1
|
Poletti G, Bardón RG, Dubini G, Pennati G. CFD Two-Phase Blood Model Predicting the Hematocrit Heterogeneity Inside Fiber Bundles of Blood Oxygenators. Ann Biomed Eng 2024:10.1007/s10439-024-03644-4. [PMID: 39531093 DOI: 10.1007/s10439-024-03644-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Blood is commonly treated as single-phase homogeneous fluid in numerical simulations of blood flow within fiber bundles of blood oxygenators. However, microfluidics tests revealed the presence of hematocrit heterogeneity in blood flowing across such geometries. Given the significant role of red blood cells (RBCs) in the oxygenation process, this study aims to propose a multiphase blood model able to correctly describe the experimental evidence and computationally investigate hematocrit heterogeneities inside fiber bundles. METHODS The experimental results of microfluidics tests performed in a previous study were processed and based on quantitative data of image intensity, a two-phase blood model following the Eulerian-Eulerian approach was calibrated and evaluated in its predictive ability against the experimental data. The two-phase model was then used to study the RBCs distribution inside different fiber bundles at average hematocrit values of 25% and 35%, representative of hemodilution in extracorporeal blood circulation. RESULTS The numerical model proved to be able to describe and predict the experimental phase separation between plasma and RBCs within the microchannel geometry at different test conditions. Moreover, blood flow simulation in commercial fiber bundles revealed the presence of specific patterns in hematocrit distribution and their dependence on variations in bundle microstructure. CONCLUSION The two-phase blood model proposed in this study provides a tool for advanced evaluation of local fluid dynamics and identification of optimal bundle microstructure allowing further gas transfer simulations to account for a reliable heterogeneous distribution of RBCs around the oxygenating fibers.
Collapse
Affiliation(s)
- Gianluca Poletti
- LaBS - Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy.
| | - Ricardo Gómez Bardón
- LaBS - Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Gabriele Dubini
- LaBS - Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Giancarlo Pennati
- LaBS - Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| |
Collapse
|
2
|
Fu X, Su Z, Wang Y, Sun A, Wang L, Deng X, Chen Z, Fan Y. Comparison of hemodynamic features and thrombosis risk of membrane oxygenators with different structures: A numerical study. Comput Biol Med 2023; 159:106907. [PMID: 37075599 DOI: 10.1016/j.compbiomed.2023.106907] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 04/21/2023]
Abstract
PURPOSE The geometric structure of the membrane oxygenator can exert an impact on its hemodynamic features, which contribute to the development of thrombosis, thereby affecting the clinical efficacy of ECMO treatment. The purpose of this study is to investigate the impact of varying geometric structures on hemodynamic features and thrombosis risk of membrane oxygenators with different designs. METHODS Five oxygenator models with different structures, including different number and location of blood inlet and outlet, as well as variations in blood flow path, were established for investigation. These models are referred to as Model 1 (Quadrox-i Adult Oxygenator), Model 2 (HLS Module Advanced 7.0 Oxygenator), Model 3 (Nautilus ECMO Oxygenator), Model 4 (OxiaACF Oxygenator) and Model 5 (New design oxygenator). The hemodynamic features of these models were numerically analyzed using the Euler method combined with computational fluid dynamics (CFD). The accumulated residence time (ART) and coagulation factor concentrations (C[i], where i represents different coagulation factors) were calculated by solving the convection diffusion equation. The resulting relationships between these factors and the development of thrombosis in the oxygenator were then investigated. RESULTS Our results show that the geometric structure of the membrane oxygenator, including the location of the blood inlet and outlet as well as the design of the flow path, has a significant impact on the hemodynamic surroundings within the oxygenator. In comparison to Model 4, which had the inlet and outlet located in the center position, Model 1 and Model 3, which had the inlet and outlet at the edge of the blood flow field, exhibited a more uneven distribution of blood flow within the oxygenator, particularly in areas distant from the inlet and outlet, which was accompanied with lower flow velocity and higher values of ART and C[i], leading to the formation of flow dead zones and an elevated risk of thrombosis. The oxygenator of Model 5 is designed with a structure that features multiple inlets and outlets, which greatly improves the hemodynamic environment inside the oxygenator. This results in a more even distribution of blood flow within the oxygenator, reducing areas with high values of ART and C[i], and ultimately lowering the risk of thrombosis. The oxygenator of Model 3 with circular flow path section shows better hemodynamic performance compared to the oxygenator of Model 1 with square circular flow path. The overall ranking of hemodynamic performance for all five oxygenators is as follows: Model 5 > Model 4 > Model 2 > Model 3 > Model 1, indicating that Model 1 has the highest thrombosis risk while Model 5 has the lowest. CONCLUSION The study reveals that the different structures can affect the hemodynamic characteristics inside membrane oxygenators. The design of multiple inlets and outlets can improve the hemodynamic performance and reduce the thrombosis risk in membrane oxygenators. These findings of this study can be used to guide the optimization design of membrane oxygenators for improving hemodynamic surroundings and reducing thrombosis risk.
Collapse
Affiliation(s)
- Xingji Fu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Zihua Su
- Beijing Aerospace Changfeng Co., Ltd., Beijing, 100854, China
| | - Yawei Wang
- Beijing Aerospace Changfeng Co., Ltd., Beijing, 100854, China
| | - Anqiang Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Lizhen Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xiaoyan Deng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Zengsheng Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
3
|
Chopski SG, Govender K, May A, Garven E, Stevens RM, Tchantchaleishvili V, Throckmorton AL. Novel hybrid total artificial heart with integrated oxygenator. J Card Surg 2022; 37:5172-5186. [PMID: 36403254 PMCID: PMC9812888 DOI: 10.1111/jocs.17210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/21/2022]
Abstract
There continues to be an unmet therapeutic need for an alternative treatment strategy for respiratory distress and lung disease. We are developing a portable cardiopulmonary support system that integrates an implantable oxygenator with a hybrid, dual-support, continuous-flow total artificial heart (TAH). The TAH has a centrifugal flow pump that is rotating about an axial flow pump. By attaching the hollow fiber bundle of the oxygenator to the base of the TAH, we establish a new cardiopulmonary support technology that permits a patient to be ambulatory during usage. In this study, we investigated the design and improvement of the blood flow pathway from the inflow-to-outflow of four oxygenators using a mathematical model and computational fluid dynamics (CFD). Pressure loss and gas transport through diffusion were examined to assess oxygenator design. The oxygenator designs led to a resistance-driven pressure loss range of less than 35 mmHg for flow rates of 1-7 L/min. All of the designs met requirements. The configuration having an outside-to-inside blood flow direction was found to have higher oxygen transport. Based on this advantageous flow direction, two designs (Model 1 and 3) were then integrated with the axial-flow impeller of the TAH for simulation. Flow rates of 1-7 L/min and speeds of 10,000-16,000 RPM were analyzed. Blood damage studies were performed, and Model 1 demonstrated the lowest potential for hemolysis. Future work will focus on developing and testing a physical prototype for integration into the new cardiopulmonary assist system.
Collapse
Affiliation(s)
- Steven G. Chopski
- BioCirc Research Laboratory, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Krianthan Govender
- BioCirc Research Laboratory, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Alexandra May
- Department of Bioengineering, McGowan Institute for Regenerative Medicine, Swanson School of Engineering, University, Pittsburgh, Pennsylvania, USA
| | - Ellen Garven
- BioCirc Research Laboratory, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Randy M. Stevens
- College of Medicine, St. Christopher’s Hospital for Children, Drexel University, Philadelphia, Pennsylvania, USA
| | | | - Amy L. Throckmorton
- BioCirc Research Laboratory, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Hesselmann F, Halwes M, Bongartz P, Wessling M, Cornelissen C, Schmitz-Rode T, Steinseifer U, Jansen SV, Arens J. TPMS-based membrane lung with locally-modified permeabilities for optimal flow distribution. Sci Rep 2022; 12:7160. [PMID: 35504939 PMCID: PMC9065140 DOI: 10.1038/s41598-022-11175-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Abstract
Membrane lungs consist of thousands of hollow fiber membranes packed together as a bundle. The devices often suffer from complications because of non-uniform flow through the membrane bundle, including regions of both excessively high flow and stagnant flow. Here, we present a proof-of-concept design for a membrane lung containing a membrane module based on triply periodic minimal surfaces (TPMS). By warping the original TPMS geometries, the local permeability within any region of the module could be raised or lowered, allowing for the tailoring of the blood flow distribution through the device. By creating an iterative optimization scheme for determining the distribution of streamwise permeability inside a computational porous domain, the desired form of a lattice of TPMS elements was determined via simulation. This desired form was translated into a computer-aided design (CAD) model for a prototype device. The device was then produced via additive manufacturing in order to test the novel design against an industry-standard predicate device. Flow distribution was verifiably homogenized and residence time reduced, promising a more efficient performance and increased resistance to thrombosis. This work shows the promising extent to which TPMS can serve as a new building block for exchange processes in medical devices.
Collapse
Affiliation(s)
- Felix Hesselmann
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstr. 20, 52074, Aachen, Germany.
| | - Michael Halwes
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstr. 20, 52074, Aachen, Germany
| | - Patrick Bongartz
- Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Matthias Wessling
- Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany.,DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Christian Cornelissen
- Department of Pneumology and Internal Intensive Care Medicine, Medical Clinic V, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Thomas Schmitz-Rode
- Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstr. 20, 52074, Aachen, Germany
| | - Ulrich Steinseifer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstr. 20, 52074, Aachen, Germany
| | - Sebastian Victor Jansen
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstr. 20, 52074, Aachen, Germany
| | - Jutta Arens
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstr. 20, 52074, Aachen, Germany.,Chair of Engineering Organ Support Technologies, Department of Biomechanical Engineering, Faculty of Engineering, Technology University of Twente, Enschede, The Netherlands
| |
Collapse
|
5
|
Hesselmann F, Arnemann D, Bongartz P, Wessling M, Cornelissen C, Schmitz-Rode T, Steinseifer U, Jansen SV, Arens J. Three-dimensional membranes for artificial lungs: Comparison of flow-induced hemolysis. Artif Organs 2021; 46:412-426. [PMID: 34606117 DOI: 10.1111/aor.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/11/2021] [Accepted: 09/22/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Membranes based on triply periodic minimal surfaces (TPMS) have proven a superior gas transfer compared to the contemporary hollow fiber membrane (HFM) design in artificial lungs. The improved oxygen transfer is attributed to disrupting the laminar boundary layer adjacent to the membrane surface known as main limiting factor to mass transport. However, it requires experimental proof that this improvement is not at the expense of greater damage to the blood. Hence, the aim of this work is a valid statement regarding the structure-dependent hemolytic behavior of TPMS structures compared to the current HFM design. METHODS Hemolysis tests were performed on structure samples of three different kind of TPMS-based designs (Schwarz-P, Schwarz-D and Schoen's Gyroid) in direct comparison to a hollow fiber structure as reference. RESULTS The results of this study suggest that the difference in hemolysis between TPMS membranes compared to HFMs is small although slightly increased for the TPMS membranes. There is no significant difference between the TPMS structures and the hollow fiber design. Nevertheless, the ratio between the achieved additional oxygen transfer and the additional hemolysis favors the TPMS-based membrane shapes. CONCLUSION TPMS-shaped membranes offer a safe way to improve gas transfer in artificial lungs.
Collapse
Affiliation(s)
- Felix Hesselmann
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Daniel Arnemann
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Patrick Bongartz
- Chair of Chemical Process Engineering, RWTH Aachen University, Aachen, Germany
| | - Matthias Wessling
- Chair of Chemical Process Engineering, RWTH Aachen University, Aachen, Germany.,DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Aachen, Germany
| | - Christian Cornelissen
- Department of Pneumology and Internal Intensive Care Medicine, Medical Clinic V, RWTH Aachen University Hospital, Aachen, Germany
| | - Thomas Schmitz-Rode
- Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Ulrich Steinseifer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Sebastian Victor Jansen
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Jutta Arens
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany.,Chair of Engineering Organ Support Technologies, Department of Biomechanical Engineering, Faculty of Engineering, Technology University of Twente, Twente, The Netherlands
| |
Collapse
|
6
|
Kaesler A, Rudawski FL, Zander MO, Hesselmann F, Pinar I, Schmitz-Rode T, Arens J, Steinseifer U, Clauser JC. In-Vitro Visualization of Thrombus Growth in Artificial Lungs Using Real-Time X-Ray Imaging: A Feasibility Study. Cardiovasc Eng Technol 2021; 13:318-330. [PMID: 34532837 PMCID: PMC9114054 DOI: 10.1007/s13239-021-00579-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 09/03/2021] [Indexed: 01/10/2023]
Abstract
PURPOSE Extracorporeal membrane oxygenation has gained increasing attention in the treatment of patients with acute and chronic cardiopulmonary and respiratory failure. However, clotting within the oxygenators or other components of the extracorporeal circuit remains a major complication that necessitates at least a device exchange and bears risks of adverse events for the patients. In order to better predict thrombus growth within oxygenators, we present an approach for in-vitro visualization of thrombus growth using real-time X-ray imaging. METHODS An in-vitro test setup was developed using low-dose anticoagulated ovine blood and allowing for thrombus growth within 4 h. The setup was installed in a custom-made X-ray setup that uses phase-contrast for imaging, thus providing enhanced soft-tissue contrast, which improves the differentiation between blood and potential thrombus growth. During experimentation, blood samples were drawn for the analysis of blood count, activated partial thromboplastin time and activated clotting time. Additionally, pressure and flow data was monitored and a full 360° X-ray scan was performed every 15 min. RESULTS Thrombus formation indicated by a pressure drop and changing blood parameters was monitored in all three test devices. Red and white thrombi (higher/lower attenuation, respectively) were successfully segmented in one set of X-ray images. CONCLUSION We showed the feasibility of a new in-vitro method for real-time thrombus growth visualization by means of phase contrast X-ray imaging. In addition, with more blood parameters that are clinically relevant, this approach might contribute to improved oxygenator exchange protocols in the clinical routine.
Collapse
Affiliation(s)
- Andreas Kaesler
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Freya Lilli Rudawski
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Mark Oliver Zander
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Felix Hesselmann
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Isaac Pinar
- Monash Institute of Medical Engineering and Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Australia
| | - Thomas Schmitz-Rode
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Jutta Arens
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty RWTH Aachen University, Aachen, Germany.,Chair of Engineering Organ Support Technologies, Department of Biomechanical Engineering, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands
| | - Ulrich Steinseifer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty RWTH Aachen University, Aachen, Germany.,Monash Institute of Medical Engineering and Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Australia
| | - Johanna Charlotte Clauser
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
7
|
|
8
|
Arens J, Grottke O, Haverich A, Maier LS, Schmitz-Rode T, Steinseifer U, Wendel H, Rossaint R. Toward a Long-Term Artificial Lung. ASAIO J 2020; 66:847-854. [PMID: 32740342 PMCID: PMC7386861 DOI: 10.1097/mat.0000000000001139] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Only a very small portion of end-stage organ failures can be treated by transplantation because of the shortage of donor organs. Although artificial long-term organ support such as ventricular assist devices provide therapeutic options serving as a bridge-to-transplantation or destination therapy for end-stage heart failure, suitable long-term artificial lung systems are still at an early stage of development. Although a short-term use of an extracorporeal lung support is feasible today, the currently available technical solutions do not permit the long-term use of lung replacement systems in terms of an implantable artificial lung. This is currently limited by a variety of factors: biocompatibility problems lead to clot formation within the system, especially in areas with unphysiological flow conditions. In addition, proteins, cells, and fibrin are deposited on the membranes, decreasing gas exchange performance and thus, limiting long-term use. Coordinated basic and translational scientific research to solve these problems is therefore necessary to enable the long-term use and implantation of an artificial lung. Strategies for improving the biocompatibility of foreign surfaces, for new anticoagulation regimes, for optimization of gas and blood flow, and for miniaturization of these systems must be found. These strategies must be validated by in vitro and in vivo tests, which remain to be developed. In addition, the influence of long-term support on the pathophysiology must be considered. These challenges require well-connected interdisciplinary teams from the natural and material sciences, engineering, and medicine, which take the necessary steps toward the development of an artificial implantable lung.
Collapse
Affiliation(s)
- Jutta Arens
- From the Chair in Engineering Organ Support Technologies, Department of Biomechanical Engineering, Faculty of Engineering Technologies, University of Twente, Enschede, The Netherlands
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty
| | - Oliver Grottke
- Department of Anesthesiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Axel Haverich
- Thoracic, Cardiac and Vascular Surgery, Medizinische Hochschule Hannover, Hannover, Germany
| | - Lars S. Maier
- Internal Medicine II, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Thomas Schmitz-Rode
- Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ulrich Steinseifer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty
| | - H.P. Wendel
- Thoracic, Cardiac and Vascular Surgery, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Rolf Rossaint
- Department of Anesthesiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
9
|
Conway RG, Zhang J, Jeudy J, Evans C, Li T, Wu ZJ, Griffith BP. Computed tomography angiography as an adjunct to computational fluid dynamics for prediction of oxygenator thrombus formation. Perfusion 2020; 36:285-292. [PMID: 32723149 DOI: 10.1177/0267659120944105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Extracorporeal membrane oxygenation circuit performance can be compromised by oxygenator thrombosis. Stagnant blood flow in the oxygenator can increase the risk of thrombus formation. To minimize thrombogenic potential, computational fluid dynamics is frequently applied for identification of stagnant flow conditions. We investigate the use of computed tomography angiography to identify flow patterns associated with thrombus formation. METHODS A computed tomography angiography was performed on a Quadrox D oxygenator, and video densitometric parameters associated with flow stagnation were measured from the acquired videos. Computational fluid dynamics analysis of the same oxygenator was performed to establish computational fluid dynamics-based flow characteristics. Forty-one Quadrox D oxygenators were sectioned following completion of clinical use. Section images were analyzed with software to determine oxygenator clot burden. Linear regression was used to correlate clot burden to computed tomography angiography and computational fluid dynamics-based flow characteristics. RESULTS Clot burden from the explanted oxygenators demonstrated a well-defined pattern, with the largest clot burden at the corner opposite the blood inlet and outlet. The regression model predicted clot burden by region of interest as a function of time to first opacification on computed tomography angiography (R2 = 0.55). The explanted oxygenator clot burden map agreed well with the computed tomography angiography predicted clot burden map. The computational fluid dynamics parameter of residence time, when summed in the Z-direction, was partially predictive of clot burden (R2 = 0.35). CONCLUSION In the studied oxygenator, clot burden follows a pattern consistent with clinical observations. Computed tomography angiography-based flow analysis provides a useful adjunct to computational fluid dynamics-based flow analysis in understanding oxygenator thrombus formation.
Collapse
Affiliation(s)
- Robert G Conway
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jiafeng Zhang
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jean Jeudy
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Charles Evans
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tieluo Li
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zhongjun Jon Wu
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, USA
| | - Bartley P Griffith
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Kaesler A, Rosen M, Schmitz-Rode T, Steinseifer U, Arens J. Computational Modeling of Oxygen Transfer in Artificial Lungs. Artif Organs 2018; 42:786-799. [DOI: 10.1111/aor.13146] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/18/2018] [Accepted: 02/20/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Andreas Kaesler
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute; RWTH Aachen University; Aachen Germany
| | - Marius Rosen
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute; RWTH Aachen University; Aachen Germany
| | - Thomas Schmitz-Rode
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute; RWTH Aachen University; Aachen Germany
| | - Ulrich Steinseifer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute; RWTH Aachen University; Aachen Germany
- Monash Institute of Medical Engineering and Department of Mechanical and Aerospace Engineering; Monash University; Melbourne Australia
| | - Jutta Arens
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute; RWTH Aachen University; Aachen Germany
| |
Collapse
|
11
|
Schraven L, Kaesler A, Flege C, Kopp R, Schmitz-Rode T, Steinseifer U, Arens J. Effects of Pulsatile Blood Flow on Oxygenator Performance. Artif Organs 2018; 42:410-419. [DOI: 10.1111/aor.13088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Lotte Schraven
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering; RWTH Aachen University; Aachen Germany
| | - Andreas Kaesler
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering; RWTH Aachen University; Aachen Germany
| | - Christian Flege
- Department of Intensive Care; University Hospital, RWTH Aachen University; Aachen Germany
| | - Rüdger Kopp
- Department of Intensive Care; University Hospital, RWTH Aachen University; Aachen Germany
| | - Thomas Schmitz-Rode
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering; RWTH Aachen University; Aachen Germany
| | - Ulrich Steinseifer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering; RWTH Aachen University; Aachen Germany
| | - Jutta Arens
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering; RWTH Aachen University; Aachen Germany
| |
Collapse
|
12
|
Experimental quantification of the fluid dynamics in blood-processing devices through 4D-flow imaging: A pilot study on a real oxygenator/heat-exchanger module. J Biomech 2018; 68:14-23. [PMID: 29279196 DOI: 10.1016/j.jbiomech.2017.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 11/03/2017] [Accepted: 12/07/2017] [Indexed: 11/21/2022]
Abstract
The performance of blood-processing devices largely depends on the associated fluid dynamics, which hence represents a key aspect in their design and optimization. To this aim, two approaches are currently adopted: computational fluid-dynamics, which yields highly resolved three-dimensional data but relies on simplifying assumptions, and in vitro experiments, which typically involve the direct video-acquisition of the flow field and provide 2D data only. We propose a novel method that exploits space- and time-resolved magnetic resonance imaging (4D-flow) to quantify the complex 3D flow field in blood-processing devices and to overcome these limitations. We tested our method on a real device that integrates an oxygenator and a heat exchanger. A dedicated mock loop was implemented, and novel 4D-flow sequences with sub-millimetric spatial resolution and region-dependent velocity encodings were defined. Automated in house software was developed to quantify the complex 3D flow field within the different regions of the device: region-dependent flow rates, pressure drops, paths of the working fluid and wall shear stresses were computed. Our analysis highlighted the effects of fine geometrical features of the device on the local fluid-dynamics, which would be unlikely observed by current in vitro approaches. Also, the effects of non-idealities on the flow field distribution were captured, thanks to the absence of the simplifying assumptions that typically characterize numerical models. To the best of our knowledge, our approach is the first of its kind and could be extended to the analysis of a broad range of clinically relevant devices.
Collapse
|
13
|
Kaesler A, Schlanstein PC, Hesselmann F, Büsen M, Klaas M, Roggenkamp D, Schmitz-Rode T, Steinseifer U, Arens J. Experimental Approach to Visualize Flow in a Stacked Hollow Fiber Bundle of an Artificial Lung With Particle Image Velocimetry. Artif Organs 2016; 41:529-538. [DOI: 10.1111/aor.12812] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/06/2016] [Accepted: 06/27/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Andreas Kaesler
- Department of Cardiovascular Engineering; Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University; Aachen Germany
| | - Peter C. Schlanstein
- Department of Cardiovascular Engineering; Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University; Aachen Germany
| | - Felix Hesselmann
- Department of Cardiovascular Engineering; Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University; Aachen Germany
| | - Martin Büsen
- Department of Cardiovascular Engineering; Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University; Aachen Germany
| | - Michael Klaas
- Institute of Aerodynamics, RWTH Aachen University; Aachen Germany
| | | | - Thomas Schmitz-Rode
- Department of Cardiovascular Engineering; Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University; Aachen Germany
| | - Ulrich Steinseifer
- Department of Cardiovascular Engineering; Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University; Aachen Germany
| | - Jutta Arens
- Department of Cardiovascular Engineering; Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University; Aachen Germany
| |
Collapse
|