1
|
Priest JM, Nichols EL, Smock RG, Hopkins JB, Mendoza JL, Meijers R, Shen K, Özkan E. Structural insights into the formation of repulsive netrin guidance complexes. SCIENCE ADVANCES 2024; 10:eadj8083. [PMID: 38363837 PMCID: PMC10871540 DOI: 10.1126/sciadv.adj8083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/17/2024] [Indexed: 02/18/2024]
Abstract
Netrins dictate attractive and repulsive responses during axon growth and cell migration, where the presence of the receptor Uncoordinated-5 (UNC-5) on target cells results in repulsion. Here, we showed that UNC-5 is a heparin-binding protein, determined its structure bound to a heparin fragment, and could modulate UNC-5-heparin affinity using a directed evolution platform or structure-based rational design. We demonstrated that UNC-5 and UNC-6/netrin form a large, stable, and rigid complex in the presence of heparin, and heparin and UNC-5 exclude the attractive UNC-40/DCC receptor from binding to UNC-6/netrin to a large extent. Caenorhabditis elegans with a heparin-binding-deficient UNC-5 fail to establish proper gonad morphology due to abrogated cell migration, which relies on repulsive UNC-5 signaling in response to UNC-6. Combining UNC-5 mutations targeting heparin and UNC-6/netrin contacts results in complete cell migration and axon guidance defects. Our findings establish repulsive netrin responses to be mediated through a glycosaminoglycan-regulated macromolecular complex.
Collapse
Affiliation(s)
- Jessica M. Priest
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
- Institute for Neuroscience, University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Ev L. Nichols
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Robert G. Smock
- European Molecular Biology Laboratory (EMBL), Hamburg Site, c/o DESY, 22603 Hamburg, Germany
| | - Jesse B. Hopkins
- The Biophysics Collaborative Access Team (BioCAT), Argonne National Laboratory, Illinois Institute of Technology, Chicago, IL 60616, USA
- Department of Physics, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Juan L. Mendoza
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Rob Meijers
- European Molecular Biology Laboratory (EMBL), Hamburg Site, c/o DESY, 22603 Hamburg, Germany
- Institute for Protein Innovation (IPI), Boston, MA 02115, USA
| | - Kang Shen
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
- Institute for Neuroscience, University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Triantopoulou N, Vidaki M. Local mRNA translation and cytoskeletal reorganization: Mechanisms that tune neuronal responses. Front Mol Neurosci 2022; 15:949096. [PMID: 35979146 PMCID: PMC9376447 DOI: 10.3389/fnmol.2022.949096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/07/2022] [Indexed: 12/31/2022] Open
Abstract
Neurons are highly polarized cells with significantly long axonal and dendritic extensions that can reach distances up to hundreds of centimeters away from the cell bodies in higher vertebrates. Their successful formation, maintenance, and proper function highly depend on the coordination of intricate molecular networks that allow axons and dendrites to quickly process information, and respond to a continuous and diverse cascade of environmental stimuli, often without enough time for communication with the soma. Two seemingly unrelated processes, essential for these rapid responses, and thus neuronal homeostasis and plasticity, are local mRNA translation and cytoskeletal reorganization. The axonal cytoskeleton is characterized by high stability and great plasticity; two contradictory attributes that emerge from the powerful cytoskeletal rearrangement dynamics. Cytoskeletal reorganization is crucial during nervous system development and in adulthood, ensuring the establishment of proper neuronal shape and polarity, as well as regulating intracellular transport and synaptic functions. Local mRNA translation is another mechanism with a well-established role in the developing and adult nervous system. It is pivotal for axonal guidance and arborization, synaptic formation, and function and seems to be a key player in processes activated after neuronal damage. Perturbations in the regulatory pathways of local translation and cytoskeletal reorganization contribute to various pathologies with diverse clinical manifestations, ranging from intellectual disabilities (ID) to autism spectrum disorders (ASD) and schizophrenia (SCZ). Despite the fact that both processes are essential for the orchestration of pathways critical for proper axonal and dendritic function, the interplay between them remains elusive. Here we review our current knowledge on the molecular mechanisms and specific interaction networks that regulate and potentially coordinate these interconnected processes.
Collapse
Affiliation(s)
- Nikoletta Triantopoulou
- Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
| | - Marina Vidaki
- Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
- *Correspondence: Marina Vidaki,
| |
Collapse
|