1
|
Lefevre E, Le Quang M, Jecko V, Nogues M, Liguoro D, Bielle F, Roblot P. Comparative microanatomy and histology of spinal and cerebral veins: Implications for dural arteriovenous fistula clinical presentations. Tissue Cell 2024; 91:102597. [PMID: 39481222 DOI: 10.1016/j.tice.2024.102597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Cranial dural arteriovenous fistulas (DAVFs) that display cortical venous drainage are at risk of hemorrhage, unlike spinal DAVFs, which seldom bleed. The underlying mechanism for this difference is poorly understood. We hypothesized that cerebral veins are more fragile than spinal veins due to differences in histologic compositions. Thus, spinal and cerebral veins from five formalin-fixed human cadavers were examined through macroscopic and histological analysis, using hematoxylin, eosin and safran (HES), and orcein stains to compare them. Twenty-four cerebral veins and thirteen spinal veins were analyzed. The mean diameter of the cerebral veins was 1.02 ± 0.59 mm, while that of spinal veins was 0.52 ± 0.26 mm (p = 0.003). The mean thickness of cerebral veins was similar to their spinal counterparts (0.09 ± 0.07 mm vs 0.06 ± 0.02 mm; p = 0.12). The mean diameter-to-thickness ratio was 13.76 ± 6.05 mm for cerebral veins and 10.06 ± 7.23 mm for spinal veins (p = 0.023). In most of the analyzed vessels, the venous wall was composed of endothelial cells resting on layers of smooth muscle, separated by elastica lamina. Cerebral and spinal veins exhibit distinct calibers while maintaining comparable wall thicknesses, resulting in a greater diameter-to-thickness ratio for cerebral veins compared to spinal veins. This difference may after their resistance to pressure. Furthermore, variations in the transparietal pressure gradient between cranial and spinal subarachnoid space, along with differences in arterial blood flow through the fistulous veins, might contribute to the observed differences in clinical presentation.
Collapse
Affiliation(s)
- Etienne Lefevre
- Department of Neurosurgery, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France; Laboratory of Anatomy, University of Bordeaux, Bordeaux, France.
| | - Mégane Le Quang
- Department of Pathology, University Hospital of Bordeaux, Place Amélie Raba-Léon, Bordeaux, France
| | - Vincent Jecko
- Laboratory of Anatomy, University of Bordeaux, Bordeaux, France; Neurosurgery Department A, Place Amélie Raba-Léon, Bordeaux, France
| | - Maxime Nogues
- Laboratory of Anatomy, University of Bordeaux, Bordeaux, France
| | - Dominique Liguoro
- Laboratory of Anatomy, University of Bordeaux, Bordeaux, France; Neurosurgery Department A, Place Amélie Raba-Léon, Bordeaux, France
| | - Franck Bielle
- Department of Neuropathology, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Paul Roblot
- Laboratory of Anatomy, University of Bordeaux, Bordeaux, France; University Hospital of Bordeaux, Place Amélie Raba-Léon, Bordeaux, France; Neurosurgery Department A, Place Amélie Raba-Léon, Bordeaux, France
| |
Collapse
|
2
|
Mourato A, Valente R, Xavier J, Brito M, Avril S, Tomás AC, Fragata J. Comparative analysis of Zero Pressure Geometry and prestress methods in cardiovascular Fluid-Structure Interaction. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108475. [PMID: 39499982 DOI: 10.1016/j.cmpb.2024.108475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND OBJECTIVE Modelling patient-specific aortic biomechanics with advanced computational techniques, such as Fluid-Structure Interaction (FSI), can be crucial to provide effective decision-making indices to enhance current clinical practices. To effectively simulate Ascending Thoracic Aortic Aneurysms (ATAA), the stress-free configuration must be defined. The Zero Pressure Geometry (ZPG) and the Prestress Tensor (PT) are two of the main approaches to tackle this issue. However, their impact on the numerical results is yet to be analysed. Computed Tomography Angiography (CTA) and Magnetic Resonance Imaging (MRI) data were used to develop patient-specific 2-way FSI frameworks. METHODS Three models were developed considering different tissue prestressing approaches to account for the reference configuration and their numerical results were compared. The selected approaches were: (i) ZPG, (ii) PT and (iii) a combination of the PT approach with a regional mapping of material properties (PTCAL). RESULTS The pressure fields estimated by all models were equivalent. The estimation of Wall Shear Stress (WSS) based metrics revealed good correspondence between all models except the Relative Residence Time (RRT). Regarding ATAA wall mechanics, the proposed extension to the PT approach presented a closer agreement with the ZPG model than its counterpart. Additionally, the PT and PTCAL approaches required around 60% fewer iterations to achieve cycle-to-cycle convergence than the ZPG algorithm. CONCLUSION Using a regional mapping of material properties in combination with the PT method presented a better correspondence with the ZPG approach. The outcomes of this study can pave the way for advancing the accuracy and convergence of ATAA numerical models using the PT methodology.
Collapse
Affiliation(s)
- André Mourato
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus da Caparica, Caparica 2829-516, Portugal; Intelligent Systems Associate Laboratory, Campus Azurém, Guimarães 4800-058, Portugal.
| | - Rodrigo Valente
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus da Caparica, Caparica 2829-516, Portugal; Intelligent Systems Associate Laboratory, Campus Azurém, Guimarães 4800-058, Portugal.
| | - José Xavier
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus da Caparica, Caparica 2829-516, Portugal; Intelligent Systems Associate Laboratory, Campus Azurém, Guimarães 4800-058, Portugal.
| | - Moisés Brito
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus da Caparica, Caparica 2829-516, Portugal; Intelligent Systems Associate Laboratory, Campus Azurém, Guimarães 4800-058, Portugal.
| | - Stéphane Avril
- École des Mines de Saint-Étienne, University of Lyon, Inserm, Sainbiose U1059, Centre Ingénierie et Santé 10, rue de la Marandière, Saint-Etienne F-42270, France.
| | - António C Tomás
- Department of Cardiothoracic Surgery, Santa Marta Hospital, Rua de Santa Marta 50, Lisboa 1169-024, Portugal.
| | - José Fragata
- Department of Cardiothoracic Surgery, Santa Marta Hospital, Rua de Santa Marta 50, Lisboa 1169-024, Portugal; Department of Surgery and Human Morphology, NOVA Medical School, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, Lisboa 1169-056, Portugal.
| |
Collapse
|
3
|
Musharaf HM, Roshan U, Mudugamuwa A, Trinh QT, Zhang J, Nguyen NT. Computational Fluid-Structure Interaction in Microfluidics. MICROMACHINES 2024; 15:897. [PMID: 39064408 PMCID: PMC11278627 DOI: 10.3390/mi15070897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Micro elastofluidics is a transformative branch of microfluidics, leveraging the fluid-structure interaction (FSI) at the microscale to enhance the functionality and efficiency of various microdevices. This review paper elucidates the critical role of advanced computational FSI methods in the field of micro elastofluidics. By focusing on the interplay between fluid mechanics and structural responses, these computational methods facilitate the intricate design and optimisation of microdevices such as microvalves, micropumps, and micromixers, which rely on the precise control of fluidic and structural dynamics. In addition, these computational tools extend to the development of biomedical devices, enabling precise particle manipulation and enhancing therapeutic outcomes in cardiovascular applications. Furthermore, this paper addresses the current challenges in computational FSI and highlights the necessity for further development of tools to tackle complex, time-dependent models under microfluidic environments and varying conditions. Our review highlights the expanding potential of FSI in micro elastofluidics, offering a roadmap for future research and development in this promising area.
Collapse
Affiliation(s)
- Hafiz Muhammad Musharaf
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
| | - Uditha Roshan
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
| | - Amith Mudugamuwa
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
| | - Quang Thang Trinh
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
| | - Jun Zhang
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
- School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
| |
Collapse
|
4
|
Fortunato RN, Huckaby LV, Emerel LV, Schlosser V, Yang F, Phillippi JA, Vorp DA, Maiti S, Gleason TG. The predictive capability of aortic stiffness index for aortic dissection among dilated ascending aortas. J Thorac Cardiovasc Surg 2024; 167:2015-2024. [PMID: 36207164 PMCID: PMC10225159 DOI: 10.1016/j.jtcvs.2022.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/19/2022] [Accepted: 09/01/2022] [Indexed: 10/14/2022]
Abstract
OBJECTIVE We created a finite element model to predict the probability of dissection based on imaging-derived aortic stiffness and investigated the link between stiffness and wall tensile stress using our model. METHODS Transthoracic echocardiogram measurements were used to calculate aortic diameter change over the cardiac cycle. Aortic stiffness index was subsequently calculated based on diameter change and blood pressure. A series of logistic models were developed to predict the binary outcome of aortic dissection using 1 or more series of predictor parameters such as aortic stiffness index or patient characteristics. Finite element analysis was performed on a subset of diameter-matched patients exhibiting patient-specific material properties. RESULTS Transthoracic echocardiogram scans of patients with type A aortic dissection (n = 22) exhibited elevated baseline aortic stiffness index when compared with aneurysmal patients' scans with tricuspid aortic valve (n = 83, P < .001) and bicuspid aortic valve (n = 80, P < .001). Aortic stiffness index proved an excellent discriminator for a future dissection event (area under the curve, 0.9337, odds ratio, 2.896). From the parametric finite element study, we found a correlation between peak longitudinal wall tensile stress and stiffness index (ρ = .6268, P < .001, n = 28 pooled). CONCLUSIONS Noninvasive transthoracic echocardiogram-derived aortic stiffness measurements may serve as an impactful metric toward predicting aortic dissection or quantifying dissection risk. A correlation between longitudinal stress and stiffness establishes an evidence-based link between a noninvasive stiffness parameter and stress state of the aorta with clinically apparent dissection events.
Collapse
Affiliation(s)
- Ronald N Fortunato
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pa
| | - Lauren V Huckaby
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Leonid V Emerel
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Virginia Schlosser
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pa
| | - Fan Yang
- Department of Statistics, University of Pittsburgh School of Public Health, Pittsburgh, Pa
| | - Julie A Phillippi
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pa; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pa; McGowan Institute for Regenerative Medicine, Pittsburgh, Pa
| | - David A Vorp
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pa; Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pa; Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pa; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pa; McGowan Institute for Regenerative Medicine, Pittsburgh, Pa; Department of Chemical and Petroleum Engineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pa; Asheville Heart, Asheville, NC
| | - Spandan Maiti
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pa; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pa; Department of Chemical and Petroleum Engineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pa
| | - Thomas G Gleason
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pa; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pa; Asheville Heart, Asheville, NC.
| |
Collapse
|
5
|
Silva NP, Amin B, Dunne E, Hynes N, O’Halloran M, Elahi A. Implantable Pressure-Sensing Devices for Monitoring Abdominal Aortic Aneurysms in Post-Endovascular Aneurysm Repair. SENSORS (BASEL, SWITZERLAND) 2024; 24:3526. [PMID: 38894317 PMCID: PMC11175030 DOI: 10.3390/s24113526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
Over the past two decades, there has been extensive research into surveillance methods for the post-endovascular repair of abdominal aortic aneurysms, highlighting the importance of these technologies in supplementing or even replacing conventional image-screening modalities. This review aims to provide an overview of the current status of alternative surveillance solutions for endovascular aneurysm repair, while also identifying potential aneurysm features that could be used to develop novel monitoring technologies. It offers a comprehensive review of these recent clinical advances, comparing new and standard clinical practices. After introducing the clinical understanding of abdominal aortic aneurysms and exploring current treatment procedures, the paper discusses the current surveillance methods for endovascular repair, contrasting them with recent pressure-sensing technologies. The literature on three commercial pressure-sensing devices for post-endovascular repair surveillance is analyzed. Various pre-clinical and clinical studies assessing the safety and efficacy of these devices are reviewed, providing a comparative summary of their outcomes. The review of the results from pre-clinical and clinical studies suggests a consistent trend of decreased blood pressure in the excluded aneurysm sac post-repair. However, despite successful pressure readings from the aneurysm sac, no strong link has been established to translate these measurements into the presence or absence of endoleaks. Furthermore, the results do not allow for a conclusive determination of ongoing aneurysm sac growth. Consequently, a strong clinical need persists for monitoring endoleaks and aneurysm growth following endovascular repair.
Collapse
Affiliation(s)
- Nuno P. Silva
- Translational Medical Device Lab, University of Galway, H91 TK33 Galway, Ireland; (B.A.); (E.D.); (M.O.)
- Electrical and Electronic Engineering, University of Galway, H91 TK33 Galway, Ireland
| | - Bilal Amin
- Translational Medical Device Lab, University of Galway, H91 TK33 Galway, Ireland; (B.A.); (E.D.); (M.O.)
- Electrical and Electronic Engineering, University of Galway, H91 TK33 Galway, Ireland
- School of Medicine, University of Galway, H91 TK33 Galway, Ireland
| | - Eoghan Dunne
- Translational Medical Device Lab, University of Galway, H91 TK33 Galway, Ireland; (B.A.); (E.D.); (M.O.)
- Electrical and Electronic Engineering, University of Galway, H91 TK33 Galway, Ireland
- School of Medicine, University of Galway, H91 TK33 Galway, Ireland
| | - Niamh Hynes
- Western Vascular Institute, Galway Clinic, Doughiska Road, H91 HHT0 Galway, Ireland;
| | - Martin O’Halloran
- Translational Medical Device Lab, University of Galway, H91 TK33 Galway, Ireland; (B.A.); (E.D.); (M.O.)
- Electrical and Electronic Engineering, University of Galway, H91 TK33 Galway, Ireland
- School of Medicine, University of Galway, H91 TK33 Galway, Ireland
| | - Adnan Elahi
- Translational Medical Device Lab, University of Galway, H91 TK33 Galway, Ireland; (B.A.); (E.D.); (M.O.)
- Electrical and Electronic Engineering, University of Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
6
|
Schoenborn S, Pirola S, Woodruff MA, Allenby MC. Fluid-Structure Interaction Within Models of Patient-Specific Arteries: Computational Simulations and Experimental Validations. IEEE Rev Biomed Eng 2024; 17:280-296. [PMID: 36260570 DOI: 10.1109/rbme.2022.3215678] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality worldwide and its incidence is rising due to an aging population. The development and progression of CVD is directly linked to adverse vascular hemodynamics and biomechanics, whose in-vivo measurement remains challenging but can be simulated numerically and experimentally. The ability to evaluate these parameters in patient-specific CVD cases is crucial to better predict future disease progression, risk of adverse events, and treatment efficacy. While significant progress has been made toward patient-specific hemodynamic simulations, blood vessels are often assumed to be rigid, which does not consider the compliant mechanical properties of vessels whose malfunction is implicated in disease. In an effort to simulate the biomechanics of flexible vessels, fluid-structure interaction (FSI) simulations have emerged as promising tools for the characterization of hemodynamics within patient-specific cardiovascular anatomies. Since FSI simulations combine the blood's fluid domain with the arterial structural domain, they pose novel challenges for their experimental validation. This paper reviews the scientific work related to FSI simulations for patient-specific arterial geometries and the current standard of FSI model validation including the use of compliant arterial phantoms, which offer novel potential for the experimental validation of FSI results.
Collapse
|
7
|
Qiao Y, Luo K, Fan J. Heat transfer mechanism in idealized healthy and diseased aortas using fluid-structure interaction method. Biomech Model Mechanobiol 2023; 22:1953-1964. [PMID: 37481471 DOI: 10.1007/s10237-023-01745-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023]
Abstract
The heat transfer mechanism inside the human aorta may be related to the physiological function and lesion formation of the aortic wall. The objective of this study was to acquire the temperature distribution in the three-dimensional idealized aorta. An idealized healthy aortic geometry and three representative diseased aortas: aortic aneurysm, coarctation of the aorta, and aortic dissection were constructed. Advanced fluid-structure interaction (FSI) computational framework was applied to predict the aortic temperature distribution. The movement of the aortic root due to the heartbeat was also considered. The displacement distribution of the aortic vessel wall was consistent with clinical observation. The lesser curvature of the aortic arch, aneurysm body, coarctation region, and false lumen were all exposed to relatively high temperatures (over 310.006 K). We found that the rigid wall assumption slightly underestimated the magnitude of the whole aortic wall-averaged temperature while the changing trend and local temperature were like the results of the FSI method. Besides, the wall-averaged temperature would increase and the temperature inflection point would advance when the aortic vessel wall was loaded with a high heat flux. This pilot study revealed the aortic heat transfer mechanism and temperature distribution, and the findings may help to understand the physiological characteristics of the aortic vessel wall.
Collapse
Affiliation(s)
- Yonghui Qiao
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, 310027, Hangzhou, China
| | - Kun Luo
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, 310027, Hangzhou, China.
- Shanghai Institute for Advanced Study of Zhejiang University, Shanghai, China.
| | - Jianren Fan
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, 310027, Hangzhou, China
- Shanghai Institute for Advanced Study of Zhejiang University, Shanghai, China
| |
Collapse
|
8
|
da Silva MLF, de Freitas Gonçalves S, Costa MCB, Huebner R, Navarro TP. Structural numerical analysis of a branched modular stent-graft for aneurysms encompassing all zones of the aortic arch. J Mech Behav Biomed Mater 2023; 147:106135. [PMID: 37769370 DOI: 10.1016/j.jmbbm.2023.106135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023]
Abstract
The development of stent-grafts for the total repair of aneurysms in the aortic arch is still a technical challenge due mainly to the anatomical complexity of this region. Research performed here structurally evaluated a modular branched stent-graft for aneurysms encompassing all zones of the aortic arch by means of numerical simulations using fluid-structure interaction. The geometric domain obtained by means of computed tomography was subjected to physiological boundary conditions. The blood was modelled as non-Newtonian by the Carreau model, and the arterial wall was modelled as anisotropic hyperelastic by the Holzapfel model. The material adopted for the stents was Nitinol, and expanded polytetrafluoroethylene (ePTFE) was used for the graft. A comparison of the structural behaviour of the aneurysmal aortic arch before and after stent-graft implantation was performed. The numerical flow model was experimentally verified in vitro on a representative test bench of blood flow in the aortic arch. The stent-graft was shown to minimally modify arterial wall dynamics and was not susceptible to migration and endoleak. Peak stresses and strains were found in the stents and graft, respectively, while the stresses in the aneurysm sac were significantly reduced, of the order of 97.5%, due to the isolation of the arterial wall by the stent-graft.
Collapse
Affiliation(s)
- Mário Luis Ferreira da Silva
- Graduate Programme in Mechanical Engineering, Department of Mechanical Engineering, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, 31270-901 Pampulha, Belo Horizonte, Minas Gerais, Brazil.
| | - Saulo de Freitas Gonçalves
- Graduate Programme in Mechanical Engineering, Department of Mechanical Engineering, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, 31270-901 Pampulha, Belo Horizonte, Minas Gerais, Brazil.
| | - Matheus Carvalho Barbosa Costa
- Graduate Programme in Mechanical Engineering, Department of Mechanical Engineering, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, 31270-901 Pampulha, Belo Horizonte, Minas Gerais, Brazil.
| | - Rudolf Huebner
- Department of Mechanical Engineering, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, 31270-901 Pampulha, Belo Horizonte, Minas Gerais, Brazil.
| | - Túlio Pinho Navarro
- Faculty of Medicine, Department of Surgery, Universidade Federal de Minas Gerais, Avenida Professor Alfredo Balena, 190, 30130-100 Santa Efigênia, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
9
|
Luan J, Qiao Y, Mao L, Fan J, Zhu T, Luo K. The role of aorta distal to stent in the occurrence of distal stent graft-induced new entry tear: A computational fluid dynamics and morphological study. Comput Biol Med 2023; 166:107554. [PMID: 37839217 DOI: 10.1016/j.compbiomed.2023.107554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/04/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023]
Abstract
Distal stent graft-induced new entry tear (dSINE) is an important complication of thoracic endovascular aortic repair (TEVAR) for the treatment of type B aortic dissection (TBAD). This study aims to explore whether the aorta distal to the stent plays an important role in the occurrence of dSINE. Sixty-nine patient-specific geometrical models of twenty-three enrolled patients were reconstructed from preoperative, postoperative, and predSINE computed tomography scans. Computational fluid dynamics (CFD) simulations were performed to calculate the von Mises stress in the CFD group. Meanwhile, morphological measurements were performed in all patients, including measurements of the inverted pyramid index at different follow-up time points and the postoperative true lumen volume change rate. In the CFD study, the time-averaged von Mises stress of the true lumen distal to the stent in dSINE patients was significantly higher than that in the CFD controls (20.42 kPa vs. 15.47 kPa). In the morphological study, a special aortic plane (plane A) with an extremely small area distal to the stent was observed in dSINE patients, which resulted in an inverted pyramid structure in the true lumen distal to the stent. This structure in dSINE patients became increasingly obvious during the follow-up period and finally reached the maximum value before dSINE occurred (mean, 3.91 vs. 1.23). At the same time, enlargement of the true lumen distal to the stent occurs before dSINE, manifesting as a continuous increase in the true lumen volume (mean, 0.70 vs. 013). A new theory of what causes dSINE to occur has been proposed: the inverted pyramid structure of the true lumen distal to the stent caused an increase in the von Mises stress in this region and aortic enlargement, which ultimately led to the occurrence of dSINE.
Collapse
Affiliation(s)
- Jingyang Luan
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yonghui Qiao
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Le Mao
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianren Fan
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China; Shanghai Institute for Advanced Study of Zhejiang University, Shanghai, China
| | - Ting Zhu
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Kun Luo
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China; Shanghai Institute for Advanced Study of Zhejiang University, Shanghai, China.
| |
Collapse
|
10
|
Wiputra H, Matsumoto S, Wagenseil JE, Braverman AC, Voeller RK, Barocas VH. Statistical shape representation of the thoracic aorta: accounting for major branches of the aortic arch. Comput Methods Biomech Biomed Engin 2023; 26:1557-1571. [PMID: 36165506 PMCID: PMC10040462 DOI: 10.1080/10255842.2022.2128672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/24/2022] [Accepted: 09/11/2022] [Indexed: 11/03/2022]
Abstract
Statistical shape modeling (SSM) is an emerging tool for risk assessment of thoracic aortic aneurysm. However, the head branches of the aortic arch are often excluded in SSM. We introduced an SSM strategy based on principal component analysis that accounts for aortic branches and applied it to a set of patient scans. Computational fluid dynamics were performed on the reconstructed geometries to identify the extent to which branch model accuracy affects the calculated wall shear stress (WSS) and pressure. Surface-averaged and location-specific values of pressure did not change significantly, but local WSS error was high near branches when inaccurately modeled.
Collapse
Affiliation(s)
- Hadi Wiputra
- Department of Biomedical Engineering, University of Minnesota
| | - Shion Matsumoto
- Department of Biomedical Engineering, University of Michigan
| | | | - Alan C. Braverman
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine
| | | | | |
Collapse
|
11
|
Salmasi MY, Pirola S, Asimakopoulos G, Nienaber C, Athanasiou T. Risk prediction for thoracic aortic dissection: Is it time to go with the flow? J Thorac Cardiovasc Surg 2023; 166:1034-1042. [PMID: 35672182 DOI: 10.1016/j.jtcvs.2022.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/21/2022] [Accepted: 05/03/2022] [Indexed: 11/26/2022]
Affiliation(s)
- M Yousuf Salmasi
- Department of Surgery, Imperial College London, London, United Kingdom.
| | - Selene Pirola
- BHF Centre of Research Excellence, Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - George Asimakopoulos
- Department of Cardiology, Royal Brompton and Harefield Trust, London, United Kingdom
| | - Christoph Nienaber
- Department of Cardiology, Royal Brompton and Harefield Trust, London, United Kingdom
| | - Thanos Athanasiou
- Department of Surgery, Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Cosentino F, Sherifova S, Sommer G, Raffa G, Pilato M, Pasta S, Holzapfel GA. Regional biomechanical characterization of human ascending aortic aneurysms: Microstructure and biaxial mechanical response. Acta Biomater 2023; 169:107-117. [PMID: 37579911 DOI: 10.1016/j.actbio.2023.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/17/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
The ascending thoracic aortic aneurysm (ATAA) is a permanent dilatation of the vessel with a high risk of adverse events, and shows heterogeneous properties. To investigate regional differences in the biomechanical properties of ATAAs, tissue samples were collected from 10 patients with tricuspid aortic valve phenotype and specimens from minor, anterior, major, and posterior regions were subjected to multi-ratio planar biaxial extension tests and second-harmonic generation (SHG) imaging. Using the data, parameters of a microstructure-motivated constitutive model were obtained considering fiber dispersion. SHG imaging showed disruptions in the organization of the layers. Structural and material parameters did not differ significantly between regions. The non-symmetric fiber dispersion model proposed by Holzapfel et al. [25] was used to fit the data. The mean angle of collagen fibers was negatively correlated between minor and anterior regions, and the parameter associated with collagen fiber stiffness was positively correlated between minor and major regions. Furthermore, correlations were found between the stiffness of the ground matrix and the mean fiber angle, and between the parameter associated with the collagen fiber stiffness and the out-of-plane dispersion parameter in the posterior and minor regions, respectively. The experimental data collected in this study contribute to the biomechanical data available in the literature on human ATAAs. Region-specific parameters for the constitutive models are fundamental to improve the current risk stratification strategies, which are mainly based on aortic size. Such investigations can facilitate the development of more advanced finite element models capable of capturing the regional heterogeneity of pathological tissues. STATEMENT OF SIGNIFICANCE: Tissue samples of human ascending thoracic aortic aneurysms (ATAA) were collected. Samples from four regions underwent multi-ratio planar biaxial extension tests and second-harmonic generation imaging. Region-specific parameters of a microstructure-motivated model considering fiber dispersion were obtained. Structural and material parameters did not differ significantly between regions, however, the mean fiber angle was negatively correlated between minor and anterior regions, and the parameter associated with collagen fiber stiffness was positively correlated between minor and major regions. Furthermore, correlations were found between the stiffness of the ground matrix and the mean fiber angle, and between the parameter associated with the collagen fiber stiffness and the out-of-plane dispersion parameter in the posterior and minor regions, respectively. This study provides a unique set of mechanical and structural data, supporting the microstructural influence on the tissue response. It may facilitate the development of better finite element models capable of capturing the regional tissue heterogeneity.
Collapse
Affiliation(s)
- Federica Cosentino
- Ri.MED Foundation, Palermo, Italy; Department of Engineering, University of Palermo, Italy
| | - Selda Sherifova
- Institute of Biomechanics, Graz University of Technology, Austria
| | - Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, Austria
| | - Giuseppe Raffa
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Palermo, Italy
| | - Michele Pilato
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Palermo, Italy
| | - Salvatore Pasta
- Department of Engineering, University of Palermo, Italy; Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Palermo, Italy
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria; Department of Structural Engineering, Norwegian Institute of Science and Technology (NTNU), Trondheim, Norway.
| |
Collapse
|
13
|
Wang X, Carpenter HJ, Ghayesh MH, Kotousov A, Zander AC, Amabili M, Psaltis PJ. A review on the biomechanical behaviour of the aorta. J Mech Behav Biomed Mater 2023; 144:105922. [PMID: 37320894 DOI: 10.1016/j.jmbbm.2023.105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/14/2023] [Accepted: 05/20/2023] [Indexed: 06/17/2023]
Abstract
Large aortic aneurysm and acute and chronic aortic dissection are pathologies of the aorta requiring surgery. Recent advances in medical intervention have improved patient outcomes; however, a clear understanding of the mechanisms leading to aortic failure and, hence, a better understanding of failure risk, is still missing. Biomechanical analysis of the aorta could provide insights into the development and progression of aortic abnormalities, giving clinicians a powerful tool in risk stratification. The complexity of the aortic system presents significant challenges for a biomechanical study and requires various approaches to analyse the aorta. To address this, here we present a holistic review of the biomechanical studies of the aorta by categorising articles into four broad approaches, namely theoretical, in vivo, experimental and combined investigations. Experimental studies that focus on identifying mechanical properties of the aortic tissue are also included. By reviewing the literature and discussing drawbacks, limitations and future challenges in each area, we hope to present a more complete picture of the state-of-the-art of aortic biomechanics to stimulate research on critical topics. Combining experimental modalities and computational approaches could lead to more comprehensive results in risk prediction for the aortic system.
Collapse
Affiliation(s)
- Xiaochen Wang
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Harry J Carpenter
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Mergen H Ghayesh
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Andrei Kotousov
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Anthony C Zander
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Marco Amabili
- Department of Mechanical Engineering, McGill University, Montreal H3A 0C3, Canada
| | - Peter J Psaltis
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia 5005, Australia; Department of Cardiology, Central Adelaide Local Health Network, Adelaide, South Australia 5000, Australia; Vascular Research Centre, Heart Health Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia
| |
Collapse
|
14
|
Silva MLFDA, Gonçalves SDEF, Haniel J, Lucas TC, Huebner R. Comparative study between 1-way and 2-way coupled fluid-structure interaction in numerical simulation of aortic arch aneurysms. AN ACAD BRAS CIENC 2023; 95:e20210859. [PMID: 37255166 DOI: 10.1590/0001-3765202320210859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/19/2022] [Indexed: 06/01/2023] Open
Abstract
Hemodynamic forces are related to pathological variations of the cardiovascular system, and numerical simulations for fluid-structure interaction have been systematically used to analyze the behavior of blood flow and the arterial wall in aortic aneurysms. This paper proposes a comparative analysis of 1-way and 2-way coupled fluid-structure interaction for aortic arch aneurysm. The coupling models of fluid-structure interaction were conducted using 3D geometry of the thoracic aorta from computed tomography. Hyperelastic anisotropic properties were estimated for the Holzapfel arterial wall model. The rheological behavior of the blood was modeled by the Carreau-Yasuda model. The results showed that the 1-way approach tends to underestimate von Mises stress, displacement, and strain over the entire cardiac cycle, compared to the 2-way approach. In contrast, the behavior of the variables of flow field, velocity, wall shear stress, and Reynolds number when coupled by the 1-way model was overestimated at the systolic moment and tends to be equal at the diastolic moment. The quantitative differences found, especially during the systole, suggest the use of 2-way coupling in numerical simulations of aortic arch aneurysms due to the hyperelastic nature of the arterial wall, which leads to a strong iteration between the fluid and the arterial wall.
Collapse
Affiliation(s)
- Mário Luis F DA Silva
- Programa de Pós-Graduação em Engenharia Mecânica, Universidade Federal de Minas Gerais, Departamento de Engenharia Mecânica, Avenida Presidente Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Saulo DE Freitas Gonçalves
- Programa de Pós-Graduação em Engenharia Mecânica, Universidade Federal de Minas Gerais, Departamento de Engenharia Mecânica, Avenida Presidente Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Jonathas Haniel
- Programa de Pós-Graduação em Engenharia Mecânica, Universidade Federal de Minas Gerais, Departamento de Engenharia Mecânica, Avenida Presidente Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Thabata C Lucas
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Departamento de Enfermagem, MGC 367, km 583, 5000, Alto da Jacuba, 39100-000 Diamantina, MG, Brazil
| | - Rudolf Huebner
- Universidade Federal de Minas Gerais, Departamento de Engenharia Mecânica, Avenida Presidente Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
15
|
Dadras R, Jabbari A, Asl NK, Soltani M, Rafiee F, Parsaee M, Golchin S, Pouraliakbar H, Sadeghipour P, Alimohammadi M. In-silico investigations of haemodynamic parameters for a blunt thoracic aortic injury case. Sci Rep 2023; 13:8355. [PMID: 37221220 DOI: 10.1038/s41598-023-35585-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/20/2023] [Indexed: 05/25/2023] Open
Abstract
Accounting for 1.5% of thoracic trauma, blunt thoracic aortic injury (BTAI) is a rare disease with a high mortality rate that nowadays is treated mostly via thoracic endovascular aortic repair (TEVAR). Personalised computational models based on fluid-solid interaction (FSI) principals not only support clinical researchers in studying virtual therapy response, but also are capable of predicting eventual outcomes. The present work studies the variation of key haemodynamic parameters in a clinical case of BTAI after successful TEVAR, using a two-way FSI model. The three-dimensional (3D) patient-specific geometries of the patient were coupled with three-element Windkessel model for both prior and post intervention cases, forcing a correct prediction of blood flow over each section. Results showed significant improvement in velocity and pressure distribution after stenting. High oscillatory, low magnitude shear (HOLMES) regions require careful examination in future follow-ups, since thrombus formation was confirmed in some previously clinically reported cases of BTAI treated with TEVAR. The strength of swirling flows along aorta was also damped after stent deployment. Highlighting the importance of haemodynamic parameters in case-specific therapies. In future studies, compromising motion of aortic wall due to excessive cost of FSI simulations can be considered and should be based on the objectives of studies to achieve a more clinical-friendly patient-specific CFD model.
Collapse
Affiliation(s)
- Rezvan Dadras
- Department of Mechanical Engineering, K. N. Toosi Univeristy of Technology, Tehran, Iran.
| | - Alireza Jabbari
- Department of Mechanical Engineering, K. N. Toosi Univeristy of Technology, Tehran, Iran
| | - Narges Kamaei Asl
- Department of Mechanical Engineering, K. N. Toosi Univeristy of Technology, Tehran, Iran
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi Univeristy of Technology, Tehran, Iran
| | - Farnaz Rafiee
- Rajaie Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mozhgan Parsaee
- Rajaie Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shadi Golchin
- Rajaie Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Pouraliakbar
- Rajaie Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Parham Sadeghipour
- Rajaie Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mona Alimohammadi
- Department of Mechanical Engineering, K. N. Toosi Univeristy of Technology, Tehran, Iran.
| |
Collapse
|
16
|
Goswami S, Li DS, Rego BV, Latorre M, Humphrey JD, Karniadakis GE. Neural operator learning of heterogeneous mechanobiological insults contributing to aortic aneurysms. J R Soc Interface 2022; 19:20220410. [PMID: 36043289 PMCID: PMC9428523 DOI: 10.1098/rsif.2022.0410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/05/2022] [Indexed: 11/12/2022] Open
Abstract
Thoracic aortic aneurysm (TAA) is a localized dilatation of the aorta that can lead to life-threatening dissection or rupture. In vivo assessments of TAA progression are largely limited to measurements of aneurysm size and growth rate. There is promise, however, that computational modelling of the evolving biomechanics of the aorta could predict future geometry and properties from initiating mechanobiological insults. We present an integrated framework to train a deep operator network (DeepONet)-based surrogate model to identify TAA contributing factors using synthetic finite-element-based datasets. For training, we employ a constrained mixture model of aortic growth and remodelling to generate maps of local aortic dilatation and distensibility for multiple TAA risk factors. We evaluate the performance of the surrogate model for insult distributions varying from fusiform (analytically defined) to complex (randomly generated). We propose two frameworks, one trained on sparse information and one on full-field greyscale images, to gain insight into a preferred neural operator-based approach. We show that this continuous learning approach can predict the patient-specific insult profile associated with any given dilatation and distensibility map with high accuracy, particularly when based on full-field images. Our findings demonstrate the feasibility of applying DeepONet to support transfer learning of patient-specific inputs to predict TAA progression.
Collapse
Affiliation(s)
- Somdatta Goswami
- Division of Applied Mathematics, Brown University, Providence, RI, USA
| | - David S. Li
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Bruno V. Rego
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Marcos Latorre
- Centre for Research and Innovation in Bioengineering, Universitat Politècnica de València, València, Spain
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - George Em Karniadakis
- Division of Applied Mathematics, Brown University, Providence, RI, USA
- School of Engineering, Brown University, Providence, RI, USA
| |
Collapse
|
17
|
Lin S, Morgant MC, Marín-Castrillón DM, Walker PM, Glélé LSA, Boucher A, Presles B, Bouchot O, Lalande A. Aortic local biomechanical properties in ascending aortic aneurysms. Acta Biomater 2022; 149:40-50. [PMID: 35714897 DOI: 10.1016/j.actbio.2022.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/01/2022]
Abstract
Ascending aortic aneurysm (AsAA) is a high-risk cardiovascular disease with an increased incidence over years. In this study, we compare different risk factors based on the pre-failure behavior (from a biomechanical point of view) obtained ex-vivo from an equi-biaxial tensile test. A total of 100 patients (63 ± 12 years, 72 males) with AsAA replacement, were recruited. Equi-biaxial tensile tests of AsAA walls were performed on freshly sampled aortic wall tissue after ascending aortic replacement. The aneurysmal aortic walls were divided into four quadrants (medial, anterior, lateral, and posterior) and two directions (longitudinal and circumferential) were considered. The stiffness was represented by the maximum Young Modulus (MYM). Based on patient information, the following subgroups were considered: age, gender, hypertension, obesity, dyslipidemia, diabetes, smoking history, aortic insufficiency, aortic stenosis, coronary artery disease, aortic diameter and aortic valve type. In general, when the aortic diameter increased, the aortic wall became thicker. In terms of the MYM, the longitudinal direction was significantly higher than that in the circumferential direction. In the multivariant analysis, the impact factors of age (p = 0.07), smoking (p = 0.05), diabetes (p = 0.03), aortic stenosis (p = 0.02), coronary artery disease (p < 10-3), and aortic diameters (p = 0.02) were significantly influencing the MYM. There was no significant MYM difference when the patients presented arterial hypertension, dyslipidemia, obesity, or bicuspid aortic valve. To conclude, the pre-failure aortic stiffness is multi-factorial, according to our population of 100 patients with AsAA. STATEMENT OF SIGNIFICANCE: : Our research on the topic of "Aortic local biomechanical properties in case of ascending aortic aneurysms" is about the biomechanical properties on one hundred aortic samples according to the aortic wall quadrants and the direction. More than ten factors and risks which may impact ascending aortic aneurysms have been studied. According to our knowledge, so far, this article involved the largest population on this topic. It will be our pleasure to share this information with all the readers.
Collapse
Affiliation(s)
- Siyu Lin
- ImViA laboratory, University of Burgundy, Dijon, France.
| | - Marie Catherine Morgant
- ImViA laboratory, University of Burgundy, Dijon, France; Department of Cardio-Vascular and Thoracic Surgery, University Hospital of Dijon, Dijon, France
| | | | - Paul M Walker
- ImViA laboratory, University of Burgundy, Dijon, France; Department of Medical Imaging, University Hospital of Dijon, Dijon, France
| | | | | | | | - Olivier Bouchot
- ImViA laboratory, University of Burgundy, Dijon, France; Department of Cardio-Vascular and Thoracic Surgery, University Hospital of Dijon, Dijon, France
| | - Alain Lalande
- ImViA laboratory, University of Burgundy, Dijon, France; Department of Medical Imaging, University Hospital of Dijon, Dijon, France
| |
Collapse
|
18
|
Qiao Y, Luo K, Fan J. Component quantification of aortic blood flow energy loss using computational fluid-structure interaction hemodynamics. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106826. [PMID: 35526507 DOI: 10.1016/j.cmpb.2022.106826] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVES The aorta serves as the main tube of the human blood circulation system. Energy loss (EL) occurs when blood flows through the aorta and there may be a potential correlation between EL and aortic diseases. However, the components of blood flow EL are still not fully understood. This study aims to quantitatively reveal the EL components in healthy and diseased aortas. METHODS We construct an idealized healthy aorta and three idealized representative diseased aortas: aortic aneurysm, coarctation of the aorta, and aortic dissection. Computational hemodynamic studies are carried out by using the fluid-structure interaction simulation framework. RESULTS Four kinds of EL components: viscous friction, turbulence dissipation, wall deformation, and local lesion are firstly acquired in healthy and diseased aortas based on the high-resolution blood flow information. Viscous friction contributes most to the EL (45.69%-57.22%). EL caused by the deformation of the aortic wall ranks second (15.18%-33.12%). The proportions of turbulence dissipation and local lesion depend on individual geometric characteristics. Besides, the buffering efficiency of the healthy and diseased aorta is about 80%. CONCLUSIONS This study quantitatively reports the components of blood flow EL in healthy and diseased aortas, the finding may provide novel insights into the pathogenesis of aortic diseases.
Collapse
Affiliation(s)
- Yonghui Qiao
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Kun Luo
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China; Shanghai Institute for Advanced Study of Zhejiang University, Shanghai, China.
| | - Jianren Fan
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China; Shanghai Institute for Advanced Study of Zhejiang University, Shanghai, China
| |
Collapse
|
19
|
Peng C, Zou L, Hou K, Liu Y, Jiang X, Fu W, Yang Y, Bou-Said B, Wang S, Dong Z. Material parameter identification of the proximal and distal segments of the porcine thoracic aorta based on ECG-gated CT angiography. J Biomech 2022; 138:111106. [DOI: 10.1016/j.jbiomech.2022.111106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/28/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022]
|
20
|
The Effects of the Mechanical Properties of Vascular Grafts and an Anisotropic Hyperelastic Aortic Model on Local Hemodynamics during Modified Blalock-Taussig Shunt Operation, Assessed Using FSI Simulation. MATERIALS 2022; 15:ma15082719. [PMID: 35454414 PMCID: PMC9026531 DOI: 10.3390/ma15082719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/18/2022] [Accepted: 03/30/2022] [Indexed: 12/05/2022]
Abstract
Cardiovascular surgery requires the use of state-of-the-art artificial materials. For example, microporous polytetrafluoroethylene grafts manufactured by Gore-Tex® are used for the treatment of cyanotic heart defects (i.e., modified Blalock–Taussig shunt). Significant mortality during this palliative operation has led surgeons to adopt mathematical models to eliminate complications by performing fluid–solid interaction (FSI) simulations. To proceed with FSI modeling, it is necessary to know either the mechanical properties of the aorta and graft or the rheological properties of blood. The properties of the aorta and blood can be found in the literature, but there are no data about the mechanical properties of Gore-Tex® grafts. Experimental studies were carried out on the mechanical properties vascular grafts adopted for modified pediatric Blalock–Taussig shunts. Parameters of two models (the five-parameter Mooney–Rivlin model and the three-parameter Yeoh model) were determined by uniaxial experimental curve fitting. The obtained data were used for patient-specific FSI modeling of local blood flow in the “aorta-modified Blalock–Taussig shunt–pulmonary artery” system in three different shunt locations: central, right, and left. The anisotropic model of the aortic material showed higher stress values at the peak moment of systole, which may be a key factor determining the strength characteristics of the aorta and pulmonary artery. Additionally, this mechanical parameter is important when installing a central shunt, since it is in the area of the central anastomosis that an increase in stress on the aortic wall is observed. According to computations, the anisotropic model shows smaller values for the displacements of both the aorta and the shunt, which in turn may affect the success of preoperative predictions. Thus, it can be concluded that the anisotropic properties of the aorta play an important role in preoperative modeling.
Collapse
|
21
|
Celi S, Vignali E, Capellini K, Gasparotti E. On the Role and Effects of Uncertainties in Cardiovascular in silico Analyses. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:748908. [PMID: 35047960 PMCID: PMC8757785 DOI: 10.3389/fmedt.2021.748908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022] Open
Abstract
The assessment of cardiovascular hemodynamics with computational techniques is establishing its fundamental contribution within the world of modern clinics. Great research interest was focused on the aortic vessel. The study of aortic flow, pressure, and stresses is at the basis of the understanding of complex pathologies such as aneurysms. Nevertheless, the computational approaches are still affected by sources of errors and uncertainties. These phenomena occur at different levels of the computational analysis, and they also strongly depend on the type of approach adopted. With the current study, the effect of error sources was characterized for an aortic case. In particular, the geometry of a patient-specific aorta structure was segmented at different phases of a cardiac cycle to be adopted in a computational analysis. Different levels of surface smoothing were imposed to define their influence on the numerical results. After this, three different simulation methods were imposed on the same geometry: a rigid wall computational fluid dynamics (CFD), a moving-wall CFD based on radial basis functions (RBF) CFD, and a fluid-structure interaction (FSI) simulation. The differences of the implemented methods were defined in terms of wall shear stress (WSS) analysis. In particular, for all the cases reported, the systolic WSS and the time-averaged WSS (TAWSS) were defined.
Collapse
Affiliation(s)
- Simona Celi
- BioCardioLab, UOC Bioingegneria, Fondazione Toscana Gabriele Monasterio, Massa, Italy
| | - Emanuele Vignali
- BioCardioLab, UOC Bioingegneria, Fondazione Toscana Gabriele Monasterio, Massa, Italy
| | - Katia Capellini
- BioCardioLab, UOC Bioingegneria, Fondazione Toscana Gabriele Monasterio, Massa, Italy.,Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Emanuele Gasparotti
- BioCardioLab, UOC Bioingegneria, Fondazione Toscana Gabriele Monasterio, Massa, Italy.,Department of Information Engineering, University of Pisa, Pisa, Italy
| |
Collapse
|
22
|
Qiao Y, Mao L, Wang Y, Luan J, Chen Y, Zhu T, Luo K, Fan J. Hemodynamic effects of stent-graft introducer sheath during thoracic endovascular aortic repair. Biomech Model Mechanobiol 2022; 21:419-431. [PMID: 34994871 DOI: 10.1007/s10237-021-01542-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/26/2021] [Indexed: 12/19/2022]
Abstract
Thoracic endovascular aortic repair (TEVAR) has become the standard treatment of a variety of aortic pathologies. The objective of this study is to evaluate the hemodynamic effects of stent-graft introducer sheath during TEVAR. Three idealized representative diseased aortas were designed: aortic aneurysm, coarctation of the aorta, and aortic dissection. Computational fluid dynamics studies were performed in the above idealized aortic geometries. An introducer sheath routinely used in the clinic was virtually placed into diseased aortas. Comparative analysis was carried out to evaluate the hemodynamic effects of the introducer sheath. Results show that the blood flow to the supra-aortic branches would increase above 9% due to the obstruction of the introducer sheath. The region exposed to high endothelial cell activation potential (ECAP) expands in the scenarios of coarctation of the aorta and aortic dissection, which indicates that the probability of thrombus formation may increase during TEVAR. The pressure magnitude in peak systole shows an obvious rise, and a similar phenomenon is not observed in early diastole. The blood viscosity in the aortic arch and descending aorta is remarkably altered by the introducer sheath. The uneven viscosity distribution confirms the necessity of using non-Newtonian models, and high-viscosity region with high ECAP further promotes thrombosis. Our results highlight the hemodynamic effects of stent-graft introducer sheath during TEVAR, which may associate with perioperative complications.
Collapse
Affiliation(s)
- Yonghui Qiao
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Le Mao
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Wang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Jingyang Luan
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanlu Chen
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Ting Zhu
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kun Luo
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China. .,Shanghai Institute for Advanced Study of Zhejiang University, Shanghai, China.
| | - Jianren Fan
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China. .,Shanghai Institute for Advanced Study of Zhejiang University, Shanghai, China.
| |
Collapse
|
23
|
Atlas-Based Evaluation of Hemodynamic in Ascending Thoracic Aortic Aneurysms. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app12010394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Atlas-based analyses of patients with cardiovascular diseases have recently been explored to understand the mechanistic link between shape and pathophysiology. The construction of probabilistic atlases is based on statistical shape modeling (SSM) to assess key anatomic features for a given patient population. Such an approach is relevant to study the complex nature of the ascending thoracic aortic aneurysm (ATAA) as characterized by different patterns of aortic shapes and valve phenotypes. This study was carried out to develop an SSM of the dilated aorta with both bicuspid aortic valve (BAV) and tricuspid aortic valve (TAV), and then assess the computational hemodynamic of virtual models obtained by the deformation of the mean template for specific shape boundaries (i.e., ±1.5 standard deviation, σ). Simulations demonstrated remarkable changes in the velocity streamlines, blood pressure, and fluid shear stress with the principal shape modes such as the aortic size (Mode 1), vessel tortuosity (Mode 2), and aortic valve morphologies (Mode 3). The atlas-based disease assessment can represent a powerful tool to reveal important insights on ATAA-derived hemodynamic, especially for aneurysms which are considered to have borderline anatomies, and thus challenging decision-making. The utilization of SSMs for creating probabilistic patient cohorts can facilitate the understanding of the heterogenous nature of the dilated ascending aorta.
Collapse
|
24
|
Vignali E, Gasparotti E, Celi S, Avril S. Fully-Coupled FSI Computational Analyses in the Ascending Thoracic Aorta Using Patient-Specific Conditions and Anisotropic Material Properties. Front Physiol 2021; 12:732561. [PMID: 34744774 PMCID: PMC8564074 DOI: 10.3389/fphys.2021.732561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/17/2021] [Indexed: 12/27/2022] Open
Abstract
Computational hemodynamics has become increasingly important within the context of precision medicine, providing major insight in cardiovascular pathologies. However, finding appropriate compromise between speed and accuracy remains challenging in computational hemodynamics for an extensive use in decision making. For example, in the ascending thoracic aorta, interactions between the blood and the aortic wall must be taken into account for the sake of accuracy, but these fluid structure interactions (FSI) induce significant computational costs, especially when the tissue exhibits a hyperelastic and anisotropic response. The objective of the current study is to use the Small On Large (SOL) theory to linearize the anisotropic hyperelastic behavior in order to propose a reduced-order model for FSI simulations of the aorta. The SOL method is tested for fully-coupled FSI simulations in a patient-specific aortic geometry presenting an Ascending Thoracic Aortic Aneurysm (aTAA). The same model is also simulated with a fully-coupled FSI with non-linear material behavior, without SOL linearization. Eventually, the results and computational times with and without the SOL are compared. The SOL approach is demonstrated to provide a significant reduction of computational costs for FSI analysis in the aTAA, and the results in terms of stress state distribution are comparable. The method is implemented in ANSYS and will be further evaluated for clinical applications.
Collapse
Affiliation(s)
- Emanuele Vignali
- BioCardioLab, UOC Bioingegneria, Fondazione Toscana Gabriele Monasterio, Massa, Italy
| | - Emanuele Gasparotti
- BioCardioLab, UOC Bioingegneria, Fondazione Toscana Gabriele Monasterio, Massa, Italy
| | - Simona Celi
- BioCardioLab, UOC Bioingegneria, Fondazione Toscana Gabriele Monasterio, Massa, Italy
| | - Stéphane Avril
- Mines Saint-Etienne, Université de Lyon, INSERM, SaInBioSE U1059, Saint-Étienne, France
| |
Collapse
|
25
|
Patient-Specific Analysis of Ascending Thoracic Aortic Aneurysm with the Living Heart Human Model. Bioengineering (Basel) 2021; 8:bioengineering8110175. [PMID: 34821741 PMCID: PMC8615119 DOI: 10.3390/bioengineering8110175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 01/11/2023] Open
Abstract
In ascending thoracic aortic aneurysms (ATAAs), aneurysm kinematics are driven by ventricular traction occurring every heartbeat, increasing the stress level of dilated aortic wall. Aortic elongation due to heart motion and aortic length are emerging as potential indicators of adverse events in ATAAs; however, simulation of ATAA that takes into account the cardiac mechanics is technically challenging. The objective of this study was to adapt the realistic Living Heart Human Model (LHHM) to the anatomy and physiology of a patient with ATAA to assess the role of cardiac motion on aortic wall stress distribution. Patient-specific segmentation and material parameter estimation were done using preoperative computed tomography angiography (CTA) and ex vivo biaxial testing of the harvested tissue collected during surgery. The lumped-parameter model of systemic circulation implemented in the LHHM was refined using clinical and echocardiographic data. The results showed that the longitudinal stress was highest in the major curvature of the aneurysm, with specific aortic quadrants having stress levels change from tensile to compressive in a transmural direction. This study revealed the key role of heart motion that stretches the aortic root and increases ATAA wall tension. The ATAA LHHM is a realistic cardiovascular platform where patient-specific information can be easily integrated to assess the aneurysm biomechanics and potentially support the clinical management of patients with ATAAs.
Collapse
|
26
|
Qiao Y, Mao L, Ding Y, Zhu T, Luo K, Fan J. Fluid-structure interaction: Insights into biomechanical implications of endograft after thoracic endovascular aortic repair. Comput Biol Med 2021; 138:104882. [PMID: 34600328 DOI: 10.1016/j.compbiomed.2021.104882] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/04/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022]
Abstract
Thoracic endovascular aortic repair (TEVAR) has developed to be the most effective treatment for aortic diseases. This study aims to evaluate the biomechanical implications of the implanted endograft after TEVAR. We present a novel image-based, patient-specific, fluid-structure computational framework. The geometries of blood, endograft, and aortic wall were reconstructed based on clinical images. Patient-specific measurement data was collected to determine the parameters of the three-element Windkessel. We designed three postoperative scenarios with rigid wall assumption, blood-wall interaction, blood-endograft-wall interplay, respectively, where a two-way fluid-structure interaction (FSI) method was applied to predict the deformation of the composite stent-wall. Computational results were validated with Doppler ultrasound data. Results show that the rigid wall assumption fails to predict the waveforms of blood outflow and energy loss (EL). The complete storage and release process of blood flow energy, which consists of four phases is captured by the FSI method. The endograft implantation would weaken the buffer function of the aorta and reduce mean EL by 19.1%. The closed curve area of wall pressure and aortic volume could indicate the EL caused by the interaction between blood flow and wall deformation, which accounts for 68.8% of the total EL. Both the FSI and endograft have a slight effect on wall shear stress-related-indices. The deformability of the composite stent-wall region is remarkably limited by the endograft. Our results highlight the importance of considering the interaction between blood flow, the implanted endograft, and the aortic wall to acquire physiologically accurate hemodynamics in post-TEVAR computational studies and the deformation of the aortic wall is responsible for the major EL of the blood flow.
Collapse
Affiliation(s)
- Yonghui Qiao
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Le Mao
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Ding
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ting Zhu
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kun Luo
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China.
| | - Jianren Fan
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China.
| |
Collapse
|
27
|
Campisi S, Jayendiran R, Condemi F, Viallon M, Croisille P, Avril S. Significance of Hemodynamics Biomarkers, Tissue Biomechanics and Numerical Simulations in the Pathogenesis of Ascending Thoracic Aortic Aneurysms. Curr Pharm Des 2021; 27:1890-1898. [PMID: 33319666 DOI: 10.2174/1381612826999201214231648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/06/2020] [Indexed: 11/22/2022]
Abstract
Guidelines for the treatment of aortic wall diseases are based on measurements of maximum aortic diameter. However, aortic rupture or dissections do occur for small aortic diameters. Growing scientific evidence underlines the importance of biomechanics and hemodynamics in aortic disease development and progression. Wall shear stress (WWS) is an important hemodynamics marker that depends on aortic wall morphology and on the aortic valve function. WSS could be helpful to interpret aortic wall remodeling and define personalized risk criteria. The complementarity of Computational Fluid Dynamics and 4D Magnetic Resonance Imaging as tools for WSS assessment is a promising reality. The potentiality of these innovative technologies will provide maps or atlases of hemodynamics biomarkers to predict aortic tissue dysfunction. Ongoing efforts should focus on the correlation between these non-invasive imaging biomarkers and clinico-pathologic situations for the implementation of personalized medicine in current clinical practice.
Collapse
Affiliation(s)
- Salvatore Campisi
- Department of Cardiovascular Surgery; University Hospistal of Saint Etienne, France
| | - Raja Jayendiran
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F - 42023 Saint-Etienne, France
| | - Francesca Condemi
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F - 42023 Saint-Etienne, France
| | - Magalie Viallon
- Department of Radiology, University Hospital of Saint Etienne, France
| | - Pierre Croisille
- Department of Radiology, University Hospital of Saint Etienne, France
| | - Stéphane Avril
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F - 42023 Saint-Etienne, France
| |
Collapse
|
28
|
Paz C, Suárez E, Cabarcos A, Pinto SIS. FSI modeling on the effect of artery-aneurysm thickness and coil embolization in patient cases. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 206:106148. [PMID: 33992899 DOI: 10.1016/j.cmpb.2021.106148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE The attainment of a methodology to simulate the hemodynamic in patient-specific cerebral vessels with aneurysms is still a challenge. The novelty of this work is focused on the effect of coil embolization in a realistic cerebral aneurysm, according to the vessel wall thickness and aneurysm thickness, through transient FSI simulations. METHODS The quality of the mesh for simulations was checked with a specific mesh convergence study; and the numerical methodology was validated using numerical research data of the literature. The model was implemented in ANSYS® software. The total deformation and equivalent stress evolution in the studied cases, before and after coil embolization, were compared. More than 20 different models were employed due to different arterial wall thickness and aneurysm wall thickness combinations. RESULTS The obtained results have showed that deformation and stress values are highly influenced with the sac thickness. The thinner sac aneurysm thickness is, the greater deformation and stress are. The results after coil embolization process have highlighted that considering typical values of arterial wall thickness and aneurysm thickness 0.3 mm and 0.15 mm respectively, a deformation reduction around 50% and a stress reduction around 70% can be achieved. CONCLUSIONS The proposed methodology is a step forward in the personalized medicine, quantifying the aneurysm rupture risk reduction, and helping the medical team in the preoperative planning, or to deciding the optimal treatment.
Collapse
Affiliation(s)
- C Paz
- CINTECX, University of Vigo, Campus Universitario Lagoas-Marcosende, Vigo 36310, España.
| | - E Suárez
- CINTECX, University of Vigo, Campus Universitario Lagoas-Marcosende, Vigo 36310, España.
| | - A Cabarcos
- CINTECX, University of Vigo, Campus Universitario Lagoas-Marcosende, Vigo 36310, España.
| | - S I S Pinto
- Engineering Faculty of University of Porto, Institute of Science and Innovation in Mechanical and Industrial Engineering (LAETA-INEGI), Rua Dr. Roberto Frias, Porto 4200-465, Portugal.
| |
Collapse
|
29
|
Nannini G, Caimi A, Palumbo MC, Saitta S, Girardi LN, Gaudino M, Roman MJ, Weinsaft JW, Redaelli A. Aortic hemodynamics assessment prior and after valve sparing reconstruction: A patient-specific 4D flow-based FSI model. Comput Biol Med 2021; 135:104581. [PMID: 34174756 DOI: 10.1016/j.compbiomed.2021.104581] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Valve-sparing root replacement (VSRR) of the ascending aorta is a life-saving procedure for the treatment of aortic aneurysms, but patients remain at risk for post-operative events involving the downstream native aorta, the mechanism for which is uncertain. It is possible that proximal graft replacement of the ascending aorta induces hemodynamics alterations in the descending aorta, which could trigger adverse events. Herein, we present a fluid-structure interaction (FSI) protocol, based on patient-specific geometry and boundary conditions, to assess impact of proximal aortic grafts on downstream aortic hemodynamics and distensibility. METHODS Cardiac magnetic resonance (CMR), including MRA, cine-CMR and 4D flow sequences, was performed prior and after VSRR on one subject. Central blood pressure was non-invasively acquired at the time of the CMR: data were used to reconstruct the pre- and post-VSRR model and derive patient-specific boundary conditions for the FSI and a computational fluid dynamic (CFD) analysis with the same settings. Results were validated comparing the predicted velocity field against 4D flow dataset, over four landmarks along the aorta, and the predicted distensibility against the cine-CMR derived value. RESULTS Instantaneous velocity magnitudes extracted from 4D flow and FSI were similar (p > 0.05), while CFD-predicted velocity was significantly higher (p < 0.001), especially in the descending aorta of the pre-VSRR model (vmax was 73 cm/s, 76 cm/s and 99 cm/s, respectively). As measured in cine-CMR, FSI predicted an increase in descending aorta distensibility after grafting (i.e., 4.02 to 5.79 10-3 mmHg-1). In the descending aorta, the post-VSRR model showed increased velocity, aortic distensibility, stress and strain and wall shear stress. CONCLUSIONS Our Results indicate that i) the distensibility of the wall cannot be neglected, and hence the FSI method is necessary to obtain reliable results; ii) graft implantation induces alterations in the hemodynamics and biomechanics along the thoracic aorta, that may trigger adverse vessel remodeling.
Collapse
Affiliation(s)
- Guido Nannini
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Milan, Italy.
| | - Alessandro Caimi
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Maria Chiara Palumbo
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Simone Saitta
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Leonard N Girardi
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Mario Gaudino
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Mary J Roman
- Department of Medicine (Cardiology), Weill Cornell College, New York, NY, USA
| | - Jonathan W Weinsaft
- Department of Medicine (Cardiology), Weill Cornell College, New York, NY, USA
| | - Alberto Redaelli
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
30
|
Jamaleddin Mousavi S, Jayendiran R, Farzaneh S, Campisi S, Viallon M, Croisille P, Avril S. Coupling hemodynamics with mechanobiology in patient-specific computational models of ascending thoracic aortic aneurysms. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 205:106107. [PMID: 33933713 DOI: 10.1016/j.cmpb.2021.106107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE The prevention of ascending thoracic aortic aneurysms (ATAAs), which affect thousands of persons every year worldwide, remains a major issue. ATAAs may be caused by anything that weakens the aortic wall. Altered hemodynamics, which concerns a majority of patients with bicuspid aortic valves, has been shown to be related to such weakening and to contribute to ATAA development and progression. However the underlying mechanisms remain unclear and computational modeling in this field could help significantly to elucidate how hemodynamics and mechanobiology interact in ATAAs. METHODS Accordingly, we propose a numerical framework combining computational fluid dynamics and 4D flow magnetic resonance imaging (MRI) coupled with finite element (FE) analyses to simulate growth and remodeling (G&R) occurring in patient-specific aortas in relation with altered hemodynamics. The geometries and the blood velocities obtained from 4D flow MRI are used as boundary conditions for CFD simulations. CFD simulations provide an estimation of the wall shear stress (WSS) and relative residence time (RRT) distribution across the luminal surface of the wall. An initial insult is then applied to the FE model of the aortic wall, assuming that the magnitude of the insult correlates spatially with the normalized RRT distribution obtained from CFD simulations. G&R simulations are then performed. The material behavior of each Gauss point in these FE models is evolved continuously to compensate for the deviation of the actual wall stress distribution from the homeostatic state after the initial insult. The whole approach is illustrated on two healthy and two diseased subjects. The G&R parameters are calibrated against previously established statistical models of ATAA growth rates. RESULTS Among the variety of results provided by G&R simulations, the analysis focused especially on the evolution of the wall stiffness, which was shown to be a major risk factor for ATAAs. It was shown that the G&R parameters, such as for instance the rate of collagen production or cell mechanosensitivity, play a critical role in ATAA progression and remodeling. CONCLUSIONS These preliminary findings show that patient-specific computational modeling coupling hemodynamics with mechanobiology is a promising approach to explore aneurysm progression.
Collapse
Affiliation(s)
- S Jamaleddin Mousavi
- Mines Saint-Étienne, Univ Lyon, Univ Jean Monnet, INSERM, U1059 Sainbiose, Saint-Étienne F - 42023 France
| | - Raja Jayendiran
- Mines Saint-Étienne, Univ Lyon, Univ Jean Monnet, INSERM, U1059 Sainbiose, Saint-Étienne F - 42023 France
| | - Solmaz Farzaneh
- Mines Saint-Étienne, Univ Lyon, Univ Jean Monnet, INSERM, U1059 Sainbiose, Saint-Étienne F - 42023 France
| | - Salvatore Campisi
- Mines Saint-Étienne, Univ Lyon, Univ Jean Monnet, INSERM, U1059 Sainbiose, Saint-Étienne F - 42023 France; University Hospital of Saint-Étienne, Department of Cardiovascular Surgery, Saint-Étienne cedex, France
| | - Magalie Viallon
- Université de Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Étienne,F-42023 France; University Hospital of Saint-Étienne, Department of Radiology, Saint-Étienne, France
| | - Pierre Croisille
- Université de Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Étienne,F-42023 France; University Hospital of Saint-Étienne, Department of Radiology, Saint-Étienne, France
| | - Stéphane Avril
- Mines Saint-Étienne, Univ Lyon, Univ Jean Monnet, INSERM, U1059 Sainbiose, Saint-Étienne F - 42023 France.
| |
Collapse
|
31
|
Estimating aortic thoracic aneurysm rupture risk using tension-strain data in physiological pressure range: an in vitro study. Biomech Model Mechanobiol 2021; 20:683-699. [PMID: 33389275 DOI: 10.1007/s10237-020-01410-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022]
Abstract
Previous studies have shown that the rupture properties of an ascending thoracic aortic aneurysm (ATAA) are strongly correlated with the pre-rupture response features. In this work, we present a two-step machine learning method to predict where the rupture is likely to occur in ATAA and what safety reserve the structure may have. The study was carried out using ATAA specimens from 15 patients who underwent surgical intervention. Through inflation test, full-field deformation data and post-rupture images were collected, from which the wall tension and surface strain distributions were computed. The tension-strain data in the pressure range of 9-18 kPa were fitted to a third-order polynomial to characterize the response properties. It is hypothesized that the region where rupture is prone to initiate is associated with a high level of tension buildup. A machine learning method is devised to predict the peak risk region. The predicted regions were found to match the actual rupture sites in 13 samples out of the total 15. In the second step, another machine learning model is utilized to predict the tissue's rupture strength in the peak risk region. Results suggest that the ATAA rupture risk can be reasonably predicted using tension-strain response in the physiological range. This may open a pathway for evaluating the ATAA rupture propensity using information of in vivo response.
Collapse
|
32
|
Latorre M, Humphrey JD. Numerical knockouts-In silico assessment of factors predisposing to thoracic aortic aneurysms. PLoS Comput Biol 2020; 16:e1008273. [PMID: 33079926 PMCID: PMC7598929 DOI: 10.1371/journal.pcbi.1008273] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 10/30/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
Myriad risk factors–including uncontrolled hypertension, aging, and diverse genetic mutations–contribute to the development and enlargement of thoracic aortic aneurysms. Detailed analyses of clinical data and longitudinal studies of murine models continue to provide insight into the natural history of these potentially lethal conditions. Yet, because of the co-existence of multiple risk factors in most cases, it has been difficult to isolate individual effects of the many different factors or to understand how they act in combination. In this paper, we use a data-informed computational model of the initiation and progression of thoracic aortic aneurysms to contrast key predisposing risk factors both in isolation and in combination; these factors include localized losses of elastic fiber integrity, aberrant collagen remodeling, reduced smooth muscle contractility, and dysfunctional mechanosensing or mechanoregulation of extracellular matrix along with superimposed hypertension and aortic aging. In most cases, mild-to-severe localized losses in cellular function or matrix integrity give rise to varying degrees of local dilatations of the thoracic aorta, with enlargement typically exacerbated in cases wherein predisposing risk factors co-exist. The simulations suggest, for the first time, that effects of compromised smooth muscle contractility are more important in terms of dysfunctional mechanosensing and mechanoregulation of matrix than in vessel-level control of diameter and, furthermore, that dysfunctional mechanobiological control can yield lesions comparable to those in cases of compromised elastic fiber integrity. Particularly concerning, therefore, is that loss of constituents such as fibrillin-1, as in Marfan syndrome, can compromise both elastic fiber integrity and mechanosensing. Aneurysms are local dilatations of the arterial wall that are responsible for significant disability and death. Detailed analyses of clinical data continue to provide insight into the natural history of these potentially lethal conditions, with myriad risk factors–including uncontrolled hypertension, aging, and diverse genetic mutations–contributing to their development and enlargement. Yet, because of the co-existence of these risk factors in most cases, it has been difficult to isolate individual effects or to understand how they act in combination. In this paper, we use a computational model of the initiation and progression of thoracic aortic aneurysms to contrast key predisposing factors both in isolation and in combination as well as with superimposed hypertension and aging. The present study recovers many findings from mouse models but with new and important observations that promise to guide in vivo and ex vivo studies as we seek to understand and eventually better treat these complex, multi-factorial lesions, with data-informed patient-specific computations eventually the way forward.
Collapse
Affiliation(s)
- M. Latorre
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America
| | - J. D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America
- * E-mail:
| |
Collapse
|
33
|
Capellini K, Gasparotti E, Cella U, Costa E, Fanni BM, Groth C, Porziani S, Biancolini ME, Celi S. A novel formulation for the study of the ascending aortic fluid dynamics with in vivo data. Med Eng Phys 2020; 91:68-78. [PMID: 33008714 DOI: 10.1016/j.medengphy.2020.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/20/2020] [Accepted: 09/12/2020] [Indexed: 01/18/2023]
Abstract
Numerical simulations to evaluate thoracic aortic hemodynamics include a computational fluid dynamic (CFD) approach or fluid-structure interaction (FSI) approach. While CFD neglects the arterial deformation along the cardiac cycle by applying a rigid wall simplification, on the other side the FSI simulation requires a lot of assumptions for the material properties definition and high computational costs. The aim of this study is to investigate the feasibility of a new strategy, based on Radial Basis Functions (RBF) mesh morphing technique and transient simulations, able to introduce the patient-specific changes in aortic geometry during the cardiac cycle. Starting from medical images, aorta models at different phases of cardiac cycle were reconstructed and a transient shape deformation was obtained by proper activating incremental RBF solutions during the simulation process. The results, in terms of main hemodynamic parameters, were compared with two performed CFD simulations for the aortic model at minimum and maximum volume. Our implemented strategy copes the actual arterial variation during cardiac cycle with high accuracy, capturing the impact of geometrical variations on fluid dynamics, overcoming the complexity of a standard FSI approach.
Collapse
Affiliation(s)
- Katia Capellini
- BioCardioLab, Fondazione Toscana Gabriele Monasterio, Massa, Italy; Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Emanuele Gasparotti
- BioCardioLab, Fondazione Toscana Gabriele Monasterio, Massa, Italy; Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Ubaldo Cella
- Department of Enterprise Engineering, University of Rome Tor Vergata, Rome, Italy
| | | | - Benigno Marco Fanni
- BioCardioLab, Fondazione Toscana Gabriele Monasterio, Massa, Italy; Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Corrado Groth
- Department of Enterprise Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Stefano Porziani
- Department of Enterprise Engineering, University of Rome Tor Vergata, Rome, Italy
| | | | - Simona Celi
- BioCardioLab, Fondazione Toscana Gabriele Monasterio, Massa, Italy.
| |
Collapse
|
34
|
Catapano F, Pambianchi G, Cundari G, Rebelo J, Cilia F, Carbone I, Catalano C, Francone M, Galea N. 4D flow imaging of the thoracic aorta: is there an added clinical value? Cardiovasc Diagn Ther 2020; 10:1068-1089. [PMID: 32968661 DOI: 10.21037/cdt-20-452] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Four-dimensional (4D) flow MRI has emerged as a powerful non-invasive technique in cardiovascular imaging, enabling to analyse in vivo complex flow dynamics models by quantifying flow parameters and derived features. Deep knowledge of aortic flow dynamics is fundamental to better understand how abnormal flow patterns may promote or worsen vascular diseases. In the perspective of an increasingly personalized and preventive medicine, growing interest is focused on identifying those quantitative functional features which are early predictive markers of pathological evolution. The thoracic aorta and its spectrum of diseases, as the first area of application and development of 4D flow MRI and supported by an extensive experimental validation, represents the ideal model to introduce this technique into daily clinical practice. The purpose of this review is to describe the impact of 4D flow MRI in the assessment of the thoracic aorta and its most common affecting diseases, providing an overview of the actual clinical applications and describing the potential role of derived advanced hemodynamic measures in tailoring follow-up and treatment.
Collapse
Affiliation(s)
- Federica Catapano
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Giacomo Pambianchi
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Giulia Cundari
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - João Rebelo
- Department of Radiology, Centro Hospitalar São João, Alameda Prof. Hernâni Monteiro, Porto, Portugal
| | - Francesco Cilia
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Iacopo Carbone
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Carlo Catalano
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Marco Francone
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Nicola Galea
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy.,Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
35
|
Fanni BM, Sauvage E, Celi S, Norman W, Vignali E, Landini L, Schievano S, Positano V, Capelli C. A Proof of Concept of a Non-Invasive Image-Based Material Characterization Method for Enhanced Patient-Specific Computational Modeling. Cardiovasc Eng Technol 2020; 11:532-543. [PMID: 32748364 DOI: 10.1007/s13239-020-00479-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 07/22/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE Computational models of cardiovascular structures rely on their accurate mechanical characterization. A validated method able to infer the material properties of patient-specific large vessels is currently lacking. The aim of the present study is to present a technique starting from the flow-area (QA) method to retrieve basic material properties from magnetic resonance (MR) imaging. METHODS The proposed method was developed and tested, first, in silico and then in vitro. In silico, fluid-structure interaction (FSI) simulations of flow within a deformable pipe were run with varying elastic modules (E) between 0.5 and 32 MPa. The proposed QA-based formulation was assessed and modified based on the FSI results to retrieve E values. In vitro, a compliant phantom connected to a mock circulatory system was tested within MR scanning. Images of the phantom were acquired and post-processed according to the modified formulation to infer E of the phantom. Results of in vitro imaging assessment were verified against standard tensile test. RESULTS In silico results from FSI simulations were used to derive the correction factor to the original formulation based on the geometrical and material characteristics. In vitro, the modified QA-based equation estimated an average E = 0.51 MPa, 2% different from the E derived from tensile tests (i.e. E = 0.50 MPa). CONCLUSION This study presented promising results of an indirect and non-invasive method to establish elastic properties from solely MR images data, suggesting a potential image-based mechanical characterization of large blood vessels.
Collapse
Affiliation(s)
- B M Fanni
- BioCardioLab, Bioengineering Unit, Fondazione Toscana Gabriele Monasterio, Via Aurelia Sud, 54100, Massa, Italy.,Department of Information Engineering, University of Pisa, Via Girolamo Caruso 16, 56122, Pisa, Italy
| | - E Sauvage
- UCL Institute of Cardiovascular Science, 20c Guilford Street, London, WC1N 1DZ, UK.,Great Ormond Street Hospital for Children, NHS Foundation Trust, 30 Great Ormond Street, London, WC1N 3JH, UK
| | - S Celi
- BioCardioLab, Bioengineering Unit, Fondazione Toscana Gabriele Monasterio, Via Aurelia Sud, 54100, Massa, Italy.
| | - W Norman
- UCL Institute of Cardiovascular Science, 20c Guilford Street, London, WC1N 1DZ, UK.,Great Ormond Street Hospital for Children, NHS Foundation Trust, 30 Great Ormond Street, London, WC1N 3JH, UK
| | - E Vignali
- BioCardioLab, Bioengineering Unit, Fondazione Toscana Gabriele Monasterio, Via Aurelia Sud, 54100, Massa, Italy.,Department of Information Engineering, University of Pisa, Via Girolamo Caruso 16, 56122, Pisa, Italy
| | - L Landini
- BioCardioLab, Bioengineering Unit, Fondazione Toscana Gabriele Monasterio, Via Aurelia Sud, 54100, Massa, Italy.,Department of Information Engineering, University of Pisa, Via Girolamo Caruso 16, 56122, Pisa, Italy
| | - S Schievano
- UCL Institute of Cardiovascular Science, 20c Guilford Street, London, WC1N 1DZ, UK.,Great Ormond Street Hospital for Children, NHS Foundation Trust, 30 Great Ormond Street, London, WC1N 3JH, UK
| | - V Positano
- BioCardioLab, Bioengineering Unit, Fondazione Toscana Gabriele Monasterio, Via Aurelia Sud, 54100, Massa, Italy
| | - C Capelli
- UCL Institute of Cardiovascular Science, 20c Guilford Street, London, WC1N 1DZ, UK.,Great Ormond Street Hospital for Children, NHS Foundation Trust, 30 Great Ormond Street, London, WC1N 3JH, UK
| |
Collapse
|
36
|
Cebull HL, Rayz VL, Goergen CJ. Recent Advances in Biomechanical Characterization of Thoracic Aortic Aneurysms. Front Cardiovasc Med 2020; 7:75. [PMID: 32478096 PMCID: PMC7235347 DOI: 10.3389/fcvm.2020.00075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/14/2020] [Indexed: 12/18/2022] Open
Abstract
Thoracic aortic aneurysm (TAA) is a focal enlargement of the thoracic aorta, but the etiology of this disease is not fully understood. Previous work suggests that various genetic syndromes, congenital defects such as bicuspid aortic valve, hypertension, and age are associated with TAA formation. Though occurrence of TAAs is rare, they can be life-threatening when dissection or rupture occurs. Prevention of these adverse events often requires surgical intervention through full aortic root replacement or implantation of endovascular stent grafts. Currently, aneurysm diameters and expansion rates are used to determine if intervention is warranted. Unfortunately, this approach oversimplifies the complex aortopathy. Improving treatment of TAAs will likely require an increased understanding of the biological and biomechanical factors contributing to the disease. Past studies have substantially contributed to our knowledge of TAAs using various ex vivo, in vivo, and computational methods to biomechanically characterize the thoracic aorta. However, any singular approach typically focuses on only material properties of the aortic wall, intra-aneurysmal hemodynamics, or in vivo vessel dynamics, neglecting combinatorial factors that influence aneurysm development and progression. In this review, we briefly summarize the current understanding of TAA causes, treatment, and progression, before discussing recent advances in biomechanical studies of TAAs and possible future directions. We identify the need for comprehensive approaches that combine multiple characterization methods to study the mechanisms contributing to focal weakening and rupture. We hope this summary and analysis will inspire future studies leading to improved prediction of thoracic aneurysm progression and rupture, improving patient diagnoses and outcomes.
Collapse
Affiliation(s)
- Hannah L Cebull
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Vitaliy L Rayz
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States.,Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
37
|
Lipp SN, Niedert EE, Cebull HL, Diorio TC, Ma JL, Rothenberger SM, Stevens Boster KA, Goergen CJ. Computational Hemodynamic Modeling of Arterial Aneurysms: A Mini-Review. Front Physiol 2020; 11:454. [PMID: 32477163 PMCID: PMC7235429 DOI: 10.3389/fphys.2020.00454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/09/2020] [Indexed: 01/02/2023] Open
Abstract
Arterial aneurysms are pathological dilations of blood vessels, which can be of clinical concern due to thrombosis, dissection, or rupture. Aneurysms can form throughout the arterial system, including intracranial, thoracic, abdominal, visceral, peripheral, or coronary arteries. Currently, aneurysm diameter and expansion rates are the most commonly used metrics to assess rupture risk. Surgical or endovascular interventions are clinical treatment options, but are invasive and associated with risk for the patient. For aneurysms in locations where thrombosis is the primary concern, diameter is also used to determine the level of therapeutic anticoagulation, a treatment that increases the possibility of internal bleeding. Since simple diameter is often insufficient to reliably determine rupture and thrombosis risk, computational hemodynamic simulations are being developed to help assess when an intervention is warranted. Created from subject-specific data, computational models have the potential to be used to predict growth, dissection, rupture, and thrombus-formation risk based on hemodynamic parameters, including wall shear stress, oscillatory shear index, residence time, and anomalous blood flow patterns. Generally, endothelial damage and flow stagnation within aneurysms can lead to coagulation, inflammation, and the release of proteases, which alter extracellular matrix composition, increasing risk of rupture. In this review, we highlight recent work that investigates aneurysm geometry, model parameter assumptions, and other specific considerations that influence computational aneurysm simulations. By highlighting modeling validation and verification approaches, we hope to inspire future computational efforts aimed at improving our understanding of aneurysm pathology and treatment risk stratification.
Collapse
Affiliation(s)
- Sarah N. Lipp
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Elizabeth E. Niedert
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Hannah L. Cebull
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Tyler C. Diorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Jessica L. Ma
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Sean M. Rothenberger
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Kimberly A. Stevens Boster
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States
| | - Craig J. Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
38
|
Condemi F, Campisi S, Viallon M, Croisille P, Avril S. Relationship Between Ascending Thoracic Aortic Aneurysms Hemodynamics and Biomechanical Properties. IEEE Trans Biomed Eng 2020; 67:949-956. [DOI: 10.1109/tbme.2019.2924955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Hirschhorn M, Tchantchaleishvili V, Stevens R, Rossano J, Throckmorton A. Fluid–structure interaction modeling in cardiovascular medicine – A systematic review 2017–2019. Med Eng Phys 2020; 78:1-13. [DOI: 10.1016/j.medengphy.2020.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 01/18/2020] [Accepted: 01/26/2020] [Indexed: 01/06/2023]
|
40
|
Pons R, Guala A, Rodríguez-Palomares JF, Cajas JC, Dux-Santoy L, Teixidó-Tura G, Molins JJ, Vázquez M, Evangelista A, Martorell J. Fluid-structure interaction simulations outperform computational fluid dynamics in the description of thoracic aorta haemodynamics and in the differentiation of progressive dilation in Marfan syndrome patients. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191752. [PMID: 32257331 PMCID: PMC7062053 DOI: 10.1098/rsos.191752] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/09/2020] [Indexed: 06/02/2023]
Abstract
Abnormal fluid dynamics at the ascending aorta may be at the origin of aortic aneurysms. This study was aimed at comparing the performance of computational fluid dynamics (CFD) and fluid-structure interaction (FSI) simulations against four-dimensional (4D) flow magnetic resonance imaging (MRI) data; and to assess the capacity of advanced fluid dynamics markers to stratify aneurysm progression risk. Eight Marfan syndrome (MFS) patients, four with stable and four with dilating aneurysms of the proximal aorta, and four healthy controls were studied. FSI and CFD simulations were performed with MRI-derived geometry, inlet velocity field and Young's modulus. Flow displacement, jet angle and maximum velocity evaluated from FSI and CFD simulations were compared to 4D flow MRI data. A dimensionless parameter, the shear stress ratio (SSR), was evaluated from FSI and CFD simulations and assessed as potential correlate of aneurysm progression. FSI simulations successfully matched MRI data regarding descending to ascending aorta flow rates (R 2 = 0.92) and pulse wave velocity (R 2 = 0.99). Compared to CFD, FSI simulations showed significantly lower percentage errors in ascending and descending aorta in flow displacement (-46% ascending, -41% descending), jet angle (-28% ascending, -50% descending) and maximum velocity (-37% ascending, -34% descending) with respect to 4D flow MRI. FSI- but not CFD-derived SSR differentiated between stable and dilating MFS patients. Fluid dynamic simulations of the thoracic aorta require fluid-solid interaction to properly reproduce complex haemodynamics. FSI- but not CFD-derived SSR could help stratifying MFS patients.
Collapse
Affiliation(s)
- R. Pons
- Department of Chemical Engineering and Material Sciences, IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - A. Guala
- Hospital Universitari Vall d'Hebron, Department of Cardiology, CIBER-CV, Vall d'Hebron Institut de recerca (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain
| | - J. F. Rodríguez-Palomares
- Hospital Universitari Vall d'Hebron, Department of Cardiology, CIBER-CV, Vall d'Hebron Institut de recerca (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain
| | - J. C. Cajas
- Barcelona Supercomputing Center (BSC-CNS), Department of Computer Applications in Science and Engineering, C/Jordi Girona 29, 08034 Barcelona, Spain
- Escuela Nacional de Estudios Superiors, Unidad Mérida, Universidad Nacional Autónoma de México, Carretera Mérida-Tetiz, Km 4, Ucú, Yucatán, 97357, México
| | - L. Dux-Santoy
- Hospital Universitari Vall d'Hebron, Department of Cardiology, CIBER-CV, Vall d'Hebron Institut de recerca (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain
| | - G. Teixidó-Tura
- Hospital Universitari Vall d'Hebron, Department of Cardiology, CIBER-CV, Vall d'Hebron Institut de recerca (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain
| | - J. J. Molins
- Department of Chemical Engineering and Material Sciences, IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - M. Vázquez
- Barcelona Supercomputing Center (BSC-CNS), Department of Computer Applications in Science and Engineering, C/Jordi Girona 29, 08034 Barcelona, Spain
- ELEM Biotech, Calle Rossello 36, 08029 Barcelona, Spain
| | - A. Evangelista
- Hospital Universitari Vall d'Hebron, Department of Cardiology, CIBER-CV, Vall d'Hebron Institut de recerca (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain
| | - J. Martorell
- Department of Chemical Engineering and Material Sciences, IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| |
Collapse
|
41
|
Biomechanical implications of the fenestration structure after thoracic endovascular aortic repair. J Biomech 2020; 99:109478. [DOI: 10.1016/j.jbiomech.2019.109478] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022]
|
42
|
Liu M, Liang L, Sulejmani F, Lou X, Iannucci G, Chen E, Leshnower B, Sun W. Identification of in vivo nonlinear anisotropic mechanical properties of ascending thoracic aortic aneurysm from patient-specific CT scans. Sci Rep 2019; 9:12983. [PMID: 31506507 PMCID: PMC6737100 DOI: 10.1038/s41598-019-49438-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/24/2019] [Indexed: 12/15/2022] Open
Abstract
Accurate identification of in vivo nonlinear, anisotropic mechanical properties of the aortic wall of individual patients remains to be one of the critical challenges in the field of cardiovascular biomechanics. Since only the physiologically loaded states of the aorta are given from in vivo clinical images, inverse approaches, which take into account of the unloaded configuration, are needed for in vivo material parameter identification. Existing inverse methods are computationally expensive, which take days to weeks to complete for a single patient, inhibiting fast feedback for clinicians. Moreover, the current inverse methods have only been evaluated using synthetic data. In this study, we improved our recently developed multi-resolution direct search (MRDS) approach and the computation time cost was reduced to 1~2 hours. Using the improved MRDS approach, we estimated in vivo aortic tissue elastic properties of two ascending thoracic aortic aneurysm (ATAA) patients from pre-operative gated CT scans. For comparison, corresponding surgically-resected aortic wall tissue samples were obtained and subjected to planar biaxial tests. Relatively close matches were achieved for the in vivo-identified and ex vivo-fitted stress-stretch responses. It is hoped that further development of this inverse approach can enable an accurate identification of the in vivo material parameters from in vivo image data.
Collapse
Affiliation(s)
- Minliang Liu
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Liang Liang
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.,Department of Computer Science, University of Miami, Coral Gables, FL, USA
| | - Fatiesa Sulejmani
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Xiaoying Lou
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.,Emory University School of Medicine, Atlanta, GA, USA
| | - Glen Iannucci
- Emory University School of Medicine, Atlanta, GA, USA
| | - Edward Chen
- Emory University School of Medicine, Atlanta, GA, USA
| | | | - Wei Sun
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
43
|
Hebbar UU, Banerjee RK. Influence of coupled hemodynamics-arterial wall interaction on compliance in a realistic pulmonary artery with variable intravascular wall properties. Med Image Anal 2019; 57:56-71. [PMID: 31279216 DOI: 10.1016/j.media.2019.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/01/2019] [Accepted: 06/19/2019] [Indexed: 11/15/2022]
Abstract
Pulmonary hypertension is characterized by elevation of pulmonary artery (PA) pressure (p) and structural remodeling of the PA wall, leading to reduction in arterial compliance (c). As a step towards improving diagnosis of pulmonary disease, we use the PA branch geometry (main pulmonary artery (MPA) branching into left (LPA) and right (RPA) pulmonary arteries) obtained from MRI in conjunction with an inverse algorithm to obtain the pre-stress level in the artery walls. Next, a coupled blood-wall interaction (BWI) calculation provides hemodynamic information as well as compliance of the PA walls. We show that the computed load-free geometry from the inverse algorithm exhibits a 27.8% lower inner diameter (d) and 18.5% lower outer d compared to the in vivo geometry from MRI. Further, the mean p computed from the BWI computation in the main PA (pMPA-n) is within 4% of the mean pMPA-e (n-numerical; e-experimental). Also, the mean Q computed in the left PA (QLPA-n) is within 10% of the mean QLPA-e. Finally, the compliance cMPA-n is computed to be 27% lower than cMPA-e, while the cLPA-n is computed to be 20.4% lower than cLPA-e. Importantly, the PA shows significant intra-vascular variation in compliance, with the MPA showing higher overall compliance compared to the LPA (3.5-4 times).
Collapse
Affiliation(s)
- Ullhas U Hebbar
- 593 Rhodes Hall, Department of Mechanical Engineering, University of Cincinnati, OH, 45221, United States
| | - Rupak K Banerjee
- 593 Rhodes Hall, Department of Mechanical Engineering, University of Cincinnati, OH, 45221, United States.
| |
Collapse
|
44
|
Steinman DA, Migliavacca F. Editorial: Special Issue on Verification, Validation, and Uncertainty Quantification of Cardiovascular Models: Towards Effective VVUQ for Translating Cardiovascular Modelling to Clinical Utility. Cardiovasc Eng Technol 2019; 9:539-543. [PMID: 30421097 DOI: 10.1007/s13239-018-00393-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- David A Steinman
- Biomedical Simulation Laboratory (BSL), Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada.
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan, Italy
| |
Collapse
|
45
|
Cosentino F, Scardulla F, D'Acquisto L, Agnese V, Gentile G, Raffa G, Bellavia D, Pilato M, Pasta S. Computational modeling of bicuspid aortopathy: Towards personalized risk strategies. J Mol Cell Cardiol 2019; 131:122-131. [PMID: 31047985 DOI: 10.1016/j.yjmcc.2019.04.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/09/2019] [Accepted: 04/26/2019] [Indexed: 11/18/2022]
Abstract
This paper describes current advances on the application of in-silico for the understanding of bicuspid aortopathy and future perspectives of this technology on routine clinical care. This includes the impact that artificial intelligence can provide to develop computer-based clinical decision support system and that wearable sensors can offer to remotely monitor high-risk bicuspid aortic valve (BAV) patients. First, we discussed the benefit of computational modeling by providing tangible examples of in-silico software products based on computational fluid-dynamic (CFD) and finite-element method (FEM) that are currently transforming the way we diagnose and treat cardiovascular diseases. Then, we presented recent findings on computational hemodynamic and structural mechanics of BAV to highlight the potentiality of patient-specific metrics (not-based on aortic size) to support the clinical-decision making process of BAV-associated aneurysms. Examples of BAV-related personalized healthcare solutions are illustrated.
Collapse
Affiliation(s)
- Federica Cosentino
- Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro", University of Palermo, Piazza delle Cliniche, n.2, 90128 Palermo, Italy; Fondazione Ri.MED, Via Bandiera n.11, 90133 Palermo, Italy
| | - Francesco Scardulla
- Department of Engineering, University of Palermo, Viale delle Scienze Ed.8, 90128 Palermo, Italy
| | - Leonardo D'Acquisto
- Department of Engineering, University of Palermo, Viale delle Scienze Ed.8, 90128 Palermo, Italy
| | - Valentina Agnese
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Via Tricomi n.5, 90127 Palermo, Italy
| | - Giovanni Gentile
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Via Tricomi n.5, 90127 Palermo, Italy
| | - Giuseppe Raffa
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Via Tricomi n.5, 90127 Palermo, Italy
| | - Diego Bellavia
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Via Tricomi n.5, 90127 Palermo, Italy
| | - Michele Pilato
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Via Tricomi n.5, 90127 Palermo, Italy
| | - Salvatore Pasta
- Fondazione Ri.MED, Via Bandiera n.11, 90133 Palermo, Italy; Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Via Tricomi n.5, 90127 Palermo, Italy.
| |
Collapse
|