1
|
Xu X, Hu M, Ying R, Zou J, Du Z, Lin L, Lan T, Wang H, Hou Y, Cheng H, Zhou R. RAB37-mediated autophagy guards ovarian homeostasis and function. Autophagy 2024:1-14. [PMID: 39113565 DOI: 10.1080/15548627.2024.2389568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/26/2024] [Accepted: 08/04/2024] [Indexed: 08/30/2024] Open
Abstract
Loss of ovarian homeostasis is associated with ovary dysfunction and female diseases; however, the underlying mechanisms responsible for the establishment of homeostasis and its function in the ovary have not been fully elucidated. Here, we showed that conditional knockout of Rab37 in oocytes impaired macroautophagy/autophagy proficiency in the ovary and interfered with follicular homeostasis and ovary development in mice. Flunarizine treatment upregulated autophagy, thus rescuing the impairment of follicular homeostasis and ovarian dysfunction in rab37 knockout mice by reprogramming of homeostasis. Notably, both the E2F1 and EGR2 transcription factors synergistically activated Rab37 transcription and promoted autophagy. Thus, RAB37-mediated autophagy ensures ovary function by maintaining ovarian homeostasis.Abbreviations: AMH: anti-Mullerian hormone; ATG: autophagy related; BECN1: beclin 1; cKO: conditional knockout; Cre: cyclization recombination enzyme; dpp: days postpartum; E2: estradiol; E2F1: E2F transcription factor 1; EBF1: EBF transcription factor 1; EGR2: early growth response 2; FSH: follicle stimulating hormone; LH: luteinizing hormone; mpp: months postpartum; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; RAB37: RAB37, member RAS oncogene family; SQSTM1: sequestosome 1; TFEB: transcription factor EB; Zp3: zona pellucida glycoprotein 3.
Collapse
Affiliation(s)
- Xu Xu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Mengxin Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Ruhong Ying
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Juan Zou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Zhuoyue Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Lan Lin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Tian Lan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Haoyu Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Yu Hou
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Orlova SY, Ruzina MN, Emelianova OR, Sergeev AA, Chikurova EA, Orlov AM, Mugue NS. In Search of a Target Gene for a Desirable Phenotype in Aquaculture: Genome Editing of Cyprinidae and Salmonidae Species. Genes (Basel) 2024; 15:726. [PMID: 38927661 PMCID: PMC11202958 DOI: 10.3390/genes15060726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Aquaculture supplies the world food market with a significant amount of valuable protein. Highly productive aquaculture fishes can be derived by utilizing genome-editing methods, and the main problem is to choose a target gene to obtain the desirable phenotype. This paper presents a review of the studies of genome editing for genes controlling body development, growth, pigmentation and sex determination in five key aquaculture Salmonidae and Cyprinidae species, such as rainbow trout (Onchorhynchus mykiss), Atlantic salmon (Salmo salar), common carp (Cyprinus carpio), goldfish (Carassius auratus), Gibel carp (Carassius gibelio) and the model fish zebrafish (Danio rerio). Among the genes studied, the most applicable for aquaculture are mstnba, pomc, and acvr2, the knockout of which leads to enhanced muscle growth; runx2b, mutants of which do not form bones in myoseptae; lepr, whose lack of function makes fish fast-growing; fads2, Δ6abc/5Mt, and Δ6bcMt, affecting the composition of fatty acids in fish meat; dnd mettl3, and wnt4a, mutants of which are sterile; and disease-susceptibility genes prmt7, gab3, gcJAM-A, and cxcr3.2. Schemes for obtaining common carp populations consisting of only large females are promising for use in aquaculture. The immobilized and uncolored zebrafish line is of interest for laboratory use.
Collapse
Affiliation(s)
- Svetlana Yu. Orlova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Maria N. Ruzina
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Olga R. Emelianova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
- Department of Biological Evolution, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alexey A. Sergeev
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Evgeniya A. Chikurova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Alexei M. Orlov
- Laboratory of Oceanic Ichthyofauna, Shirshov Institute of Oceanology, Russian Academy of Sciences, 117218 Moscow, Russia
- Laboratory of Behavior of Lower Vertebrates, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia
- Department of Ichthyology, Dagestan State University, 367000 Makhachkala, Russia
| | - Nikolai S. Mugue
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
- Laboratory of Genome Evolution and Speciation, Institute of Developmental Biology Russian Academy of Sciences, 117808 Moscow, Russia
| |
Collapse
|
3
|
Hong Q, Fan M, Cai R, Shi W, Xie F, Chen Y, Li C. SOX4 regulates proliferation and apoptosis of human ovarian granulosa-like tumor cell line KGN through the Hippo pathway. Biochem Biophys Res Commun 2024; 705:149738. [PMID: 38447391 DOI: 10.1016/j.bbrc.2024.149738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
The proliferation and apoptosis of ovarian granulosa cells are important for folliculogenesis. As a transcription factor, SRY-box transcription factor 4 (SOX4) has important roles in regulating cellular proliferation and apoptosis. Nonetheless, the regulatory mechanisms of SOX4 on proliferation and apoptosis of granulosa cells remain elusive. Therefore, a stably overexpressed SOX4 ovarian granulosa cell line KGN was generated by lentivirus encapsulation. We observed that overexpression of SOX4 inhibits apoptosis, promotes proliferation and migration of KGN cells. Comparative analysis of the transcriptome revealed 868 upregulated and 696 downregulated DEGs in LV-SOX4 in comparison with LV-CON KGN cell lines. Afterward, further assessments were performed to explore the possible functions about these DEGs. The data showed their involvement in many biological processes, particularly the Hippo signaling pathway. Moreover, the expression levels of YAP1, WWTR1, WTIP, DLG3, CCN2, and AMOT, which were associated with the Hippo signaling pathway, were further validated by qRT-PCR. In addition, the protein expression levels of YAP1 were markedly elevated, while p-YAP1 were notably reduced after overexpression of SOX4 in KGN cells. Thus, these results suggested that SOX4 regulates apoptosis, proliferation and migration of KGN cells, at least partly, through activation of the Hippo signaling pathway, which might be implicated in mammalian follicle development.
Collapse
Affiliation(s)
- Qiang Hong
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Mengmeng Fan
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Rui Cai
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Wenhui Shi
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Fenfen Xie
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yuanhua Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Cong Li
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
4
|
Li C, Cai R, Shi W, Zhang H, Liu Z, Xie F, Chen Y, Hong Q. Comparative transcriptome analysis of ovaries and testes reveals sex-biased genes and pathways in zebrafish. Gene 2024; 901:148176. [PMID: 38242380 DOI: 10.1016/j.gene.2024.148176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/07/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Zebrafish (Danio rerio) is a widely recognized and extensively studied model organism in scientific research. The regulatory mechanism of gonadal development and differentiation of this species has aroused considerable attention. Nonetheless, the major sex-biased genes and pathways associated with gonadal development remain elusive. Therefore, to comprehend this intricate process, gonadal transcriptome sequencing was carried out to identify differentially expressed genes (DEGs) between the testes and ovaries of adult zebrafish. The preliminary assessment yielded a total of 23,529,272 and 23,521,368 clean reads from the cDNA libraries of ovaries and testes. Afterward, a comparative analysis of the transcriptome revealed 3,604 upregulated and 11,371 downregulated DEGs in the ovaries compared to the testes. Of these genes, 428 were exclusively expressed in females, while 3,516 were exclusively expressed in males. Additionally, further assessments were conducted to explore the functions associated with these DEGs in various biological processes. The data revealed their involvement in sex-biased pathways, such as progesterone-mediated oocyte maturation, oocyte meiosis, cytokine-cytokine receptor interaction, and cardiac muscle contraction. Finally, the expression levels of 14 sex-biased DEGs (cdc20, ccnb1, ypel3, chn1, bmp15, rspo1, tnfsf10, egfra, acta2, cox8a, gsdf, dmrt1, star, and cyp17a1) associated with the enriched pathways were subjected to further validation through qRT-PCR. The data acquired from these investigations offer valuable resources to support further exploration of the mechanisms governing sexual dimorphism and gonadal development in zebrafish.
Collapse
Affiliation(s)
- Cong Li
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Rui Cai
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Wenhui Shi
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Hao Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Zhuang Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Fenfen Xie
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Yuanhua Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Qiang Hong
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
5
|
Guo L, Malara D, Battaglia P, Waiho K, Davis DA, Deng Y, Shen Z, Rao K. Turnovers of Sex-Determining Mutation in the Golden Pompano and Related Species Provide Insights into Microevolution of Undifferentiated Sex Chromosome. Genome Biol Evol 2024; 16:evae037. [PMID: 38408866 PMCID: PMC10919887 DOI: 10.1093/gbe/evae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/28/2024] Open
Abstract
The suppression of recombination is considered a hallmark of sex chromosome evolution. However, previous research has identified undifferentiated sex chromosomes and sex determination by single SNP in the greater amberjack (Seriola dumerili). We observed the same phenomena in the golden pompano (Trachinotus ovatus) of the same family Carangidae and discovered a different sex-determining SNP within the same gene Hsd17b1. We propose an evolutionary model elucidating the turnover of sex-determining mutations by highlighting the contrasting dynamics between purifying selection, responsible for maintaining W-linked Hsd17b1, and neutral evolution, which drives Z-linked Hsd17b1. Additionally, sporadic loss-of-function mutations in W-linked Hsd17b1 contribute to the conversion of W chromosomes into Z chromosomes. This model was directly supported by simulations, closely related species, and indirectly by zebrafish mutants. These findings shed new light on the early stages of sex chromosome evolution.
Collapse
Affiliation(s)
- Liang Guo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan Province 410081, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province 510300, China
| | - Danilo Malara
- Stazione Zoologica Anton Dohrn, Integrated Marine Ecology Department, CRIMAC, Calabria Marine Centre, Amendolara 87071, Italy
| | - Pietro Battaglia
- Integrated Marine Ecology Department, Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Messina 98168, Italy
| | - Khor Waiho
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21300, Malaysia
- Centre for Chemical Biology, Universiti Sains Malaysia, Minden 11900, Malaysia
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
| | - D Allen Davis
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36830, USA
| | - Yu Deng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan Province 410081, China
| | - Zhongyuan Shen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan Province 410081, China
| | - Ke Rao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan Province 410081, China
| |
Collapse
|
6
|
Eldem V, Zararsız G, Erkan M. Global expression pattern of genes containing positively selected sites in European anchovy (Engraulis encrasicolus L.) may shed light on teleost reproduction. PLoS One 2023; 18:e0289940. [PMID: 37566603 PMCID: PMC10420382 DOI: 10.1371/journal.pone.0289940] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
European anchovy is a multiple-spawning and highly fecundate pelagic fish with high economic and ecological significance. Although fecundity is influenced by nutrition, temperature and weight of spawners, high reproductive capacity is related to molecular processes in the ovary. The ovary is an essential and complex reproductive organ composed of various somatic and germ cells, which interact to facilitate the development of the ovary and functional oocytes. Revealing the ovarian transcriptome profile of highly fecundate fishes provides insights into oocyte production in teleosts. Here we use a comprehensive tissue-specific RNA sequencing which yielded 102.3 billion clean bases to analyze the transcriptional profiles of the ovary compared with other organs (liver, kidney, ovary, testis, fin, cauda and gill) and juvenile tissues of European anchovy. We conducted a comparative transcriptome and positive selection analysis of seven teleost species with varying fecundity rates to identify genes potentially involved in oogenesis and oocyte development. Of the 2,272 single copies of orthologous genes found, up to 535 genes were under positive selection in European anchovy and these genes are associated with a wide spectrum of cellular and molecular functions, with enrichments such as RNA methylation and modification, ribosome biogenesis, DNA repair, cell cycle processing and peptide/amide biosynthesis. Of the 535 positively selected genes, 55 were upregulated, and 45 were downregulated in the ovary, most of which were related to RNA and DNA transferase, developmental transcription factors, protein kinases and replication factors. Overall, our analysis of the transcriptome level in the ovarian tissue of a teleost will provide further insights into molecular processes and deepen our genetic understanding of egg production in highly fecund fish.
Collapse
Affiliation(s)
- Vahap Eldem
- Faculty of Sciences, Department of Biology, Istanbul University, Istanbul, Turkey
| | - Gökmen Zararsız
- Department of Biostatistics, Erciyes University, Kayseri, Turkey
| | - Melike Erkan
- Faculty of Sciences, Department of Biology, Istanbul University, Istanbul, Turkey
| |
Collapse
|
7
|
Xu H, Mao X, Nie Z, Li Y. Oxr1a prevents the premature ovarian failure by regulating oxidative stress and mitochondrial function in zebrafish. Free Radic Biol Med 2023; 203:102-113. [PMID: 37031846 DOI: 10.1016/j.freeradbiomed.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/01/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
Premature ovarian failure (POF) is characterized as the ovarian dysfunction and defective oocyte development. In POF patients, ROS level is reported to be significantly higher than normal individuals. However, the involvement of oxidative stress in POF and the regulatory mechanisms underlying the antioxidative process in oocyte development remain largely unknown. Here, we discover that oxidation resistance 1a (Oxr1a), the ortholog of mammalian Oxr1, protects the oocytes of female zebrafish against oxidative stress and thus represses the POF phenotype. Oxr1a was widely expressed in oocytes at different developmental stages, of which the mRNA expression levels were significantly upregulated upon follicle activation and oocyte maturation. Oxr1a knockout exacerbated the POF phenotype, as evidenced by the decreased number and quality of oocytes. Moreover, the oocytes of oxr1a knockout zebrafish exhibited excessive ROS, increased mitochondrial DNA damage, reduced mitochondria, and abnormal morphology. Mechanistically, instead of decomposing ROS directly, Oxr1a participated in the process of oxidative stress through regulating the mRNA expression levels of the key antioxidant enzymes Cat and Sod1. Moreover, treatment with antioxidant N-Acetyl-l-cysteine attenuated the mitochondrial oxidative damage and improved the fertility of mutant females, indicating that Oxr1a may mediates the Sod1/Cat pathway to metabolize the intracellular ROS and avoid the mitochondrial oxidative damage, thus ensuring the normal development and maturation of oocytes. Taken together, these findings are useful for the elucidation of molecular mechanisms underlying the oxidative damage in oocytes and beneficial to the clinical therapeutics of POF.
Collapse
Affiliation(s)
- Hao Xu
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing, 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Xiaoyu Mao
- College of Language Intelligence, Sichuan International Studies University, Chongqing, 400031, China
| | - Zhentao Nie
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing, 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Yun Li
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing, 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
8
|
Lai F, Wang H, Zhao X, Yang K, Cai L, Hu M, Lin L, Xia X, Li W, Cheng H, Zhou R. RNF20 is required for male fertility through regulation of H2B ubiquitination in the Sertoli cells. Cell Biosci 2023; 13:71. [PMID: 37024990 PMCID: PMC10080854 DOI: 10.1186/s13578-023-01018-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Spermatogenesis depends on the supporting of the Sertoli cells and their communications with germ cells. However, the regulation of crosstalk between the Sertoli cells and germ cells remains unclear. RESULTS In this report, we used conditional knockout technology to generate the Sertoli cells-specific knockout of Rnf20 in mice. The Amh-Rnf20-/- male mice were infertile owing to spermatogenic failure that mimic the Sertoli cell-only syndrome (SCOS) in humans. Knockout of Rnf20 resulted in the H2BK120ub loss in the Sertoli cells and impaired the transcription elongation of the Cldn11, a gene encoding a component of tight junction. Notably, RNF20 deficiency disrupted the cell adhesion, caused disorganization of the seminiferous tubules, and led to the apoptotic cell death of both spermatogonia and spermatocytes in the seminiferous tubules. CONCLUSIONS This study describes a Rnf20 knockout mouse model that recapitulates the Sertoli cell-only syndrome in humans and demonstrates that RNF20 is required for male fertility through regulation of H2B ubiquitination in the Sertoli cells.
Collapse
Affiliation(s)
- Fengling Lai
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Haoyu Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Xinyue Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Kangning Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Le Cai
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Mengxin Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Lan Lin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Xizhong Xia
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Wei Li
- Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China
| | - Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China.
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
9
|
Zhang S, Fu Z, Xu Y, Zhao X, Sun M, Feng X. The masculinization steroid milieu caused by fluorene-9-bisphenol disrupts sex-typical courtship behavior in female zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114174. [PMID: 36228360 DOI: 10.1016/j.ecoenv.2022.114174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
In vertebrates, the behavior of congenital sex differences between males and females is highly dependent on steroid signals and hormonal milieu. The presence of endocrine disrupting chemicals (EDCs) in the environment generally plays a similar role to sex hormones, so its interference with aquatic organism population stability can not be ignored and is worth studying. Fluorene-9-bisphenol (BHPF) has been clarified as an endocrine disruptor on organisms by several studies but its mechanism in perturbation of courtship behavior of female zebrafish is not clear. Here, we proposed an automated multi-zebrafish tracking method quantifying the courtship process and reported that zebrafish females exposed to BHPF, are not receptive to males but rather court females, and lose normal ovarian function with an altered sex steroid milieu. Our results showed that BHPF damaged 17β-estradiol synthesis by down-regulation of sox3 and cyp19a1a, linking apoptosis with ovary development and female fecundity. The down-regulated expression of estrogen signaling through an estrogen receptor, esr2b, caused the induction of masculinization of female courtship behavior and sexual preference in zebrafish females after BHPF treatment. This process might be mediated by inhibiting the transcription of a neuropeptide B (npb) in the brain. Our study reveals that the estrogen signaling pathway may play an important role in classical courtship behavior and sexual preference of zebrafish. This study provided evidence that anti-estrogenic chemical exposure caused adverse effects on the regulation of the brain-gonad-estrogen axis of aquatic organisms, which should be of concern and highlighted the importance of controlling environmental contamination.
Collapse
Affiliation(s)
- Shuhui Zhang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education. Nankai University, Tianjin 300071, China
| | - Zhenhua Fu
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin 300071, China
| | - Yixin Xu
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education. Nankai University, Tianjin 300071, China
| | - Xin Zhao
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin 300071, China
| | - Mingzhu Sun
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin 300071, China.
| | - Xizeng Feng
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education. Nankai University, Tianjin 300071, China.
| |
Collapse
|
10
|
Li Y, Tang Y, Wang L, Li X, Deng L, Deng W, Zheng Y, Wang D, Wei L. Transcription factor Sox3 is required for oogenesis in the teleost fish Nile tilapia. Int J Biol Macromol 2022; 222:2639-2647. [DOI: 10.1016/j.ijbiomac.2022.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
11
|
Feng Y, Zhong ZW, Xu Y, Zhang ZY, Ao LL, Yang Z, Wang YL, Jiang YH. Characterization of the transcription factor Sox3 regulating the gonadal development of pearlscale angelfish (Centropyge vrolikii). FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1193-1207. [PMID: 35963922 DOI: 10.1007/s10695-022-01110-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
As a member of the Sox gene family, Sox3 plays a vital role in gonadal development and gametogenesis. Nevertheless, the exact expression pattern of this gene in fish is still unknown. Here, we identified the Sox3 gene of Centropyge vrolikii, namely, Cv-Sox3. The Cv-Sox3 mRNA expression in the ovary and testis was detected by reverse transcription-polymerase chain reaction (RT-PCR) analysis, and the mRNA expression level of Cv-Sox3 in the ovary in the resting stage was significantly higher than that in other tissues. The phylogenetic tree and alignment of multiple sequences were constructed to analyze the evolutionary relationships of Cv-Sox3. Cv-Sox3 was relatively conserved in the evolution of teleost fish, indicating the importance and similarity of its function. The in situ hybridization results demonstrate that Cv-Sox3 was present in the follicle cells and cytoplasm of oocytes in the ovary of different stages, and the positive signals occurred in germ cells of the testis. After interfering with Cv-Sox3, the growth rate of ovarian cells in culture became slow, and the expression of ovary-bias-related genes Cyp19a and Foxl2 significantly increased. Meanwhile, the expression of testis-bias-related genes Dmrt1, Sox9, Cyp11a, Amh, and Sox8 significantly decreased. These results suggest that Cv-Sox3 gene might be expressed in the germ cells of male and female gonads during gonadal development. This study provides a precise expression pattern of Cv-Sox3 and demonstrates that Cv-Sox3 might play a significant role in the reproductive regulation of C. vrolikii. In this study, Sox3 of C. vrolikii (Cv-Sox3) was cloned to understand the expression pattern in the gonadal development, which is expressed in germ cells, involved in the process of gonadal development. The results demonstrated that Cv-Sox3 may play a significant role in the reproductive regulation of C. vrolikii.
Collapse
Affiliation(s)
- Yan Feng
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, 361021, China
| | - Zhao-Wei Zhong
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, 361021, China
| | - Yan Xu
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, 361021, China
| | - Ze-Yu Zhang
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, Fujian, China
| | - Lu-Lu Ao
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, 361021, China
| | - Zhen Yang
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, 361021, China
| | - Yi-Lei Wang
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China.
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, 361021, China.
| | - Yong-Hua Jiang
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China.
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
12
|
Cao H, Gao H, Li Z, Peng G, Chen Y, Jin T, Zhu C, Ji H, Dong W. Comparative transcriptome provides insights into differentially expressed genes between testis and ovary of Onychostoma macrolepis in reproduction period. Gen Comp Endocrinol 2022; 326:114066. [PMID: 35644279 DOI: 10.1016/j.ygcen.2022.114066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 04/28/2022] [Accepted: 05/22/2022] [Indexed: 11/28/2022]
Abstract
The Onychostoma macrolepis (O. macrolepis) is a rare and endangered fishery species inhabiting the river of Qinling Mountains and some flowing freshwaters in China. The declining population of O. macrolepis caused by asynchrony of male and female development prompted us to focus on genetic regulation of its reproduction. In this study, high-throughput RNA-sequencing technology was applied to assemble and annotate the transcriptome of O. macrolepis testis and ovary. The results showed that a number of 338089335 (ovary:163216500, testis:174872835) raw sequences were obtained. After non-redundant analysis, a number of 207826065 (ovary:102334008, testis:105492057) high quality reads were obtained and predicted as unigenes, in which 201,038,682 unigenes were annotated with multiple databases. Taking the ovarian transcriptome as a control, comparative transcriptome analysis showed that 9918 differentially expressed genes (DEGs) up-regulated in the testis and 13,095 DEGs down-regulated. Many DEGs were involved with sex-related GO terms and KEGG pathways, such as oocyte maturation, gonadal development, steroid biosynthesis pathways, MAPK signaling pathway and Wnt signaling pathway. Finally, the expression patterns of 19 unigenes were validated by using quantitative real-time polymerase chain reaction (qRT-PCR). This study illustrates a potential molecular mechanism on the unsynchronized male and female development of the O. macrolepis during the reproduction period in June and provides a theoretical basis for future artificial reproduction.
Collapse
Affiliation(s)
- Heran Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Huihui Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhenpeng Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Guofan Peng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yining Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Tianqi Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Chao Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
13
|
Bogoch Y, Jamieson-Lucy A, Vejnar CE, Levy K, Giraldez AJ, Mullins MC, Elkouby YM. Stage Specific Transcriptomic Analysis and Database for Zebrafish Oogenesis. Front Cell Dev Biol 2022; 10:826892. [PMID: 35733854 PMCID: PMC9207522 DOI: 10.3389/fcell.2022.826892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/11/2022] [Indexed: 01/21/2023] Open
Abstract
Oogenesis produces functional eggs and is essential for fertility, embryonic development, and reproduction. The zebrafish ovary is an excellent model to study oogenesis in vertebrates, and recent studies have identified multiple regulators in oocyte development through forward genetic screens, as well as reverse genetics by CRISPR mutagenesis. However, many developmental steps in oogenesis, in zebrafish and other species, remain poorly understood, and their underlying mechanisms are unknown. Here, we take a genomic approach to systematically uncover biological activities throughout oogenesis. We performed transcriptomic analysis on five stages of oogenesis, from the onset of oocyte differentiation through Stage III, which precedes oocyte maturation. These transcriptomes revealed thousands of differentially expressed genes across stages of oogenesis. We analyzed trends of gene expression dynamics along oogenesis, as well as their expression in pair-wise comparisons between stages. We determined their functionally enriched terms, identifying uniquely characteristic biological activities in each stage. These data identified two prominent developmental phases in oocyte differentiation and traced the accumulation of maternally deposited embryonic regulator transcripts in the developing oocyte. Our analysis provides the first molecular description for oogenesis in zebrafish, which we deposit online as a resource for the community. Further, the presence of multiple gene paralogs in zebrafish, and the exclusive curation by many bioinformatic tools of the single paralogs present in humans, challenge zebrafish genomic analyses. We offer an approach for converting zebrafish gene name nomenclature to the human nomenclature for supporting genomic analyses generally in zebrafish. Altogether, our work provides a valuable resource as a first step to uncover oogenesis mechanisms and candidate regulators and track accumulating transcripts of maternal regulators of embryonic development.
Collapse
Affiliation(s)
- Yoel Bogoch
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Jerusalem, Israel
- Institute for Biomedical Research, Israel-Canada, Jerusalem, Israel
| | - Allison Jamieson-Lucy
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | | | - Karine Levy
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Jerusalem, Israel
- Institute for Biomedical Research, Israel-Canada, Jerusalem, Israel
| | | | - Mary C. Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Yaniv M. Elkouby
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Jerusalem, Israel
- Institute for Biomedical Research, Israel-Canada, Jerusalem, Israel
| |
Collapse
|
14
|
Pu Q, Ma Y, Zhong Y, Guo J, Gui L, Li M. Characterization and expression analysis of sox3 in medaka gonads. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2020.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Editing SOX Genes by CRISPR-Cas: Current Insights and Future Perspectives. Int J Mol Sci 2021; 22:ijms222111321. [PMID: 34768751 PMCID: PMC8583549 DOI: 10.3390/ijms222111321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/17/2021] [Accepted: 10/17/2021] [Indexed: 01/16/2023] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and its associated proteins (Cas) is an adaptive immune system in archaea and most bacteria. By repurposing these systems for use in eukaryote cells, a substantial revolution has arisen in the genome engineering field. In recent years, CRISPR-Cas technology was rapidly developed and different types of DNA or RNA sequence editors, gene activator or repressor, and epigenome modulators established. The versatility and feasibility of CRISPR-Cas technology has introduced this system as the most suitable tool for discovering and studying the mechanism of specific genes and also for generating appropriate cell and animal models. SOX genes play crucial roles in development processes and stemness. To elucidate the exact roles of SOX factors and their partners in tissue hemostasis and cell regeneration, generating appropriate in vitro and in vivo models is crucial. In line with these premises, CRISPR-Cas technology is a promising tool for studying different family members of SOX transcription factors. In this review, we aim to highlight the importance of CRISPR-Cas and summarize the applications of this novel, promising technology in studying and decoding the function of different members of the SOX gene family.
Collapse
|
16
|
Sex Determination and Differentiation in Teleost: Roles of Genetics, Environment, and Brain. BIOLOGY 2021; 10:biology10100973. [PMID: 34681072 PMCID: PMC8533387 DOI: 10.3390/biology10100973] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 01/19/2023]
Abstract
The fish reproductive system is a complex biological system. Nonetheless, reproductive organ development is conserved, which starts with sex determination and then sex differentiation. The sex of a teleost is determined and differentiated from bipotential primordium by genetics, environmental factors, or both. These two processes are species-specific. There are several prominent genes and environmental factors involved during sex determination and differentiation. At the cellular level, most of the sex-determining genes suppress the female pathway. For environmental factors, there are temperature, density, hypoxia, pH, and social interaction. Once the sexual fate is determined, sex differentiation takes over the gonadal developmental process. Environmental factors involve activation and suppression of various male and female pathways depending on the sexual fate. Alongside these factors, the role of the brain during sex determination and differentiation remains elusive. Nonetheless, GnRH III knockout has promoted a male sex-biased population, which shows brain involvement during sex determination. During sex differentiation, LH and FSH might not affect the gonadal differentiation, but are required for regulating sex differentiation. This review discusses the role of prominent genes, environmental factors, and the brain in sex determination and differentiation across a few teleost species.
Collapse
|
17
|
Lu J, Fang W, Huang J, Li S. The application of genome editing technology in fish. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:326-346. [PMID: 37073287 PMCID: PMC10077250 DOI: 10.1007/s42995-021-00091-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/11/2021] [Indexed: 05/03/2023]
Abstract
The advent and development of genome editing technology has opened up the possibility of directly targeting and modifying genomic sequences in the field of life sciences with rapid developments occurring in the last decade. As a powerful tool to decipher genome data at the molecular biology level, genome editing technology has made important contributions to elucidating many biological problems. Currently, the three most widely used genome editing technologies include: zinc finger nucleases (ZFN), transcription activator like effector nucleases (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR). Researchers are still striving to create simpler, more efficient, and accurate techniques, such as engineered base editors and new CRISPR/Cas systems, to improve editing efficiency and reduce off-target rate, as well as a near-PAMless SpCas9 variants to expand the scope of genome editing. As one of the important animal protein sources, fish has significant economic value in aquaculture. In addition, fish is indispensable for research as it serves as the evolutionary link between invertebrates and higher vertebrates. Consequently, genome editing technologies were applied extensively in various fish species for basic functional studies as well as applied research in aquaculture. In this review, we focus on the application of genome editing technologies in fish species detailing growth, gender, and pigmentation traits. In addition, we have focused on the construction of a zebrafish (Danio rerio) disease model and high-throughput screening of functional genes. Finally, we provide some of the future perspectives of this technology.
Collapse
Affiliation(s)
- Jianguo Lu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080 China
| | - Wenyu Fang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China
| | - Junrou Huang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China
| | - Shizhu Li
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China
| |
Collapse
|
18
|
Cheng Y, Lai F, Wang X, Shang D, Zou J, Luo M, Xia X, Cheng H, Zhou R. Srag Regulates Autophagy via Integrating into a Preexisting Autophagy Pathway in Testis. Mol Biol Evol 2021; 38:128-141. [PMID: 32722765 PMCID: PMC7782868 DOI: 10.1093/molbev/msaa195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spermatogenesis is an essential process for producing sperm cells. Reproductive strategy is successfully evolved for a species to adapt to a certain ecological system. However, roles of newly evolved genes in testis autophagy remain unclear. In this study, we found that a newly evolved gene srag (Sox9-regulated autophagy gene) plays an important role in promoting autophagy in testis in the lineage of the teleost Monopterus albus. The gene integrated into an interaction network through a two-way strategy of evolution, via Sox9-binding in its promoter and interaction with Becn1 in the coding region. Its promoter region evolved a cis element for binding of Sox9, a transcription factor for male sex determination. Both in vitro and in vivo analyses demonstrated that transcription factor Sox9 could bind to and activate the srag promoter. Its coding region acquired ability to interact with key autophagy initiation factor Becn1 via the conserved C-terminal, indicating that srag integrated into preexisting autophagy network. Moreover, we determined that Srag enhanced autophagy by interacting with Becn1. Notably, srag transgenic zebrafish revealed that Srag exerted the same function by enhancing autophagy through the Srag–Becn1 pathway. Thus, the new gene srag regulated autophagy in testis by integrated into preexisting autophagy network.
Collapse
Affiliation(s)
- Yibin Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fengling Lai
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xin Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Dantong Shang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Juan Zou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Majing Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xizhong Xia
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.,Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
19
|
|
20
|
Bian X, Xie Q, Zhou Y, Wu H, Cui J, Jia L, Suo L. Transcriptional changes of mouse ovary during follicle initial or cyclic recruitment mediated by extra hormone treatment. Life Sci 2021; 264:118654. [PMID: 33141043 DOI: 10.1016/j.lfs.2020.118654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 11/17/2022]
Abstract
AIMS Folliculogenesis contains gonadotropin-independent and -dependent stage. Disruption in any of this process would induce failure in retrieving capable oocytes during clinical treatment. However, there is still limited understanding of the molecular components specifically regulating this process. MATERIAL AND METHODS Ovaries of P3, P20 and exogenous gonadotropin-treated P22 mice were sampled and underwent RNA-seq to investigate the transcriptome variance during mouse folliculogenesis. KEY FINDINGS In our dataset, 1883 and 626 DEGs were captured for each stage respectively, which were further clustered into eight expression patterns. Pathway enrichment analysis identified distinct biological processes enriched in two stages, with the most prominent being the pathways related to metabolism, gene expression, cell cycle, immune system and DNA methylation. Transcriptional regulator inference yielded eight master transcription factors (i.e. Runx1, Stat3, Sox3, Pou5f1, Gata4, Foxl2, Cebpb, and Esr1) driving folliculogenesis. SIGNIFICANCE Our study revealed the temporal transcriptional reprogramming and gene expression dynamics during folliculogenesis mediated by extra hormone treatment, which could provide novel insights to controlled ovarian stimulation in future infertility treatment.
Collapse
Affiliation(s)
- Xuejiao Bian
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Qin Xie
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yuxiao Zhou
- Institute of Systems Biomedicine, SCSB, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haibo Wu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Junqi Cui
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Liling Jia
- Institute of Systems Biomedicine, SCSB, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lun Suo
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
21
|
Faught E, Santos HB, Vijayan MM. Loss of the glucocorticoid receptor causes accelerated ovarian ageing in zebrafish. Proc Biol Sci 2020; 287:20202190. [PMID: 33259761 DOI: 10.1098/rspb.2020.2190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Reproductive decline in mid-adult females is an established phenotype of the ageing process. Stress and the rise in glucocorticoids (GCs) accelerate reproductive ageing, but little is known about the mechanisms involved. During stress, GCs activate the glucocorticoid receptor (GR), a ubiquitously expressed, ligand-bound transcription factor, to elicit physiological changes for restoring homeostasis. Here, we tested the hypothesis that GC-GR signalling is essential for accelerating reproductive ageing. To test this, we used a ubiquitous GR knockout (GRKO) zebrafish, which is inherently hypercortisolemic, to delineate the role of high cortisol and GR signalling on reproductive ageing. The loss of GR led to premature ovarian ageing, including high frequency of typical and atypical follicular atresia in vitellogenic oocytes, yolk liquefaction and large inflammatory infiltrates. The reduction in oocyte quality was also associated with a decline in ovarian tert expression in the adult GRKO fish compared to the early adult GRKO and adult wild-type zebrafish. Accelerated ovarian ageing also impacted the progeny, including lower breeding success, fecundity, egg fertilization rate and delayed somitogenesis and embryo survival in the adult GRKO fish. We adduce that GR signalling is essential for prolonging the reproductive lifespan and improving the egg quality and embryo viability in zebrafish.
Collapse
Affiliation(s)
- Erin Faught
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Helio B Santos
- Laboratório de Processamento de Tecidos, Universidade Federal de São João Del Rei, Avenida Sebastião Gonçalves Coelho, 400 - Chanadour, CEP: 35.501-296 - Divinópolis/MG, Brazil
| | - Mathilakath M Vijayan
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
22
|
Wang X, Lai F, Xiong J, Zhu W, Yuan B, Cheng H, Zhou R. DNA methylation modification is associated with gonadal differentiation in Monopterus albus. Cell Biosci 2020; 10:129. [PMID: 33292595 PMCID: PMC7654577 DOI: 10.1186/s13578-020-00490-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
Background Both testis and ovary can be produced sequentially in an individual with the same genome when sex reversal occurs in the teleost Monopterus albus, and epigenetic modification is supposed to be involved in gonadal differentiation. However, DNA methylation regulation mechanism underlying the gonadal differentiation remains unclear. Results Here, we used liquid chromatography-electrospray ionization tandem mass spectrometry (LC–ESI–MS/MS) to simultaneously determine endogenous levels of both 5-methyl-2′-deoxycytidine (m5dC) and 5-hydroxymethyl-2′-deoxycytidine (hm5dC) during gonadal differentiation. Overall DNA methylation level was upregulated from ovary to testis via ovotestis. As a de novo methylase, dnmt3aa expression was also upregulated in the process. Notably, we determined transcription factor Foxa1 for dnmt3aa gene expression. Site-specific mutations and chromatin immunoprecipitation showed that Foxa1 can bind to and activate the dnmt3aa promoter. Furthermore, DNA methylation levels of key genes foxl2 (forkhead box L2) and cyp19a1a (cytochrome P450, family 19, subfamily A, polypeptide 1a) in regulation of female hormone synthesis were consistently upregulated during gonadal differentiation. Conclusions These data suggested that dynamic change of DNA methylation modification is associated with gonadal differentiation.
Collapse
Affiliation(s)
- Xin Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Fengling Lai
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jun Xiong
- Key Laboratory of Analytical Chemistry for Biology and Medicine of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Wang Zhu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bifeng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
23
|
Xu X, Hu M, Ying R, Zou J, Lin L, Cheng H, Zhou R. RAB37 multiple alleles, transcription activation and evolution in mammals. Int J Biol Sci 2020; 16:2964-2973. [PMID: 33061809 PMCID: PMC7545722 DOI: 10.7150/ijbs.47959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/23/2020] [Indexed: 11/29/2022] Open
Abstract
Detecting selection signatures in genomes that relates to transcription regulation has been challenges in genetic analysis. Here, we report a set of transcription factors EBF1, E2F1 and EGR2 for transcription activation of RAB37 promoter by a comparative analysis of promoter activities of RAB37 in humans, mice, and pigs. Two of the transcription factors bound to and co-regulated RAB37 promoter in each species. SNPs were further screened in pig RAB37 gene by population genomics in pig populations from both China and Europe. Three SNPs were identified in second CpG island upstream of core promoter of RAB37. These SNP variations led to at least 5 haplotypes, representing 5 multiple alleles of RAB37 in pig population. Distribution of these alleles in different genetic background of breeds showed a role of artificial selection for the variations of these multiple alleles. Of them, RAB37-c acquired the highest ability to activate gene expression in comparison with the other promoters, thus enhanced autophagy efficiently. These findings provide better understanding of transcription activation of RAB37 and artificial selection via RAB37 for autophagy regulation.
Collapse
Affiliation(s)
- Xu Xu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Mengxin Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ruhong Ying
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Juan Zou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lan Lin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
24
|
Cheng Y, Shang D, Luo M, Huang C, Lai F, Wang X, Xu X, Ying R, Wang L, Zhao Y, Zhang L, Long M, Cheng H, Zhou R. Whole genome-wide chromosome fusion and new gene birth in the Monopterus albus genome. Cell Biosci 2020; 10:67. [PMID: 32477490 PMCID: PMC7240998 DOI: 10.1186/s13578-020-00432-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022] Open
Abstract
Background Teleost fishes account for over half of extant vertebrate species. A core question in biology is how genomic changes drive phenotypic diversity that relates to the origin of teleost fishes. Results Here, we used comparative genomic analyses with chromosome assemblies of diverse lineages of vertebrates and reconstructed an ancestral vertebrate genome, which revealed phylogenomic trajectories in vertebrates. We found that the whole-genome-wide chromosome fission/fusions took place in the Monopterus albus lineage after the 3-round whole-genome duplication. Four times of genomic fission/fusions events resulted in the whole genome-wide chromosome fusions in the genomic history of the lineage. In addition, abundant recently evolved new genes for reproduction emerged in the Monopterus albus after separated from medaka. Notably, we described evolutionary trajectories of conserved blocks related to sex determination genes in teleosts. Conclusions These data pave the way for a better understanding of genomic evolution in extant teleosts.
Collapse
Affiliation(s)
- Yibin Cheng
- 1Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| | - Dantong Shang
- 1Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| | - Majing Luo
- 1Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| | - Chunhua Huang
- 1Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| | - Fengling Lai
- 1Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| | - Xin Wang
- 1Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| | - Xu Xu
- 1Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| | - Ruhong Ying
- 1Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| | - Lingling Wang
- 1Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| | - Yu Zhao
- 1Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| | - Li Zhang
- 2Department of Ecology and Evolution, University of Chicago, Chicago, 60637 USA
| | - Manyuan Long
- 2Department of Ecology and Evolution, University of Chicago, Chicago, 60637 USA
| | - Hanhua Cheng
- 1Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| | - Rongjia Zhou
- 1Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| |
Collapse
|
25
|
Li J, Ge W. Zebrafish as a model for studying ovarian development: Recent advances from targeted gene knockout studies. Mol Cell Endocrinol 2020; 507:110778. [PMID: 32142861 DOI: 10.1016/j.mce.2020.110778] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022]
Abstract
Ovarian development is a complex process controlled by precise coordination of multiple factors. The targeted gene knockout technique is a powerful tool to study the functions of these factors. The successful application of this technique in mice in the past three decades has significantly enhanced our understanding on the molecular mechanism of ovarian development. Recently, with the advent of genome editing techniques, targeted gene knockout research can be carried out in many species. Zebrafish has emerged as an excellent model system to study the control of ovarian development. Dozens of genes related to ovarian development have been knocked out in zebrafish in recent years. Much new information and perspectives on the molecular mechanism of ovarian development have been obtained from these mutant zebrafish. Some findings have challenged conventional views. Several genes have been identified for the first time in vertebrates to control ovarian development. Focusing on ovarian development, the purpose of this review is to briefly summarize recent findings using these gene knockout zebrafish models, and compare these findings with mammalian models. These established mutants and rapid development of gene knockout techniques have prompted zebrafish as an ideal animal model for studying ovarian development.
Collapse
Affiliation(s)
- Jianzhen Li
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, China, 730070.
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
26
|
He FX, Jiang DN, Huang YQ, Mustapha UF, Yang W, Cui XF, Tian CX, Chen HP, Shi HJ, Deng SP, Li GL, Zhu CH. Comparative transcriptome analysis of male and female gonads reveals sex-biased genes in spotted scat (Scatophagus argus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1963-1980. [PMID: 31399918 DOI: 10.1007/s10695-019-00693-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Scatophagus argus is a new emerging aquaculture fish in East and Southeast Asia. To date, research on reproductive development and regulation in S. argus is lacking. Additionally, genetic and genomic information about reproduction, such as gonadal transcriptome data, is also lacking. Herein, we report the first gonadal transcriptomes of S. argus and identify genes potentially involved in reproduction and gonadal development. A total of 136,561 unigenes were obtained by sequencing of testes (n = 3) and ovaries (n = 3) at stage III. Genes upregulated in males and females known to be involved in gonadal development and gametogenesis were identified, including male-biased dmrt1, amh, gsdf, wt1a, sox9b, and nanos2, and female-biased foxl2, gdf9, bmp15, sox3, zar1, and figla. Serum estradiol-17β and 11-ketotestosterone levels were biased in female and male fish, respectively. Sexual dimorphism of serum steroid hormone levels were interpreted after expression analysis of 20 steroidogenesis-related genes, including cyp19a1a and cyp11b2. This gonadal transcript dataset will help investigate functional genes related to reproduction in S. argus.
Collapse
Affiliation(s)
- Fei-Xiang He
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Dong-Neng Jiang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yuan-Qing Huang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Umar Farouk Mustapha
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Wei Yang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xue-Fan Cui
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chang-Xu Tian
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Hua-Pu Chen
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Hong-Juan Shi
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Si-Ping Deng
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Guang-Li Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chun-Hua Zhu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|