1
|
Li H, Liu P, Dong H, Dekker A, Harmsen MM, Guo H, Wang X, Sun S. Foot-and-mouth disease virus antigenic landscape and reduced immunogenicity elucidated in atomic detail. Nat Commun 2024; 15:8774. [PMID: 39389971 PMCID: PMC11467346 DOI: 10.1038/s41467-024-53027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
Unlike most other picornaviruses, foot-and-mouth disease (FMD) intact virions (146S) dissociate easily into small pentameric subunits (12S). This causes a dramatically decreased immunogenicity by a mechanism that remains elusive. Here, we present the high-resolution structures of 12S (3.2 Å) and its immune complex of a single-domain antibody (VHH) targeting the particle interior (3.2 Å), as well as two 146S-specific VHHs complexed to distinct sites on the 146S capsid surface (3.6 Å and 2.9 Å). The antigenic landscape of 146S is depicted using 13 known FMD virus-antibody complexes. Comparison of the immunogenicity of 146S and 12S in pigs, focusing on the resulting antigenic sites and incorporating structural analysis, reveals that dissociation of 146S leads to structural alteration and destruction of multiple epitopes, resulting in significant differences in antibody profiles/lineages induced by 12S and 146S. Furthermore, 146S generates higher synergistic neutralizing antibody titers compared to 12S, whereas both particles induce similar total FMD virus specific antibody titers. This study can guide the structure-based rational design of novel multivalent and broad-spectrum recombinant vaccines for protection against FMD.
Collapse
Grants
- 22JR5RA032, 23JRRA551 Natural Science Foundation of Gansu Province
- 22JR5RA032, 23JRRA551 Natural Science Foundation of Gansu Province
- 32072847,32072859, 32301127 National Natural Science Foundation of China (National Science Foundation of China)
- the National Key Research and Development Program of China (2021YFD1800303), Postdoctoral Science Foundation Funded Project (2023M733819, 23JRRA554), Lanzhou Talent Innovation and Entrepreneurship Project(2023-RC-3)
- the National Key Research and Development Program of China (2018YFA0900801), CAS (YSBR-010), the National Science Foundation Grants (12034006, 32325004 and T2394482), National Science Fund for Distinguished Young Scholar (No. 32325004), the NSFS Innovative Research Group (No. 81921005)
- the Ministry of Agriculture, Nature and Food Quality, the Netherlands (project WOT-01-002-034)
Collapse
Affiliation(s)
- Haozhou Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pan Liu
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hu Dong
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Aldo Dekker
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
| | - Michiel M Harmsen
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | - Xiangxi Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
2
|
Clarke JD, Duyvesteyn HM, Perez-Martin E, Latišenko U, Porta C, Humphreys KV, Hay AL, Ren J, Fry EE, van den Born E, Charleston B, Bonnet-Di Placido M, Owens RJ, Stuart DI, Hammond JA. A broadly reactive ultralong bovine antibody that can determine the integrity of foot-and-mouth disease virus capsids. J Gen Virol 2024; 105:002032. [PMID: 39422666 PMCID: PMC11488517 DOI: 10.1099/jgv.0.002032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Foot-and-mouth disease vaccination using inactivated virus is suboptimal, as the icosahedral viral capsids often disassemble into antigenically distinct pentameric units during long-term storage, or exposure to elevated temperature or lowered pH, and thus raise a response that is no longer protective. Furthermore, as foot-and-mouth disease virus (FMDV)'s seven serotypes are antigenically diverse, cross-protection from a single serotype vaccine is limited, and most existing mouse and bovine antibodies and camelid single-domain heavy chain-only antibodies are serotype-specific. For quality control purposes, there is a real need for pan-serotype antibodies that clearly distinguish between pentamer (12S) and protective intact FMDV capsid. To date, few cross-serotype bovine-derived antibodies have been reported in the literature. We identify a bovine antibody with an ultralong CDR-H3, Ab117, whose structural analysis reveals that it binds to a deep, hydrophobic pocket on the interior surface of the capsid via the CDR-H3. Main-chain and hydrophobic interactions provide broad serotype specificity. ELISA analysis confirms that Ab117 is a novel pan-serotype and conformational epitope-specific 12S reagent, suitable for assessing capsid integrity.
Collapse
Affiliation(s)
- John D. Clarke
- The Division of Structural Biology, Nuffield Department of Medicine, The Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- The Pirbright Institute, Woking, GU24 0NF, UK
- Diamond Light Source, Didcot, OX11 0DE, UK
| | - Helen M.E. Duyvesteyn
- The Division of Structural Biology, Nuffield Department of Medicine, The Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | | | | | - Claudine Porta
- The Division of Structural Biology, Nuffield Department of Medicine, The Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | | | | | - Jingshan Ren
- The Division of Structural Biology, Nuffield Department of Medicine, The Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Elizabeth E. Fry
- The Division of Structural Biology, Nuffield Department of Medicine, The Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | | | | | | | - Raymond J. Owens
- The Division of Structural Biology, Nuffield Department of Medicine, The Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Structural Biology, The Rosalind Franklin Institute, Didcot, OX11 0QX, UK
| | - David I. Stuart
- The Division of Structural Biology, Nuffield Department of Medicine, The Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Diamond Light Source, Didcot, OX11 0DE, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, OX3 7BN, UK
| | | |
Collapse
|
3
|
Li F, Wu S, Lv L, Huang S, Zhang Z, Zerang Z, Li P, Cao Y, Bao H, Sun P, Bai X, He Y, Fu Y, Yuan H, Ma X, Zhao Z, Zhang J, Wang J, Wang T, Li D, Zhang Q, He J, Liu Z, Lu Z, Lei D, Li K. Discovery, recognized antigenic structures, and evolution of cross-serotype broadly neutralizing antibodies from porcine B-cell repertoires against foot-and-mouth disease virus. PLoS Pathog 2024; 20:e1012623. [PMID: 39405339 PMCID: PMC11508087 DOI: 10.1371/journal.ppat.1012623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/25/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
It is a great challenge to isolate the broadly neutralizing antibodies (bnAbs) against foot-and-mouth disease virus (FMDV) due to its existence as seven distinct serotypes without cross-protection. Here, by vaccination of pig with FMDV serotypes O and A whole virus antigens, we obtained 10 bnAbs against serotypes O, A and/or Asia1 by dissecting 216 common clonotypes of two serotypes O and A specific porcine B-cell receptor (BCR) gene repertoires containing total 12720 B cell clones, indicating the induction of cross-serotype bnAbs after sequential vaccination with serotypes O and A antigens. The majority of porcine bnAbs (9/10) were derived from terminally differentiated B cells of different clonal lineages, which convergently targeted the conserved "RGDL" motif on structural protein VP1 of FMDV by mimicking receptor recognition to inhibit viral attachment to cells. Cryo-EM complex structures revealed that the other bnAb pOA-2 specifically targets a novel inter-pentamer antigen structure surrounding the viral three-fold axis, with a highly conserved determinant at residue 68 on VP2. This unique binding pattern enabled cross-serotype neutralization by destabilizing the viral particle. The evolutionary analysis of pOA-2 demonstrated its origin from an intermediate B-cell, emphasizing the crucial role of somatic hypermutations (SHMs) in balancing the breadth and potency of neutralization. However, excessive SHMs may deviate from the trajectory of broad neutralization. This study provides a strategy to uncover bnAbs against highly mutable pathogens and the cross-serotype antigenic structures to explore broadly protective FMDV vaccine.
Collapse
Affiliation(s)
- Fengjuan Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Shanquan Wu
- School of Physical Science and Technology, Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou, P. R. China
| | - Lv Lv
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Shulun Huang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Zelin Zhang
- School of Physical Science and Technology, Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou, P. R. China
| | - Zhaxi Zerang
- School of Physical Science and Technology, Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou, P. R. China
| | - Pinghua Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Yimei Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Huifang Bao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Pu Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Xingwen Bai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Yong He
- School of Pharmaceutical Sciences, Shandong University, Ji’nan, P. R. China
| | - Yuanfang Fu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Hong Yuan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Xueqing Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Zhixun Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Jing Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Jian Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Tao Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Dong Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Qiang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Jijun He
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Zaixin Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Zengjun Lu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Dongsheng Lei
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- School of Physical Science and Technology, Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou, P. R. China
| | - Kun Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| |
Collapse
|
4
|
Kashem MA, Sroga P, Salazar V, Amjad H, Hole K, Koziuk J, Yang M, Nfon C, Babiuk S. Development and Validation of Serotype-Specific Blocking ELISA for the Detection of Anti-FMDV O/A/Asia1/SAT2 Antibodies. Viruses 2024; 16:1438. [PMID: 39339914 PMCID: PMC11437413 DOI: 10.3390/v16091438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Foot-and-mouth disease (FMD) is one of the most infectious viral transboundary diseases of livestock, which causes devastating global economic losses. Different enzyme-linked immunosorbent assays (ELISAs) are used for sero-surveillance of the foot-and-mouth disease virus (FMDV). However, more sensitive, accurate, and convenient ELISAs are still required to detect antibodies against FMDV serotypes. The primary goal of this study was to establish serotype-specific monoclonal antibody (mAb)-based blocking ELISAs (mAb-bELISAs) that would provide better performance characteristics or be equivalent in performance characteristics compared with a conventional polyclonal antibody (pAb)-based competitive ELISA (pAb-cELISA). Four mAb-bELISAs were developed using FMDV serotype-specific mAbs for the detection of anti-FMDV/O/A/Asia1/SAT2 antibodies. Using a 50% cut-off, all four mAb-bELISAs exhibited species-independent 99.74%, 98.01%, 96.59%, and 98.55% diagnostic specificity (DSp) and 98.93%, 98.25%, 100%, and 87.50% diagnostic sensitivity (DSe) for FMDV serotypes O, A, Asia1, and SAT2, respectively. In addition, a 100% DSe of serotypes O- and SAT2-specific mAb-bELISAs was observed for porcine sera when the cut-off was 30%. All mAb-bELISAs developed in this study displayed high repeatability/reproducibility without cross-reactivity. Finally, the diagnostic performance of mAb-bELISAs was found to be better than or equivalent to compared with pAb-cELISAs, suggesting that mAb-bELISAs can be used to replace existing pAb-ELISAs for the detection of antibodies against these four FMDV serotypes.
Collapse
Affiliation(s)
- Mohammad A Kashem
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada
| | - Patrycja Sroga
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada
| | - Vivien Salazar
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada
| | - Hamza Amjad
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada
| | - Kate Hole
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada
| | - Janice Koziuk
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada
| | - Ming Yang
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada
| | - Charles Nfon
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada
| | - Shawn Babiuk
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada
| |
Collapse
|
5
|
Mushtaq H, Shah SS, Zarlashat Y, Iqbal M, Abbas W. Cell Culture Adaptive Amino Acid Substitutions in FMDV Structural Proteins: A Key Mechanism for Altered Receptor Tropism. Viruses 2024; 16:512. [PMID: 38675855 PMCID: PMC11054764 DOI: 10.3390/v16040512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 04/28/2024] Open
Abstract
The foot-and-mouth disease virus is a highly contagious and economically devastating virus of cloven-hooved animals, including cattle, buffalo, sheep, and goats, causing reduced animal productivity and posing international trade restrictions. For decades, chemically inactivated vaccines have been serving as the most effective strategy for the management of foot-and-mouth disease. Inactivated vaccines are commercially produced in cell culture systems, which require successful propagation and adaptation of field isolates, demanding a high cost and laborious time. Cell culture adaptation is chiefly indebted to amino acid substitutions in surface-exposed capsid proteins, altering the necessity of RGD-dependent receptors to heparan sulfate macromolecules for virus binding. Several amino acid substations in VP1, VP2, and VP3 capsid proteins of FMDV, both at structural and functional levels, have been characterized previously. This literature review combines frequently reported amino acid substitutions in virus capsid proteins, their critical roles in virus adaptation, and functional characterization of the substitutions. Furthermore, this data can facilitate molecular virologists to develop new vaccine strains against the foot-and-mouth disease virus, revolutionizing vaccinology via reverse genetic engineering and synthetic biology.
Collapse
Affiliation(s)
- Hassan Mushtaq
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-C (NIBGE), Faisalabad 38000, Pakistan; (H.M.); (M.I.)
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan
| | - Syed Salman Shah
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21300, Pakistan
| | - Yusra Zarlashat
- Department of Biochemistry, Government College University, Faisalabad 38000, Pakistan
| | - Mazhar Iqbal
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-C (NIBGE), Faisalabad 38000, Pakistan; (H.M.); (M.I.)
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan
| | - Wasim Abbas
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-C (NIBGE), Faisalabad 38000, Pakistan; (H.M.); (M.I.)
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan
| |
Collapse
|
6
|
Wu J, Sun C, Guan J, Abdullah SW, Wang X, Ren M, Qiao L, Sun S, Guo H. Nuclear ribonucleoprotein RALY downregulates foot-and-mouth disease virus replication but antagonized by viral 3C protease. Microbiol Spectr 2024; 12:e0365823. [PMID: 38323828 PMCID: PMC10913732 DOI: 10.1128/spectrum.03658-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
The internal ribosome entry site (IRES) element constitutes a cis-acting RNA regulatory sequence that recruits the ribosomal initiation complex in a cap-independent manner, assisted by various RNA-binding proteins and IRES trans-acting factors. Foot-and-mouth disease virus (FMDV) contains a functional IRES element and takes advantage of this element to subvert host translation machinery. Our study identified a novel mechanism wherein RALY, a member of the heterogeneous nuclear ribonucleoproteins (hnRNP) family belonging to RNA-binding proteins, binds to the domain 3 of FMDV IRES via its RNA recognition motif residue. This interaction results in the downregulation of FMDV replication by inhibiting IRES-driven translation. Furthermore, our findings reveal that the inhibitory effect exerted by RALY on FMDV replication is not attributed to the FMDV IRES-mediated assembly of translation initiation complexes but rather to the impediment of 80S ribosome complex formation after binding with 40S ribosomes. Conversely, 3Cpro of FMDV counteracts RALY-mediated inhibition by the ubiquitin-proteasome pathway. Therefore, these results indicate that RALY, as a novel critical IRES-binding protein, inhibits FMDV replication by blocking the formation of 80S ribosome, providing a deeper understanding of how viruses recruit and manipulate host factors. IMPORTANCE The translation of FMDV genomic RNA driven by IRES element is a crucial step for virus infections. Many host proteins are hijacked to regulate FMDV IRES-dependent translation, but the regulatory mechanism remains unknown. Here, we report for the first time that cellular RALY specifically interacts with the IRES of FMDV and negatively regulates viral replication by blocking 80S ribosome assembly on FMDV IRES. Conversely, RALY-mediated inhibition is antagonized by the viral 3C protease by the ubiquitin-proteasome pathway. These results would facilitate further understanding of virus-host interactions and translational control during viral infection.
Collapse
Affiliation(s)
- Jin'en Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Chao Sun
- Division of Livestock Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Junyong Guan
- Division of Livestock Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Sahibzada Waheed Abdullah
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuefei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Mei Ren
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Lu Qiao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- School of Animal Science, Yangtze University, Jingzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| |
Collapse
|
7
|
Mu S, Chen L, Dong H, Li S, Zhang Y, Yin S, Tian Y, Ding Y, Sun S, Shang S, Guo H. Enhanced antigen-specific CD8 T cells contribute to early protection against FMDV through swine DC vaccination. J Virol 2024; 98:e0200223. [PMID: 38289108 PMCID: PMC10878267 DOI: 10.1128/jvi.02002-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 02/21/2024] Open
Abstract
Foot-and-mouth disease virus (FMDV) remains a challenge for cloven-hooved animals. The currently licensed FMDV vaccines induce neutralizing antibody (NAb)-mediated protection but show defects in the early protection. Dendritic cell (DC) vaccines have shown great potency in inducing rapid T-cell immunity in humans and mice. Whether DC vaccination could enhance early protection against FMDV has not been elaborately explored in domestic pigs. In this study, we employed DC vaccination as an experimental approach to study the roles of cellular immunity in the early protection against FMDV in pigs. Autologous DCs were differentiated from the periphery blood mononuclear cells of each pig, pulsed with inactivated FMDV (iFMDV-DC) and treated with LPS, and then injected into the original pigs. The cellular immune responses and protective efficacy elicited by the iFMDV-DC were examined by multicolor flow cytometry and tested by FMDV challenge. The results showed that autologous iFMDV-DC immunization induced predominantly FMDV-specific IFN-γ-producing CD4+ T cells and cytotoxic CD8+ T cells (CTLs), high NAb titers, compared to the inactivated FMDV vaccine, and accelerated the development of memory CD4 and CD8 T cells, which was concomitantly associated with early protection against FMDV virulent strain in pigs. Such early protection was associated with the rapid proliferation of secondary T-cell response after challenge and significantly contributed by secondary CD8 effector memory T cells. These results demonstrated that rapid induction of cellular immunity through DC immunization is important for improving early protection against FMDV. Enhancing cytotoxic CD8+ T cells may facilitate the development of more effective FMDV vaccines.IMPORTANCEAlthough the currently licensed FMDV vaccines provide NAb-mediated protection, they have defects in early immune protection, especially in pigs. In this study, we demonstrated that autologous swine DC immunization augmented the cellular immune response and induced an early protective response against FMDV in pigs. This approach induced predominantly FMDV-specific IFN-γ-producing CD4+ T cells and cytotoxic CD8+ T cells, high NAb titers, and rapid development of memory CD4 and CD8 T cells. Importantly, the early protection conferred by this DC immunization is more associated with secondary CD8+ T response rather than NAbs. Our findings highlighted the importance of enhancing cytotoxic CD8+ T cells in early protection to FMDV in addition to Th1 response and identifying a strategy or adjuvant comparable to the DC vaccine might be a future direction for improving the current FMDV vaccines.
Collapse
Affiliation(s)
- Suyu Mu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Lingbo Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hu Dong
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shuai Li
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Yun Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shuanghui Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yunfei Tian
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Yaozhong Ding
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shaobin Shang
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
8
|
Wang Y, Zhang Z, Yang M, Xiong X, Yan Q, Cao L, Wei P, Zhang Y, Zhang L, Lv K, Chen J, Liu X, Zhao X, Xiao J, Zhang S, Zhu A, Gan M, Zhang J, Cai R, Zhuo J, Zhang Y, Rao H, Qu B, Zhang Y, Chen L, Dai J, Cheng L, Hu Q, Chen Y, Lv H, So RTY, Peiris M, Zhao J, Liu X, Mok CKP, Wang X, Zhao J. Identification of a broad sarbecovirus neutralizing antibody targeting a conserved epitope on the receptor-binding domain. Cell Rep 2024; 43:113653. [PMID: 38175758 DOI: 10.1016/j.celrep.2023.113653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/11/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Abstract
Omicron, as the emerging variant with enhanced vaccine tolerance, has sharply disrupted most therapeutic antibodies. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) belongs to the subgenus Sarbecovirus, members of which share high sequence similarity. Herein, we report one sarbecovirus antibody, 5817, which has broad-spectrum neutralization capacity against SARS-CoV-2 variants of concern (VOCs) and SARS-CoV, as well as related bat and pangolin viruses. 5817 can hardly compete with six classes of receptor-binding-domain-targeted antibodies grouped by structural classifications. No obvious impairment in the potency is detected against SARS-CoV-2 Omicron and subvariants. The cryoelectron microscopy (cryo-EM) structure of neutralizing antibody 5817 in complex with Omicron spike reveals a highly conserved epitope, only existing at the receptor-binding domain (RBD) open state. Prophylactic and therapeutic administration of 5817 potently protects mice from SARS-CoV-2 Beta, Delta, Omicron, and SARS-CoV infection. This study reveals a highly conserved cryptic epitope targeted by a broad sarbecovirus neutralizing antibody, which would be beneficial to meet the potential threat of pre-emergent SARS-CoV-2 VOCs.
Collapse
Affiliation(s)
- Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China; Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Minnan Yang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xinyi Xiong
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qihong Yan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lei Cao
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Peilan Wei
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Guangzhou National Laboratory, Bio-Island, Guangzhou, China
| | - Yuting Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lu Zhang
- Health and Quarantine Laboratory, Guangzhou Customs District Technology Centre, Guangzhou, China
| | - Kexin Lv
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Jiantao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xuesong Liu
- Department of Critical Care Medicine, State Key Lab of Respiratory Diseases, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaochu Zhao
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Juxue Xiao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shengnan Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mian Gan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jingjun Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ruoxi Cai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jianfen Zhuo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yanjun Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haiyue Rao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bin Qu
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yuanyuan Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lei Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jun Dai
- Health and Quarantine Laboratory, Guangzhou Customs District Technology Centre, Guangzhou, China
| | - Linling Cheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qingtao Hu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yaoqing Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Huibin Lv
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ray T Y So
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Malik Peiris
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Guangzhou National Laboratory, Bio-Island, Guangzhou, China
| | - Xiaoqing Liu
- Department of Critical Care Medicine, State Key Lab of Respiratory Diseases, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Chris Ka Pun Mok
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; S.H. Ho Research Centre for Infectious Diseases, Chinese University of Hong Kong, Hong Kong, China.
| | - Xiangxi Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Guangzhou National Laboratory, Bio-Island, Guangzhou, China; Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, the Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
9
|
Zewdie G, Akalu M, Tolossa W, Belay H, Deresse G, Zekarias M, Tesfaye Y. A review of foot-and-mouth disease in Ethiopia: epidemiological aspects, economic implications, and control strategies. Virol J 2023; 20:299. [PMID: 38102688 PMCID: PMC10724896 DOI: 10.1186/s12985-023-02263-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
Foot-and-mouth disease (FMD) is a contagious viral disease that affects the livelihoods and productivity of livestock farmers in endemic regions. It can infect various domestic and wild animals with cloven hooves and is caused by a virus belonging to the genus Aphthovirus and family Picornaviridae, which has seven different serotypes: A, O, C, SAT1, SAT2, SAT3, and Asia-1. This paper aims to provide a comprehensive overview of the molecular epidemiology, economic impact, diagnosis, and control measures of FMD in Ethiopia in comparison with the global situation. The genetic and antigenic diversity of FMD viruses requires a thorough understanding for developing and applying effective control strategies in endemic areas. FMD has direct and indirect economic consequences on animal production. In Ethiopia, FMD outbreaks have led to millions of USD losses due to the restriction or rejection of livestock products in the international market. Therefore, in endemic areas, disease control depends on vaccinations to prevent animals from developing clinical disease. However, in Ethiopia, due to the presence of diverse antigenic serotypes of FMD viruses, regular and extensive molecular investigation of new field isolates is necessary to perform vaccine-matching studies to evaluate the protective potential of the vaccine strain in the country.
Collapse
Affiliation(s)
- Girma Zewdie
- National Veterinary Institute (NVI), P. O. Box: 19, Bishoftu, Ethiopia.
| | - Mirtneh Akalu
- National Veterinary Institute (NVI), P. O. Box: 19, Bishoftu, Ethiopia
- Koneru Lakshmaiah Education Foundation, Department of Biotechnology, Vaddeswaram, Guntur, Ap, 522502, India
| | | | - Hassen Belay
- Africa Union Pan African Veterinary Vaccine Center (AU-PANVAC), P. O. Box: 1746, Bishoftu, Ethiopia
| | - Getaw Deresse
- National Veterinary Institute (NVI), P. O. Box: 19, Bishoftu, Ethiopia
| | | | - Yeneneh Tesfaye
- National Veterinary Institute (NVI), P. O. Box: 19, Bishoftu, Ethiopia
| |
Collapse
|
10
|
Gadir M, Azimi SM, Harzandi N, Hemati B, Eskandarzade N. Whole-genome sequencing of foot-and-mouth disease virus serotype O/PanAsia-2/QOM-15 and comparison of its VP1-encoding region with two vaccine strains. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2023; 14:615-623. [PMID: 38169601 PMCID: PMC10758011 DOI: 10.30466/vrf.2023.1978294.3704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/20/2023] [Indexed: 01/05/2024]
Abstract
Despite widespread vaccination against foot-and-mouth disease, many outbreaks still occur in endemic areas. We attempted to determine the genetic and antigenic properties of the O/PanAsia-2/QOM-15 foot-and-mouth disease virus new vaccine strain. Thus, whole-genome sequencing was used to identify vulnerable pinpoint sites across the genome. The VP1 sequence (1D gene) of the O/PanAsia-2/QOM-15 viral genome was then compared to the VP1 sequences of two previously used vaccine strains, O/PanAsia (JQ321837) and O/PanAsia-2 (JN676146). The antigenic relationship of these three viruses was calculated by the two dimensional-virus neutralization test. At the nucleotide level, 47 single variants were identified, of which 19.00% were in the 5' untranslated region (UTR), 79.00% in the polyprotein region, and 2.00% in the 3' UTR region. Approximately half of the single nucleotide polymorphisms that have occurred in 1D gene resulted in amino acid (AA) substitutions in the VP1 structure. The single nucleotide polymorphisms also caused AA substitutions in other structural proteins, including VP2 and VP3, and some non-structural proteins (Lpro, 2C, and 3A). The O/PanAsia-2/QOM-15 shared higher sequence similarity with O/PanAsia-2 (91.00%) compared to O/PanAsia (87.30%). Evaluating r-value showed that the antigenic relationship of O/PanAsia-2/QOM-15 with O/PanAsia-2 (29.00%) was greater than that of the O/PanAsia (24.00%); however, all three viruses were immunologically distinct. After 10 years, the alteration of virus antigenicity and the lack of detectable adaptive pressure on VP1 sequence suggest that studying genetic dynamics beyond the VP1 region is necessary to evaluate FMDV pathogenicity and vaccine failure.
Collapse
Affiliation(s)
- Mehrnoosh Gadir
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran;
| | - Seyed Mahmoud Azimi
- Foot and Mouth Disease Reference Laboratory, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran;
| | - Naser Harzandi
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran;
| | - Behzad Hemati
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran;
| | - Neda Eskandarzade
- Department of Basic Sciences, School of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran.
| |
Collapse
|
11
|
The Use of Distinctive Monoclonal Antibodies in FMD VLP- and P1-Based Blocking ELISA for the Seromonitoring of Vaccinated Swine. Int J Mol Sci 2022; 23:ijms23158542. [PMID: 35955678 PMCID: PMC9368795 DOI: 10.3390/ijms23158542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/20/2022] Open
Abstract
The serum neutralization (SN) test has been regarded as the “gold standard” for seroconversion following foot-and-mouth disease virus (FMDV) vaccination, although a high-level biosafety laboratory is necessary. ELISA is one alternative, and its format is constantly being improved. For instance, standard polyclonal antisera have been replaced by monoclonal antibodies (MAbs) for catching and detecting antibodies, and inactive viruses have been replaced by virus-like particles (VLPs). To the best of current knowledge, however, no researchers have evaluated the performances of different MAbs as tracers. In previous studies, we successfully identified site 1 and site 2 MAbs Q10E and P11A. In this study, following the established screening platform, the VLPs of putative escape mutants from sites 1 to 5 were expressed and used to demonstrate that S11B is a site 3 MAb. Additionally, the vulnerability of VLPs prompted us to assess another diagnostic antigen: unprocessed polyprotein P1. Therefore, we established and evaluated the performance of blocking ELISA (bELISA) systems based on VLPs and P1, pairing them with Q10E, P11A, S11B, and the non-neutralizing TSG MAb as tracers. The results indicated that the VLP paired with S11B demonstrated the highest correlation with the SN titers (R2 = 0.8071, n = 63). Excluding weakly positive serum samples (SN = 16–32, n = 14), the sensitivity and specificity were 95.65% and 96.15% (kappa = 0.92), respectively. Additionally, the P1 pairing with Q10E also demonstrated a high correlation (R2 = 0.768). We also discovered that these four antibodies had steric effects on one another to varying degrees, despite recognizing distinct antigenic sites. This finding indicated that MAbs as tracers could not accurately detect specific antibodies, possibly because MAbs are bulky compared to a protomeric unit. However, our results still provide convincing support for the application of two pairs of bELISA systems: VLP:S11B-HRP and P1:Q10E-HRP.
Collapse
|
12
|
Nanometer-resolution in situ structure of the SARS-CoV-2 postfusion spike protein. Proc Natl Acad Sci U S A 2021; 118:2112703118. [PMID: 34782481 PMCID: PMC8640741 DOI: 10.1073/pnas.2112703118] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 11/22/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a severe threat to public health and the global economy. Its spike protein is responsible for the membrane fusion and is thus a major target for vaccine and drug development. Our study presents the in situ structure of the spike protein in the postfusion state with higher resolution, giving further insights into the design of a viral entry inhibitor. Our observation of the oligomerization states of spikes on the viral membrane implies a possible mechanism of membrane fusion for viral infection. The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mediates membrane fusion to allow entry of the viral genome into host cells. To understand its detailed entry mechanism and develop a specific entry inhibitor, in situ structural information on the SARS-CoV-2 spike protein in different states is urgent. Here, by using cryo-electron tomography, we observed both prefusion and postfusion spikes in β-propiolactone–inactivated SARS-CoV-2 virions and solved the in situ structure of the postfusion spike at nanometer resolution. Compared to previous reports, the six-helix bundle fusion core, the glycosylation sites, and the location of the transmembrane domain were clearly resolved. We observed oligomerization patterns of the spikes on the viral membrane, likely suggesting a mechanism of fusion pore formation.
Collapse
|
13
|
Kim AY, Park SY, Park SH, Jin JS, Kim ES, Kim JY, Park JH, Ko YJ. Validation of Pretreatment Methods for the In-Process Quantification of Foot-and-Mouth Disease Vaccine Antigens. Vaccines (Basel) 2021; 9:vaccines9111361. [PMID: 34835292 PMCID: PMC8624908 DOI: 10.3390/vaccines9111361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 01/10/2023] Open
Abstract
Foot-and-mouth disease (FMD), caused by the FMD virus (FMDV), is controlled by vaccine policy in many countries. For vaccine potency, the content of intact virus particles (146S antigens) is critical, and the sucrose density gradient (SDG) fractionation is the gold standard for the quantification of 146S antigens. However, this method has several drawbacks. Although size-exclusion high-performance liquid chromatography (SE-HPLC) was introduced to replace the classic method, its application is generally confined to purified samples owing to the interfering signals. Therefore, we aimed to develop optimal pretreatment methods for SE-HPLC quantification in less purified samples. Crude virus infection supernatant (CVIS) and semi-purified samples with PEG precipitation (PEG-P) were used. Chloroform pretreatment was essential to remove a high level of non-specific signals in CVIS, whereas it caused loss of 146S antigens without the distinctive removal of non-specific signals in PEG-P. Benzonase pretreatment was required to improve the resolution of the target peak in the chromatogram for both CVIS and PEG-P. Through spiking tests with pure 146S antigens, it was verified that the combined pretreatment with chloroform and benzonase was optimal for the CVIS, while the sole pretreatment of benzonase was beneficial for PEG-P.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Young-Joon Ko
- Correspondence: ; Tel.: +82-54-912-0908; Fax: +82-54-912-0890
| |
Collapse
|
14
|
Wu J, Zhang Z, Teng Z, Abdullah SW, Sun S, Guo H. Sec62 Regulates Endoplasmic Reticulum Stress and Autophagy Balance to Affect Foot-and-Mouth Disease Virus Replication. Front Cell Infect Microbiol 2021; 11:707107. [PMID: 34532300 PMCID: PMC8438241 DOI: 10.3389/fcimb.2021.707107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/10/2021] [Indexed: 01/07/2023] Open
Abstract
Endoplasmic reticulum (ER) stress-induced autophagy is closely associated with viral infection and propagation. However, the intrinsic link between ER stress, autophagy, and viral replication during foot-and-mouth disease virus (FMDV) infection is not fully elucidated. Our previous studies demonstrated that FMDV infection activated the ER stress-associated UPR of the PERK-eIF2a and ATF6 signaling pathway, whereas the IRE1a signaling was suppressed. We found that the activated-ATF6 pathway participated in FMDV-induced autophagy and FMDV replication, while the IRE1α pathway only affected FMDV replication. Further studies indicated that Sec62 was greatly reduced in the later stages of FMDV infection and blocked the activation of the autophagy-related IRE1α-JNK pathway. Moreover, it was also found that Sec62 promoted IRE1a phosphorylation and negatively regulated FMDV proliferation. Importantly, Sec62 may interact with LC3 to regulate ER stress and autophagy balance and eventually contribute to FMDV clearance via fusing with lysosomes. Altogether, these results suggest that Sec62 is a critical molecule in maintaining and recovering ER homeostasis by activating the IRE1α-JNK pathway and delivering autophagosome into the lysosome, thus providing new insights on FMDV-host interactions and novel antiviral therapies.
Collapse
Affiliation(s)
- Jin'en Wu
- State Key Laboratory of Veterinary Etiological Biology and National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhihui Zhang
- State Key Laboratory of Veterinary Etiological Biology and National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhidong Teng
- State Key Laboratory of Veterinary Etiological Biology and National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Sahibzada Waheed Abdullah
- State Key Laboratory of Veterinary Etiological Biology and National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shiqi Sun
- State Key Laboratory of Veterinary Etiological Biology and National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology and National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Animal Science, Yangtze University, Jingzhou, China
| |
Collapse
|
15
|
Abdullah SW, Wu J, Zhang Y, Bai M, Guan J, Liu X, Sun S, Guo H. DDX21, a Host Restriction Factor of FMDV IRES-Dependent Translation and Replication. Viruses 2021; 13:v13091765. [PMID: 34578346 PMCID: PMC8473184 DOI: 10.3390/v13091765] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022] Open
Abstract
In cells, the contributions of DEAD-box helicases (DDXs), without which cellular life is impossible, are of utmost importance. The extremely diverse roles of the nucleolar helicase DDX21, ranging from fundamental cellular processes such as cell growth, ribosome biogenesis, protein translation, protein–protein interaction, mediating and sensing transcription, and gene regulation to viral manipulation, drew our attention. We designed this project to study virus–host interactions and viral pathogenesis. A pulldown assay was used to investigate the association between foot-and-mouth disease virus (FMDV) and DDX21. Further insight into the DDX21–FMDV interaction was obtained through dual-luciferase, knockdown, overexpression, qPCR, and confocal microscopy assays. Our results highlight the antagonistic feature of DDX21 against FMDV, as it progressively inhibited FMDV internal ribosome entry site (IRES) -dependent translation through association with FMDV IRES domains 2, 3, and 4. To subvert this host helicase antagonism, FMDV degraded DDX21 through its non-structural proteins 2B, 2C, and 3C protease (3Cpro). Our results suggest that DDX21 is degraded during 2B and 2C overexpression and FMDV infection through the caspase pathway; however, DDX21 is degraded through the lysosomal pathway during 3Cpro overexpression. Further investigation showed that DDX21 enhanced interferon-beta and interleukin-8 production to restrict viral replication. Together, our results demonstrate that DDX21 is a novel FMDV IRES trans-acting factor, which negatively regulates FMDV IRES-dependent translation and replication.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shiqi Sun
- Correspondence: (S.S.); (H.G.); Tel.: +86-0931-8312213 (S.S. & H.G.)
| | - Huichen Guo
- Correspondence: (S.S.); (H.G.); Tel.: +86-0931-8312213 (S.S. & H.G.)
| |
Collapse
|
16
|
Guo M, Li J, Teng Z, Ren M, Dong H, Zhang Y, Ru J, Du P, Sun S, Guo H. Four Simple Biomimetic Mineralization Methods to Improve the Thermostability and Immunogenicity of Virus-like Particles as a Vaccine against Foot-and-Mouth Disease. Vaccines (Basel) 2021; 9:vaccines9080891. [PMID: 34452016 PMCID: PMC8402440 DOI: 10.3390/vaccines9080891] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 11/17/2022] Open
Abstract
The need for a cold chain system during storage and transport substantially increases the cost of vaccines. Virus-like particles (VLPs) are among the best countermeasures against foot and mouth disease virus (FMDV). However, VLPs are composed of pure proteins, and thus, are susceptible to heat. To address this problem, four simple biomimetic mineralization methods with the use of calcium phosphate were developed to improve heat tolerance via biomineralization. The results showed that biomineralization can significantly improve the heat resistance of VLPs. The biomineralized VLPs can be stored at low as 25 °C for eight days, and 37 °C for four days. Animal experiments showed that biomineralization had no effect on the immunogenicity of VLPs or the expression of specific antibodies (Abs) and neutralizing Abs. Even after heat treatment at 37 °C for four days, the biomineralized VLPs remained immunogenic and produced highly specific and neutralizing Abs with a high rate of protection. These results suggest that these biomineralization approaches can promote the thermal stability of VLPs against and significantly reduce dependence on cold storage and delivery systems.
Collapse
Affiliation(s)
- Mengnan Guo
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China; (M.G.); (J.L.); (Z.T.); (M.R.); (H.D.); (Y.Z.); (J.R.); (P.D.); (S.S.)
| | - Jiajun Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China; (M.G.); (J.L.); (Z.T.); (M.R.); (H.D.); (Y.Z.); (J.R.); (P.D.); (S.S.)
| | - Zhidong Teng
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China; (M.G.); (J.L.); (Z.T.); (M.R.); (H.D.); (Y.Z.); (J.R.); (P.D.); (S.S.)
| | - Mei Ren
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China; (M.G.); (J.L.); (Z.T.); (M.R.); (H.D.); (Y.Z.); (J.R.); (P.D.); (S.S.)
| | - Hu Dong
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China; (M.G.); (J.L.); (Z.T.); (M.R.); (H.D.); (Y.Z.); (J.R.); (P.D.); (S.S.)
| | - Yun Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China; (M.G.); (J.L.); (Z.T.); (M.R.); (H.D.); (Y.Z.); (J.R.); (P.D.); (S.S.)
| | - Jiaxi Ru
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China; (M.G.); (J.L.); (Z.T.); (M.R.); (H.D.); (Y.Z.); (J.R.); (P.D.); (S.S.)
| | - Ping Du
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China; (M.G.); (J.L.); (Z.T.); (M.R.); (H.D.); (Y.Z.); (J.R.); (P.D.); (S.S.)
| | - Shiqi Sun
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China; (M.G.); (J.L.); (Z.T.); (M.R.); (H.D.); (Y.Z.); (J.R.); (P.D.); (S.S.)
- College of Animal Science, Yangtze University, Jingzhou 434025, China
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China; (M.G.); (J.L.); (Z.T.); (M.R.); (H.D.); (Y.Z.); (J.R.); (P.D.); (S.S.)
- College of Animal Science, Yangtze University, Jingzhou 434025, China
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming 650000, China
- Correspondence:
| |
Collapse
|
17
|
Dong H, Lu Y, Zhang Y, Mu S, Wang N, Du P, Zhi X, Wen X, Wang X, Sun S, Zhang Y, Guo H. A Heat-Induced Mutation on VP1 of Foot-and-Mouth Disease Virus Serotype O Enhanced Capsid Stability and Immunogenicity. J Virol 2021; 95:e0017721. [PMID: 34011545 PMCID: PMC8312871 DOI: 10.1128/jvi.00177-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/02/2021] [Indexed: 11/20/2022] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious viral disease affecting cloven-hoofed animals that causes a significant economic burden globally. Vaccination is the most effective FMD control strategy. However, FMD virus (FMDV) particles are prone to dissociate when appropriate physical or chemical conditions are unavailable, such as an incomplete cold chain. Such degraded vaccines result in compromised herd vaccination. Therefore, thermostable FMD particles are needed for use in vaccines. This study generated thermostable FMDV mutants (M3 and M10) by serial passages at high temperature, subsequent amplification, and purification. Both mutants contained an alanine-to-threonine mutation at position 13 in VP1 (A1013T), although M3 contained 3 additional mutations. The selected mutants showed improved stability and immunogenicity in neutralizing antibody titers, compared with the wild-type (wt) virus. The sequencing analysis and cryo-electron microscopy showed that the mutation of alanine to threonine at the 13th amino acid in the VP1 protein (A1013T) is critical for the capsid stability of FMDV. Virus-like particles containing A1013T (VLPA1013T) also showed significantly improved stability to heat treatment. This study demonstrated that Thr at the 13th amino acid of VP1 could stabilize the capsid of FMDV. Our findings will facilitate the development of a stable vaccine against FMDV serotype O. IMPORTANCE Foot-and-mouth disease (FMD) serotype O is one of the global epidemic serotypes and causes significant economic loss. Vaccination plays a key role in the prevention and control of FMD. However, the success of vaccination mainly depends on the quality of the vaccine. Here, the thermostable FMD virus (FMDV) mutants (M3 and M10) were selected through thermal screening at high temperatures with improved stability and immunogenicity compared with the wild-type virus. The results of multisequence alignment and cryo-electron microscopy (cryo-EM) analysis showed that the Thr substitution at the 13th amino acid in the VP1 protein is critical for the capsid stability of FMDV. For thermolabile type O FMDV, this major discovery will aid the development of its thermostable vaccine.
Collapse
Affiliation(s)
- Hu Dong
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, China
| | - Yuanlu Lu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yun Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Suyu Mu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Nan Wang
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Ping Du
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xiaoying Zhi
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xiaobo Wen
- College of Animal Science and Technology, Hainan University, Hainan Key Lab of Tropical Animal Reproduction and Breeding and Epidemic Disease Research, Haidian Island, Haikou, China
| | - Xiangxi Wang
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Shiqi Sun
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, China
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- College of Animal Science, Yangtze University, Jingzhou District, Jingzhou, People’s Republic of China
| |
Collapse
|
18
|
Han S, Wang X, Guan J, Wu J, Zhang Y, Li P, Liu Z, Abdullah SW, Zhang Z, Jin Y, Sun S, Guo H. Nucleolin Promotes IRES-Driven Translation of Foot-and-Mouth Disease Virus by Supporting the Assembly of Translation Initiation Complexes. J Virol 2021; 95:e0023821. [PMID: 33853964 PMCID: PMC8315980 DOI: 10.1128/jvi.00238-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Nucleolin (NCL), a stress-responsive RNA-binding protein, has been implicated in the translation of internal ribosome entry site (IRES)-containing mRNAs, which encode proteins involved in cell proliferation, carcinogenesis, and viral infection (type I IRESs). However, the details of the mechanisms by which NCL participates in IRES-driven translation have not hitherto been described. Here, we identified NCL as a protein that interacts with the IRES of foot-and-mouth disease virus (FMDV), which is a type II IRES. We also mapped the interactive regions within FMDV IRES and NCL in vitro. We found that NCL serves as a substantial regulator of FMDV IRES-driven translation but not of bulk cellular or vesicular stomatitis virus cap-dependent translation. NCL also modulates the translation of and infection by Seneca Valley virus (type III-like IRES) and classical swine fever virus (type III IRES), which suggests that its function is conserved in unrelated IRES-containing viruses. We also show that NCL affects viral replication by directly regulating the production of viral proteins and indirectly regulating FMDV RNA synthesis. Importantly, we observed that the cytoplasmic relocalization of NCL during FMDV infection is a substantial step for viral IRES-driven translation and that NCL specifically promotes the initiation phase of the translation process by recruiting translation initiation complexes to viral IRES. Finally, the functional importance of NCL in FMDV pathogenicity was confirmed in vivo. Taken together, our findings demonstrate a specific function for NCL in selective mRNA translation and identify a target for the development of a broad-spectrum class of antiviral interventions. IMPORTANCE FMDV usurps the cellular translation machinery to initiate viral protein synthesis via a mechanism driven by IRES elements. It allows the virus to shut down bulk cellular translation, while providing an advantage for its own gene expression. With limited coding capacity in its own genome, FMDV has evolved a mechanism to hijack host proteins to promote the recruitment of the host translation machinery, a process that is still not well understood. Here, we identified nucleolin (NCL) as a positive regulator of the IRES-driven translation of FMDV. Our study supports a model in which NCL relocalizes from the nucleus to the cytoplasm during the course of FMDV infection, where the cytoplasmic NCL promotes FMDV IRES-driven translation by bridging the translation initiation complexes with viral IRES. Our study demonstrates a previously uncharacterized role of NCL in the translation initiation of IRES-containing viruses, with important implications for the development of broad antiviral interventions.
Collapse
Affiliation(s)
- Shichong Han
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, People’s Republic of China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
| | - Xiaojia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, People’s Republic of China
| | - Junyong Guan
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Jinen Wu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Yun Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Pinghua Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Zaixin Liu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Sahibzada Waheed Abdullah
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Zhihui Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Ye Jin
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Shiqi Sun
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
- College of Animal Science, Yangtze University, Jingzhou, Hubei, People’s Republic of China
| |
Collapse
|
19
|
Novel Capsid-Specific Single-Domain Antibodies with Broad Foot-and-Mouth Disease Strain Recognition Reveal Differences in Antigenicity of Virions, Empty Capsids, and Virus-Like Particles. Vaccines (Basel) 2021; 9:vaccines9060620. [PMID: 34201329 PMCID: PMC8227720 DOI: 10.3390/vaccines9060620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/30/2021] [Accepted: 06/05/2021] [Indexed: 01/03/2023] Open
Abstract
Foot-and-mouth disease (FMD) vaccine efficacy is mainly determined by the content of intact virions (146S) and empty capsids (75S). Both particles may dissociate into 12S subunits upon vaccine manufacturing, formulation, and storage, reducing vaccine potency. We report the isolation of capsid-specific llama single-domain antibodies (VHHs) with broad strain recognition that can be used to quantify intact capsids in FMD vaccines by double antibody sandwich (DAS) ELISA. One capsid-specific VHH displayed remarkably broad strain reactivity, recognizing 14 strains representing the 13 most important lineages of serotype A, and two VHHs cross-reacted with other serotypes. We additionally show that the newly isolated VHHs, as well as previously characterized VHHs, can be used to identify antigenic differences between authentic 146S and 75S capsids, as well as corresponding genetically engineered virus-like particles (VLPs). Our work underscores that VHHs are excellent tools for monitoring the quantity and stability of intact capsids during vaccine manufacturing, formulation, and storage, and additionally shows that VHHs can be used to predict the native-like structure of VLPs.
Collapse
|
20
|
Feng R, Wang L, Shi D, Zheng B, Zhang L, Hou H, Xia D, Cui L, Wang X, Xu S, Wang K, Zhu L. Structural basis for neutralization of an anicteric hepatitis associated echovirus by a potent neutralizing antibody. Cell Discov 2021; 7:35. [PMID: 34035235 PMCID: PMC8149713 DOI: 10.1038/s41421-021-00264-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/25/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Rui Feng
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dawei Shi
- Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Binyang Zheng
- National Health Commission of the People's Republic of China, Key laboratory of Enteric Pathogenic Microbiology (Jiangsu Provincial Center for Disease Control and Prevention), Nanjing, 210009, Jiangsu, China
| | - Li Zhang
- National Health Commission of the People's Republic of China, Key laboratory of Enteric Pathogenic Microbiology (Jiangsu Provincial Center for Disease Control and Prevention), Nanjing, 210009, Jiangsu, China
| | - Hai Hou
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Deju Xia
- Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Lunbiao Cui
- National Health Commission of the People's Republic of China, Key laboratory of Enteric Pathogenic Microbiology (Jiangsu Provincial Center for Disease Control and Prevention), Nanjing, 210009, Jiangsu, China
| | - Xiangxi Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Sihong Xu
- Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing, 100050, China.
| | - Kang Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ling Zhu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
21
|
Guan J, Han S, Wu J, Zhang Y, Bai M, Abdullah SW, Sun S, Guo H. Ribosomal Protein L13 Participates in Innate Immune Response Induced by Foot-and-Mouth Disease Virus. Front Immunol 2021; 12:616402. [PMID: 34093518 PMCID: PMC8173215 DOI: 10.3389/fimmu.2021.616402] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/26/2021] [Indexed: 01/22/2023] Open
Abstract
In addition to ribosomal protein synthesis and protein translation, ribosomal proteins also participate in tumorigenesis and tumor progression, immune responses, and viral replication. Here, we show that ribosomal protein L13 (RPL13) participates in the antiviral immune response induced by foot-and-mouth disease virus (FMDV), inhibiting FMDV replication. The overexpression of RPL13 promoted the induction and activation of the promoters of the nuclear factor-κB (NF-κB) and interferon-β (IFN-β) genes, and the expression and protein secretion of the antiviral factor IFN-β and proinflammatory cytokine interleukin-6 (IL-6). The knockdown of RPL13 had the opposite effects. We also found that the FMDV 3Cpro protease interacts with RPL13, and that its activity reduces the expression of RPL13, thus antagonizing the RPL13-mediated antiviral activity. This study extends our knowledge of the extraribosomal functions of ribosomal proteins and provides new scientific information on cellular antiviral defenses and virus-antagonizing mechanisms.
Collapse
Affiliation(s)
- Junyong Guan
- State Key Laboratory of Veterinary Etiological Biology, Office International des Epizootie (OIE)/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shichong Han
- State Key Laboratory of Veterinary Etiological Biology, Office International des Epizootie (OIE)/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jin'en Wu
- State Key Laboratory of Veterinary Etiological Biology, Office International des Epizootie (OIE)/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yun Zhang
- State Key Laboratory of Veterinary Etiological Biology, Office International des Epizootie (OIE)/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Manyuan Bai
- State Key Laboratory of Veterinary Etiological Biology, Office International des Epizootie (OIE)/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Sahibzada Waheed Abdullah
- State Key Laboratory of Veterinary Etiological Biology, Office International des Epizootie (OIE)/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shiqi Sun
- State Key Laboratory of Veterinary Etiological Biology, Office International des Epizootie (OIE)/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology, Office International des Epizootie (OIE)/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,School of Animal Science, Yangtze University, Jingzhou, China
| |
Collapse
|