complex models were constructed and validated by selecting optimal parameters based on PFS and OS to construct radiomics signatures.ResultsIn the training cohort, the C-index of the clinical model for predicting PFS and OS in NSCLC patients was 0.748 and 0.834, respectively, and the AUC values were 0.758 and 0.846, respectively. The C-index of the complex model for predicting PFS and OS was 0.775 and 0.881, respectively, and the AUC values were 0.780 and 0.891, respectively. The C-index of the clinical model for predicting PFS and OS in the validation group was 0.729 and 0.832, respectively, and the AUC values were 0.776 and 0.850, respectively. The C-index of the complex model for predicting PFS and OS was 0.755 and 0.867, respectively, and the AUC values were 0.791 and 0.874, respectively. Moreover, decision curve analysis showed that the complex model had a higher net benefit than the clinical model.Conclusions18F-FDG PET/CT radiomics before treatment could predict PFS and OS in NSCLC patients, and the predictive power was higher when combined with clinical factors.
Collapse
|
13
|
Lu L, Fang T, Pang T, Chen Z, Cheng L, Ma D, Xi Z. The potential application of branch-PCR assembled PTEN gene nanovector in lung cancer gene therapy. Chembiochem 2022; 23:e202200387. [PMID: 36073901 DOI: 10.1002/cbic.202200387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/08/2022] [Indexed: 11/12/2022]
Abstract
Gene therapy offers an alternative and promising avenue to lung cancer treatment. Here, we used dibenzocyclooctyne (DBCO)-branched primers to construct a kind of PTEN gene nanovector (NP-PTEN) through branch-PCR. NP-PTEN showed the nanoscale structure with the biocompatible size (84.7 ± 11.2 nm) and retained the improved serum stability compared to linear DNA. When transfected into NCI-H1299 cancer cells, NP-PTEN could overexpress PTEN protein to restore PTEN function through the deactivation of PI3K-AKT-mTOR signaling pathway to inhibit cell proliferation and induce cell apoptosis. The apoptosis rate of NCI-H1299 cancer cells could reach up to 54.5% ± 4.6% when the transfection concentration of NP-PTEN was 4.0 μg/mL. In mice bearing NCI-H1299 tumor xenograft intratumorally administrated with NP-PTEN, the average tumor volume and tumor weight was separately reduced by 61.7% and 63.9% compared with the PBS group on the 18 th day of administration. The anticancer efficacy of NP-PTEN in NCI-H1299 tumor xenograft suggested the promising therapeutic potential of this branch-PCR assembled PTEN gene nanovectors in lung cancer gene therapy and also provided more opportunities to introduce two or more tumor suppressor genes as the all-in-one gene nanovectors for multiple gene-based cancer gene therapy.
Collapse
Affiliation(s)
- Liqing Lu
- Nankai University College of Chemistry, Department of Chemical Biology, CHINA
| | - Tian Fang
- Nankai University College of Chemistry, Department of Chemical Biology, CHINA
| | - Tuo Pang
- Nankai University College of Chemistry, Department of Chemical Biology, CHINA
| | - Ziyi Chen
- Nankai University College of Chemistry, Department of Chemical Biology, CHINA
| | - Longhuai Cheng
- Nankai University College of Chemistry, Department of Chemical Biology, CHINA
| | - Dejun Ma
- Nankai University College of Chemistry, Department of Chemical Biology, CHINA
| | - Zhen Xi
- Nankai University, State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Bi, 94 weijin road, 300071, Tianjin, CHINA
| |
Collapse
|
14
|
Chen AS, Liu H, Wu Y, Luo S, Patz EF, Glass C, Su L, Du M, Christiani DC, Wei Q. Genetic variants in DDO and PEX5L in peroxisome-related pathways predict non-small cell lung cancer survival. Mol Carcinog 2022; 61:619-628. [PMID: 35502931 DOI: 10.1002/mc.23400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 01/14/2023]
Abstract
Peroxisomes play a role in lipid metabolism and regulation of reactive oxygen species, but its role in development and progression of non-small cell lung cancer (NSCLC) is not well understood. Here, we investigated the associations between 9708 single-nucleotide polymorphisms (SNPs) in 113 genes in the peroxisome-related pathways and survival of NSCLC patients from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO) and the Harvard Lung Cancer Susceptibility (HLCS) study. In 1185 NSCLC patients from the PLCO trial, we found that 213 SNPs were significantly associated with NSCLC overall survival (OS) (p ≤ 0.05, Bayesian false discovery probability [BFDP] ≤ 0.80), of which eight SNPs were validated in the HLCS data set. In a multivariate Cox proportional hazards regression model, two independent SNPs (rs9384742 DDO and rs9825224 PEX5L) were significantly associated with NSCLC survival (hazards ratios [HR] of 1.17 with 95% CI [confidence interval] of 1.06-1.28 and 0.86 with 95% CI of 0.77-0.96, respectively). Patients with one or two protective genotypes had a significantly higher OS (HR: 0.787 [95% CI: 0.620-0.998] and 0.691 [95% CI: 0.543-0.879], respectively). Further expression quantitative trait loci analysis using whole blood and lung tissue showed that the minor allele of rs9384742 DDO was significantly associated with decreased messenger RNA (mRNA) expression levels and that DDO expression was also decreased in NSCLC tumor tissue. Additionally, high PEX5L expression levels were significantly associated with lower survival of NSCLC. Our data suggest that variants in these peroxisome-related genes may influence gene regulation and are potential predictors of NSCLC OS, once validated by additional studies.
Collapse
Affiliation(s)
- Allan S Chen
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Yufeng Wu
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Edward F Patz
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA.,Departments of Radiology, Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Carolyn Glass
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA.,Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Li Su
- Departments of Environmental Health and Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Mulong Du
- Departments of Environmental Health and Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - David C Christiani
- Departments of Environmental Health and Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA.,Duke Global Health Institute, Duke University, Durham, North Carolina, USA
| |
Collapse
|
15
|
Drug resistance of targeted therapy for advanced non-small cell lung cancer harbored EGFR mutation: from mechanism analysis to clinical strategy. J Cancer Res Clin Oncol 2021; 147:3653-3664. [PMID: 34661758 DOI: 10.1007/s00432-021-03828-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/05/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE Non-small cell lung cancer (NSCLC) accounts for about 85% in all cases of lung cancer. In recent years, molecular targeting drugs for NSCLC have been developed rapidly. The epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) have changed the paradigm of cancer therapy from empirical cytotoxic chemotherapy to molecular-targeted cancer therapy. Currently, there are three generations of EGFR-TKIs, all of which have achieved good efficacy in clinical therapy. However, most patients developed drug resistance after 6-13 months EGFR-TKIs treatment. Therefore, a comprehensive understanding of EGFR-TKIs resistance mechanisms is of vital importance for clinical management of NSCLC. METHODS Relevant data and information about the topic were obtained by searching PubMed (Medline), Web of Science and Google Scholar using the subject headings, such as "NSCLC", "EGFR-TKIs resistance", "EGFR mutations", "human epidermal growth factor receptor-2 (HER2/erbB-2)", "hepatocyte growth factor (HGF)", "vascular endothelial growth factor (VEGF)", "insulin-like growth factor 1 (IGF-1)", "epithelial-mesenchymal transition (EMT)", "phosphatase and tensin homolog (PTEN)", "RAS mutation", "BRAF mutation", "signal transducer and activator of transcription 3 (STAT3)", and "tumor microenvironment", etc. RESULTS: The mechanisms for EGFR-TKIs resistance include EGFR mutations, upregulation of HER2, HGF/c-MET, VEGF IGF1, EMT and STAT3 pathways, mutations of PTEN, RAS and BRAF genes, and activation of other by-pass pathways. These mechanisms are interconnected and can be potential targets for the treatment of NSCLC. CONCLUSION In this review, we discuss the mechanisms of EGFR-TKIs drug resistance and the clinical strategies to overcome drug resistance from the perspective of EGFR-TKIs combined treatment.
Collapse
|
16
|
Wu S, Luo M, To KKW, Zhang J, Su C, Zhang H, An S, Wang F, Chen D, Fu L. Intercellular transfer of exosomal wild type EGFR triggers osimertinib resistance in non-small cell lung cancer. Mol Cancer 2021; 20:17. [PMID: 33461557 PMCID: PMC7812728 DOI: 10.1186/s12943-021-01307-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR)-mutated lung cancer constitutes a major subgroup of non-small cell lung cancer (NSCLC) and osimertinib is administrated as first-line treatment. However, most patients with osimertinib treatment eventually relapse within one year. The underlying mechanisms of osimertinib resistance remain largely unexplored. METHODS Exosomes isolation was performed by differential centrifugation. Co-culture assays were conducted to explore the alteration of drug sensitivity by cell viability and apoptosis assays. Immunofluorescence and flow cytometry were performed to visualize the formation or absorption of exosomes. Exosomes secretion was measured by Nanoparticle Tracking Analysis or ELISA. The xenograft tumor model in mice was established to evaluate the effect of exosomes on osimertinib sensitivity in vivo. RESULTS Intercellular transfer of exosomal wild type EGFR protein confers osimertinib resistance to EGFR-mutated sensitive cancer cells in vitro and in vivo. Co-culture of EGFR-mutated sensitive cells and EGFR-nonmutated resistant cells promoted osimertinib resistance phenotype in EGFR-mutated cancer cells, while depletion of exosomes from conditioned medium or blockade of exosomal EGFR by neutralizing antibody alleviated this phenotype. Mechanistically, osimertinib promoted the release of exosomes by upregulated a Rab GTPase (RAB17). Knockdown of RAB17 resulted in the decrease of exosomes secretion. Moreover, exosomes could be internalized by EGFR-mutated cancer cells via Clathrin-dependent endocytosis and then the encapsulated exosomal wild type EGFR protein activated downstream PI3K/AKT and MAPK signaling pathways and triggered osimertinib resistance. CONCLUSIONS Intercellular transfer of exosomal wild type EGFR promotes osimertinib resistance in NSCLC, which may represent a novel resistant mechanism of osimertinib and provide a proof of concept for targeting exosomes to prevent and reverse the osimertinib resistance.
Collapse
Affiliation(s)
- Shaocong Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Min Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Room 801N, Area 39, Lo Kwee-Seong Integrated Biomedical Sciences Building, Shatin, New Territories, Hong Kong, SAR, China
| | - Jianye Zhang
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Chaoyue Su
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hong Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Sainan An
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Da Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
17
|
Therapy-Induced Evolution of Human Lung Cancer Revealed by Single-Cell RNA Sequencing. Cell 2020; 182:1232-1251.e22. [PMID: 32822576 PMCID: PMC7484178 DOI: 10.1016/j.cell.2020.07.017] [Citation(s) in RCA: 377] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/04/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
Abstract
Lung cancer, the leading cause of cancer mortality, exhibits heterogeneity that enables adaptability, limits therapeutic success, and remains incompletely understood. Single-cell RNA sequencing (scRNA-seq) of metastatic lung cancer was performed using 49 clinical biopsies obtained from 30 patients before and during targeted therapy. Over 20,000 cancer and tumor microenvironment (TME) single-cell profiles exposed a rich and dynamic tumor ecosystem. scRNA-seq of cancer cells illuminated targetable oncogenes beyond those detected clinically. Cancer cells surviving therapy as residual disease (RD) expressed an alveolar-regenerative cell signature suggesting a therapy-induced primitive cell-state transition, whereas those present at on-therapy progressive disease (PD) upregulated kynurenine, plasminogen, and gap-junction pathways. Active T-lymphocytes and decreased macrophages were present at RD and immunosuppressive cell states characterized PD. Biological features revealed by scRNA-seq were biomarkers of clinical outcomes in independent cohorts. This study highlights how therapy-induced adaptation of the multi-cellular ecosystem of metastatic cancer shapes clinical outcomes. scRNA-seq is feasible in metastatic human NSCLCs and reveals a rich tumor ecosystem Individual tumors and cancer cells exhibit substantial molecular diversity Cancer and tumor microenvironment cells exhibit marked therapy-induced plasticity scRNA-seq of metastatic NSCLCs unveils new opportunities to improve clinical outcomes
Collapse
|
18
|
Muluk MB, Ubale AS, Dhumal ST, Rehman NNMA, Dixit PP, Kharat KK, Choudhari PB, Haval KP. Synthesis, anticancer and antimicrobial evaluation of new pyridyl and thiazolyl clubbed hydrazone scaffolds. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1692870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mahesh B. Muluk
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University SubCampus, Osmanabad, India
| | - Akash S. Ubale
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University SubCampus, Osmanabad, India
| | - Sambhaji T. Dhumal
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - Naziya N. M. A. Rehman
- Department of Microbiology, Dr. Babasaheb Ambedkar Marathwada University SubCampus, Osmanabad, India
| | - Prashant P. Dixit
- Department of Microbiology, Dr. Babasaheb Ambedkar Marathwada University SubCampus, Osmanabad, India
| | - Kiran K. Kharat
- Department of Biotechnology, Deogiri College, Aurangabad, India
| | - Prafulla B. Choudhari
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, India
| | - Kishan P. Haval
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University SubCampus, Osmanabad, India
| |
Collapse
|
19
|
Contribution of Epithelial Plasticity to Therapy Resistance. J Clin Med 2019; 8:jcm8050676. [PMID: 31091749 PMCID: PMC6571660 DOI: 10.3390/jcm8050676] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 02/06/2023] Open
Abstract
Therapy resistance is responsible for tumour recurrence and represents one of the major challenges in present oncology. Significant advances have been made in the understanding of the mechanisms underlying resistance to conventional and targeted therapies improving the clinical management of relapsed patients. Unfortunately, in too many cases, resistance reappears leading to a fatal outcome. The recent introduction of immunotherapy regimes has provided an unprecedented success in the treatment of specific cancer types; however, a good percentage of patients do not respond to immune-based treatments or ultimately become resistant. Cellular plasticity, cancer cell stemness and tumour heterogeneity have emerged as important determinants of treatment resistance. Epithelial-to-mesenchymal transition (EMT) is associated with resistance in many different cellular and preclinical models, although little evidence derives directly from clinical samples. The recognition of the presence in tumours of intermediate hybrid epithelial/mesenchymal states as the most likely manifestation of epithelial plasticity and their potential link to stemness and tumour heterogeneity, provide new clues to understanding resistance and could be exploited in the search for anti-resistance strategies. Here, recent evidence linking EMT/epithelial plasticity to resistance against conventional, targeted and immune therapy are summarized. In addition, future perspectives for related clinical approaches are also discussed.
Collapse
|
20
|
Lung Cancer Radiogenomics: The Increasing Value of Imaging in Personalized Management of Lung Cancer Patients. J Thorac Imaging 2018; 33:17-25. [PMID: 29252899 DOI: 10.1097/rti.0000000000000312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Radiogenomics provide a large-scale data analytical framework that aims to understand the broad multiscale relationships between the complex information encoded in medical images (including computational, quantitative, and semantic image features) and their underlying clinical, therapeutic, and biological associations. As such it is a powerful and increasingly important tool for both clinicians and researchers involved in the imaging, evaluation, understanding, and management of lung cancers. Herein we provide an overview of the growing field of lung cancer radiogenomics and its applications.
Collapse
|
21
|
Wang F, Zhang X, Zhong X, Zhang M, Guo M, Yang L, Li Y, Zhao J, Yu S. Effect of miR-483-5p on apoptosis of lung cancer cells through targeting of RBM5. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:3147-3156. [PMID: 31938444 PMCID: PMC6958086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/11/2018] [Indexed: 06/10/2023]
Abstract
RBM5 has been reported to be a candidate tumor suppressor gene which plays an important role in the induction of apoptosis. In this study, we investigated the effect of miR-483-5p on apoptosis of lung cancer cells and the underlying mechanism. We found that the expression of miR-483-5p mRNA was significantly up-regulated in lung cancer compared with adjacent para-cancerous tissues by using real-time PCR. Silencing miR-483-5p promoted A549 cell apoptosis and enhanced caspase-3 activity by flow cytometry with annexin V-FITC/PI staining and caspase-3 activity report kit. Western blotting demonstrated that miR-483-5p mimicked down-regulated RBM5 protein expression and miR-483-5p inhibitor up-regulated RBM5 protein expression. With additional bioinformatics analysis, we confirmed that RBM5 is a target gene of miR-483-5p and is favored for treating NSCLC. The immunohistochemical pattern of RBM5 could be used to predictoutcome for NSCLC. In conclusion, our results support that RBM5 expression can be regulated by miR-483-5p which is a prognostic marker for NSCLC patients. miR-483-5p inhibitor plays a role in lung cancer through targeting RBM5 to induce apoptosis.
Collapse
Affiliation(s)
- Fei Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| | - Xingbo Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| | - Xin Zhong
- Department of Pathophysiology, Harbin Medical UniversityHarbin, China
| | - Maomao Zhang
- Key Laboratory of Myocardial Ischemia, Department of Cardiology, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| | - Mian Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| | - Lei Yang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| | - Yi Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| | - Jiaying Zhao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| | - Shan Yu
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| |
Collapse
|
22
|
Altıntop MD, Sever B, Akalın Çiftçi G, Özdemir A. Design, Synthesis, and Evaluation of a New Series of Thiazole-Based Anticancer Agents as Potent Akt Inhibitors. Molecules 2018; 23:molecules23061318. [PMID: 29857484 PMCID: PMC6100633 DOI: 10.3390/molecules23061318] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/20/2022] Open
Abstract
In an attempt to develop potent anticancer agents targeting Akt, new thiazole derivatives (1⁻10) were synthesized and investigated for their cytotoxic effects on A549 human lung adenocarcinoma, C6 rat glioma, and NIH/3T3 (healthy) mouse embryonic fibroblast cell lines. The most potent compounds were also investigated for their effects on apoptosis and Akt pathway. The most promising anticancer agent was found to be 2-[2-((4-(4-cyanophenoxy)phenyl)methylene)hydrazinyl]-4-(4-cyanophenyl)thiazole (6), due to its selective inhibitory effects on A549 and C6 cells with IC50 values of 12.0 ± 1.73 µg/mL and 3.83 ± 0.76 µg/mL, respectively. Furthermore, compound 6 increased early and late apoptotic cell population (32.8%) in C6 cell line more than cisplatin (28.8%) and significantly inhibited the Akt enzyme. The molecular docking study was performed to predict the possible binding modes of compounds A, 6, and 8 inside the active site of Akt (PDB code: 4EJN). Molecular docking simulations were found to be in accordance with in vitro studies and, hence, supported the biological activity. A computational study for the prediction of absorption, distribution, metabolism and excretion (ADME) properties of all compounds was also performed. On the basis of Lipinski's rule of five, the compounds were expected to be potential orally bioavailable agents.
Collapse
Affiliation(s)
- Mehlika Dilek Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Gülşen Akalın Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Ahmet Özdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| |
Collapse
|