1
|
Matsushima S, Matsuhisa H, Wakita K, Tsujimoto T, Takagaki N, Honda I, Oshima Y, Kawanami O, Okada K. Expanded polytetrafluoroethylene conduits with curved and handsewn bileaflet designs for right ventricular outflow tract reconstruction. J Thorac Cardiovasc Surg 2024; 167:439-449.e6. [PMID: 37356475 DOI: 10.1016/j.jtcvs.2023.05.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/30/2023] [Accepted: 05/16/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVE This study reviewed the application of curved and bileaflet designs to pulmonary expanded polytetrafluoroethylene conduits with diameters of 10 to 16 mm and characterized this conduit on in vitro experiment, including particle image velocimetry. METHODS All patients who received this conduit between 2010 and 2022 were evaluated. Three 16-mm conduits were tested in a circulatory simulator at different cardiac outputs (1.5-3.6 L/minute) and bending angles (130°-150°). RESULTS Fifty consecutive patients were included. The median operative body weight was 8.4 kg (range, 2.6-12 kg); 10-, 12-, 14-, and 16-mm conduits were used in 1, 4, 6, and 39 patients, respectively. In 34 patients, the conduit was implanted in a heterotopic position. The overall survival rate was 89% at 8 years with 3 nonvalve-related deaths. There were 10 conduit replacements; 5 16-mm conduits (after 8 years) and 1 12-mm conduit (after 6 years) due to conduit stenosis, and the remaining 4 for reasons other than conduit failure. Freedom from conduit replacement was 89% and 82% at 5 and 8 years, respectively. Linear mixed-effects models with echocardiographic data implied that 16-mm conduits were durable with a peak velocity <3.5 m/second and without moderate/severe regurgitation until the patient's weight reached 25 kg. In experiments, peak transvalvular pressure gradients were 11.5 to 25.5 mm Hg, regurgitant fractions were 8.0% to 14.4%, and peak Reynolds shear stress in midsystolic phase was 29 to 318 Pa. CONCLUSIONS Our conduits with curved and bileaflet designs have acceptable clinical durability and proven hydrodynamic profiles, which eliminate valve regurgitation and serve as a reliable bridge to subsequent conduit replacement.
Collapse
Affiliation(s)
- Shunsuke Matsushima
- Department of Cardiovascular Surgery, Kobe Children's Hospital, Kobe, Japan; Division of Cardiovascular Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Hironori Matsuhisa
- Department of Cardiovascular Surgery, Kobe Children's Hospital, Kobe, Japan.
| | - Kohki Wakita
- Department of Mechanical Engineering, University of Hyogo, Himeji, Japan
| | - Takanori Tsujimoto
- Division of Cardiovascular Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naohisa Takagaki
- Department of Mechanical Engineering, University of Hyogo, Himeji, Japan; Advanced Medical Engineering Research Institute, University of Hyogo, Himeji, Japan
| | - Itsuro Honda
- Department of Mechanical Engineering, University of Hyogo, Himeji, Japan; Advanced Medical Engineering Research Institute, University of Hyogo, Himeji, Japan
| | - Yoshihiro Oshima
- Department of Cardiovascular Surgery, Kobe Children's Hospital, Kobe, Japan
| | - Osamu Kawanami
- Department of Mechanical Engineering, University of Hyogo, Himeji, Japan; Advanced Medical Engineering Research Institute, University of Hyogo, Himeji, Japan
| | - Kenji Okada
- Division of Cardiovascular Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
2
|
Dodds D, Sarhan AAR, Naser J. Experimental and numerical study of free-falling streams of particles impacting an inclined surface. EXPERIMENTAL AND COMPUTATIONAL MULTIPHASE FLOW 2023; 5:381-395. [DOI: 10.1007/s42757-022-0144-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/06/2022] [Accepted: 08/15/2022] [Indexed: 09/02/2023]
Abstract
AbstractThis paper presents a detailed experimental and numerical analysis of free-falling particle streams impacting a 45° inclined surface of differing materials. The particles used in this study were glass spheres with average diameters of 136 and 342 µm and a density of 2500 kg/m3. The three mass flow rates considered are 50, 150, and 250 grams per minute (gpm). The effect of wall material on the collision process was also analysed. Special attention was paid to the influence of wall roughness. Therefore, a plate of stainless steel with polished surface, an aluminium sheet, and a Perspex plate with similar properties to those of the rest of the wall sections were used. The experimental data were used to improve and validate a wall collision model in the frame of the Lagrangian approach. A new drag force formula that includes the effects of particle concentration as well as particle Reynolds number was implemented into commercially available codes from CFX4-4 package. It was found that the improved CFD model better predicted the experimental measurements for the particle rebound properties. The rough-wall model in these results showed greater effect on smaller particles than on larger particles. The results also showed that the improved CFD model predicted the velocity changes slightly better than the standard model, and this was confirmed by both the quantitative velocity comparisons and the qualitative concentration plots. Finally, the inclusion of the particle-particle collision was shown to be the dominant factor in providing the dispersion of the particles post collision. Without a sufficient particle-particle collision model, the standard model showed all particles behaving virtually identical, with the main particle stream continuing after the collision process.
Collapse
|
3
|
Gao X, Xu Z, Chen C, Hao P, He F, Zhang X. Full-scale numerical simulation of hemodynamics based on left ventricular assist device. Front Physiol 2023; 14:1192610. [PMID: 37304828 PMCID: PMC10248007 DOI: 10.3389/fphys.2023.1192610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Ventricular assist devices have been widely used and accepted to treat patients with end-stage heart failure. The role of VAD is to improve circulatory dysfunction or temporarily maintain the circulatory status of patients. In order to be closer to the medical practice, a multi-Domain model of the left ventricular coupled axial flow artificial heart was considered to study the effect of its hemodynamics on the aorta. Because whether LVAD itself was connected between the left ventricular apex and the ascending aorta by catheter in the loop was not very important for the analysis of simulation results, on the premise of ensuring the multi-Domain simulation, the simulation data of the import and export ends of LVAD were imported to simplify the model. In this paper, the hemodynamic parameters in the ascending aorta, such as blood flow velocity vector, wall shear stress distribution, vorticity current intensity, vorticity flow generation, etc., have been calculated. The numerical conclusion of this study showed the vorticity intensity under LVAD was significantly higher than that under patients' conditions and the overall condition is similar to that of a healthy ventricular spin, which can improve heart failure patients' condition while minimizing other pitfalls. In addition, high velocity blood flow during left ventricular assist surgery is mainly concentrated near the lining of the ascending aorta lumen. What's more, the paper proposes to use Q criterion to determine the generation of vorticity flow. The Q criterion of LVAD is much higher than that of patients with heart failure, and the closer the LVAD is to the wall of the ascending aorta, the greater the Q criterion is. All these are beneficial to the effectiveness of LVAD in the treatment of heart failure patients and provide clinical suggestions for the LVAD implantation in clinical practice.
Collapse
Affiliation(s)
- Xinyi Gao
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Zhike Xu
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Chenghan Chen
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Pengfei Hao
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China
- Tsinghua University (School of Materials Science and Engineering)—AVIC Aerodynamics Research Institute Joint Research Center for Advanced Materials and Anti-Icing, Beijing, China
| | - Feng He
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Xiwen Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China
| |
Collapse
|
4
|
Pietrasanta L, Zheng S, De Marinis D, Hasler D, Obrist D. Characterization of Turbulent Flow Behind a Transcatheter Aortic Valve in Different Implantation Positions. Front Cardiovasc Med 2022; 8:804565. [PMID: 35097022 PMCID: PMC8794584 DOI: 10.3389/fcvm.2021.804565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/14/2021] [Indexed: 11/21/2022] Open
Abstract
The development of turbulence after transcatheter aortic valve (TAV) implantation may have detrimental effects on the long-term performance and durability of the valves. The characterization of turbulent flow generated after TAV implantation can provide fundamental insights to enhance implantation techniques. A self-expandable TAV was tested in a pulse replicator and the three-dimensional flow field was extracted by means of tomographic particle image velocimetry. The valve was fixed inside a silicone phantom mimicking the aortic root and the flow field was studied for two different supra-annular axial positions at peak systole. Fluctuating velocities and turbulent kinetic energy were compared between the two implantations. Velocity spectra were derived at different spatial positions in the turbulent wakes to characterize the turbulent flow. The valve presented similar overall flow topology but approximately 8% higher turbulent intensity in the lower implantation. In this configuration, axial views of the valve revealed smaller opening area and more corrugated leaflets during systole, as well as more accentuated pinwheeling during diastole. The difference arose from a lower degree of expansion of the TAV's stent inside the aortic lumen. These results suggest that the degree of expansion of the TAV in-situ is related to the onset of turbulence and that a smaller and less regular opening area might introduce flow instabilities that could be detrimental for the long-term performance of the valve. The present study highlights how implantation mismatches may affect the structure and intensity of the turbulent flow in the aortic root.
Collapse
Affiliation(s)
- Leonardo Pietrasanta
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- *Correspondence: Leonardo Pietrasanta
| | - Shaokai Zheng
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Dario De Marinis
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Dipartimento di Meccanica Matematica e Management, Centro di Eccellenza in Meccanica Computazionale, Politecnico di Bari, Bari, Italy
| | - David Hasler
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Dominik Obrist
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Raghav V, Midha P, Sharma R, Babaliaros V, Yoganathan A. Transcatheter aortic valve thrombosis: a review of potential mechanisms. J R Soc Interface 2021; 18:20210599. [PMID: 34814733 DOI: 10.1098/rsif.2021.0599] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transcatheter aortic valve (TAV) thrombosis has been recognized as a significant problem that sometimes occurs as early as within 30 days after valve implantation, leading to increased concerns of stroke and long-term valve durability. In this article, a critical summary of the relevant literature on identifying potential mechanisms of TAV thrombosis from the perspective of the well-known Virchow's triad, which comprises blood flow, foreign materials and blood biochemistry, is presented. Blood flow mechanisms have been the primary focus thus far, with a general consensus on the flow mechanisms with respect to haemodynamic conditions, the influence of TAV placement and expansion and the influence of coronary flow. Less attention has been paid to the influence of blood biochemistry and foreign materials (and related endothelial damage), with little consensus among studies with regards to platelet and/or microparticle levels post-TAV implantation. Finally, we discuss the future outlook for research with unanswered scientific questions.
Collapse
Affiliation(s)
- Vrishank Raghav
- Department of Aerospace Engineering, Auburn University, Auburn, AL, USA
| | - Prem Midha
- Abbott Laboratories, Abbott Park, IL, USA
| | - Rahul Sharma
- Interventional Cardiology, Cardiovascular Medicine Faculty, Stanford University, Stanford, CA, USA
| | - Vasilis Babaliaros
- Division of Cardiology, Emory Structural Heart and Valve Center, Emory University, Atlanta, GA, USA
| | - Ajit Yoganathan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| |
Collapse
|
6
|
Ncho B, Siefert A, Sadri V, Ortner J, Yoganathan AP. Effect of Leaflet Type and Leaflet-Stent Attachment Height on Transcatheter Aortic Valve Leaflet Thrombosis Potential. J Med Device 2021. [DOI: 10.1115/1.4052902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Abstract
Transcatheter aortic valve replacement devices vary in leaflet material and in the height for which leaflets attach to the stented valve frame. Combinations of these features can influence leaflet dynamics, neo-sinus geometries, and fluid dynamics, thereby reducing or exacerbating the potential for blood flow stasis and leaflet thrombosis. To investigate these interconnected relationships, this study evaluated the effects of transcatheter valve leaflet type (porcine vs. bovine pericardium) and the leaflet-stent attachment height (low, mid, and high) on flow stasis and potential for leaflet thrombosis. Transcatheter valve models were manufactured and tested within an aortic simulator under pulsatile left heart hemodynamic conditions. Transvalvular hemodynamics, leaflet kinematics, and flow structures were evaluated by direct measurement, high-speed imaging, and two differing techniques of particle image velocimetry. Transcatheter valves with porcine pericardial leaflets were observed to be less stiff, exhibit a lesser resistance to flow, were associated with reduced regions of neo-sinus flow stasis, and superior sinus washout times. More elevated attachments of the leaflets were associated with less neo-sinus flow stasis. These initial results and observations suggest combinations of leaflet type and stent attachment height may reduce transcatheter aortic valve flow stasis and the potential for leaflet thrombosis.
Collapse
Affiliation(s)
- Beatrice Ncho
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Andrew Siefert
- The Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Vahid Sadri
- The Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jillian Ortner
- The Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Ajit P. Yoganathan
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA; The Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Proper Orthogonal Decomposition Analysis of the Flow Downstream of a Dysfunctional Bileaflet Mechanical Aortic Valve. Cardiovasc Eng Technol 2021; 12:286-299. [PMID: 33469847 DOI: 10.1007/s13239-021-00519-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/02/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Aortic valve replacement remains the only viable solution for symptomatic patients with severe aortic valve stenosis. Despite their improved design and long history of successful operation, bileaflet mechanical heart valves are still associated with post-operative complications leading to valve dysfunction. Thus, the flow dynamics can be highly disturbed downstream of the dysfunctional valve. METHODS In this in vitro study, the flow dynamics downstream of healthy and dysfunctional bileaflet mechanical heart valves have been investigated using particle image velocimetry measurements. Proper orthogonal decomposition of the velocity field has been performed in order to explore the coherent flow features in the ascending aorta in the presence of a dysfunctional bileaflet mechanical heart valve. RESULTS The ability of proper orthogonal decomposition derived metrics to differentiate between heathy and dysfunctional cases is reported. Moreover, reduced-order modeling using proper orthogonal decomposition is thoroughly investigated not only for the velocity field but also for higher order flow characteristics such as time average wall shear stress, oscillatory shear index and viscous energy dissipation. CONCLUSION Considering these results, proper orthogonal decomposition can provide a rapid binary classifier to evaluate if the bileaflet mechanical valve deviates from its normal operating conditions. Moreover, the study shows that the size of the reduced-order model depends on which flow parameter is required to be reconstructed.
Collapse
|
8
|
Schiavone NK, Elkins CJ, McElhinney DB, Eaton JK, Marsden AL. In Vitro Assessment of Right Ventricular Outflow Tract Anatomy and Valve Orientation Effects on Bioprosthetic Pulmonary Valve Hemodynamics. Cardiovasc Eng Technol 2021; 12:215-231. [PMID: 33452649 DOI: 10.1007/s13239-020-00507-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 12/02/2020] [Indexed: 01/30/2023]
Abstract
PURPOSE The congenital heart defect Tetralogy of Fallot (ToF) affects 1 in 2500 newborns annually in the US and typically requires surgical repair of the right ventricular outflow tract (RVOT) early in life, with variations in surgical technique leading to large disparities in RVOT anatomy among patients. Subsequently, often in adolescence or early adulthood, patients usually require surgical placement of a xenograft or allograft pulmonary valve prosthesis. Valve longevity is highly variable for reasons that remain poorly understood. METHODS This work aims to assess the performance of bioprosthetic pulmonary valves in vitro using two 3D printed geometries: an idealized case based on healthy subjects aged 11 to 13 years and a diseased case with a 150% dilation in vessel diameter downstream of the valve. Each geometry was studied with two valve orientations: one with a valve leaflet opening posterior, which is the native pulmonary valve position, and one with a valve leaflet opening anterior. RESULTS Full three-dimensional, three-component, phase-averaged velocity fields were obtained in the physiological models using 4D flow MRI. Flow features, particularly vortex formation and reversed flow regions, differed significantly between the RVOT geometries and valve orientations. Pronounced asymmetry in streamwise velocity was present in all cases, while the diseased geometry produced additional asymmetry in radial flows. Quantitative integral metrics demonstrated increased secondary flow strength and recirculation in the rotated orientation for the diseased geometry. CONCLUSIONS The compound effects of geometry and orientation on bioprosthetic valve hemodynamics illustrated in this study could have a crucial impact on long-term valve performance.
Collapse
Affiliation(s)
| | | | | | - John K Eaton
- Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Alison L Marsden
- Pediatrics and Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
9
|
In-Vitro Assessment of the Effects of Transcatheter Aortic Valve Leaflet Design on Neo-Sinus Geometry and Flow. Ann Biomed Eng 2020; 49:1046-1057. [PMID: 33098058 DOI: 10.1007/s10439-020-02664-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/16/2020] [Indexed: 10/23/2022]
Abstract
Transcatheter aortic valve (TAV) leaflet thrombosis is a clinical risk with potentially fatal consequences. Studies have identified neo-sinus flow stasis as a cause of leaflet thrombosis. Flow stasis is influenced by the TAV leaflets, which affect the local fluid dynamics in the aortic sinus and neo-sinus. This study evaluated the effects of TAV leaflet features on the neo-sinus flow as a measure of leaflet thrombosis risk. Five TAVs of varied leaflet length and insertion height were tested in a simulator. Hydrodynamics and leaflet kinematics through en-phase imaging were quantified. Velocity fields were assessed using high-speed particle image velocimetry. Regions of flow stasis and particle residence times (PRTs) were quantified. TAVs with shorter leaflet length exhibited larger orifice areas and lower transvalvular pressure gradients. Shorter leaflet length and increased leaflet insertion TAVs additionally exhibited lower neo-sinus PRTs (0.44 ± 0.21 vs 2.83 ± 0.48 cycles, p < 0.05) and higher neo-sinus peak velocities (0.15 ± 0.009 vs 0.07 ± 0.005 m/s, p < 0.05) than TAVs with longer leaflet length and lower leaflet insertion. The average neo-sinus volume positively correlated with PRT(r = 0.810, p < 0.001), and extent of flow stasis (r = 0.682, p < 0.05). These results suggest that a small neo-sinus volume may reduce flow stagnation and particle residence, potentially reducing the risk of leaflet thrombosis. We propose that leaflet design features might be proactively controlled in the design of future transcatheter aortic valves.
Collapse
|
10
|
Cameron K, El Hassan M, Sabbagh R, Freed DH, Nobes DS. Experimental investigation into the effect of compliance of a mock aorta on cardiac performance. PLoS One 2020; 15:e0239604. [PMID: 33044976 PMCID: PMC7549783 DOI: 10.1371/journal.pone.0239604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 09/10/2020] [Indexed: 11/23/2022] Open
Abstract
Demand for heart transplants far exceeds supply of donated organs. This is attributed to the high percentage of donor hearts that are discarded and to the narrow six-hour time window currently available for transplantation. Ex-vivo heart perfusion (EVHP) provides the opportunity for resuscitation of damaged organs and extended transplantation time window by enabling functional assessment of the hearts in a near-physiologic state. Present work investigates the fluid mechanics of the ex-vivo flow loop and corresponding impact on cardiac performance. A mechanical flow loop is developed that is analogous to the region of the EVHP system that mimics in-vivo systemic circulation, including the body’s largest and most compliant artery, the aorta. This investigation is focused on determining the effect of mock aortic tubing compliance on pump performance. A custom-made silicone mock aorta was developed to simulate a range of in-vivo conditions and a physiological flow was generated using a commercial ventricular assist device (VAD). Monitored parameters, including pressure, tube distension and downstream velocity, acquired using time-resolved particle imaging velocimetry (PIV), were applied to an unsteady Bernoulli analysis of the flow in a novel way to evaluate pump performance as a proxy for cardiac workload. When compared to the rigid case, the compliant mock aorta case demonstrated healthier physiologic pressure waveforms, steadier downstream flow and reduced energetic demands on the pump. These results provide experimental verification of Windkessel theory and support the need for a compliant mock aorta in the EVHP system.
Collapse
Affiliation(s)
- Katie Cameron
- Department of Biomedical Engineering, University of Alberta, Edmonton, Canada
| | - Mouhammad El Hassan
- Prince Mohammad Bin Fahd University, Al-Khobar, Saudi Arabia
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | - Reza Sabbagh
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | - Darren H. Freed
- Departments of Surgery, Physiology & Biomedical Engineering, University of Alberta, Edmonton, Canada
| | - David S. Nobes
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
- * E-mail:
| |
Collapse
|
11
|
Influence of Patient-Specific Characteristics on Transcatheter Heart Valve Neo-Sinus Flow: An In Silico Study. Ann Biomed Eng 2020; 48:2400-2411. [PMID: 32415483 DOI: 10.1007/s10439-020-02532-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/06/2020] [Indexed: 01/10/2023]
Abstract
Thrombosis in post-transcatheter aortic valve replacement (TAVR) patients has been correlated with flow stasis in the neo-sinus. This study investigated the effect of the post-TAVR geometry on flow stasis. Computed tomography angiography of 155 patients who underwent TAVR using a SAPIEN 3 were used to identify patients with and without thrombosis, and quantify thrombus volumes. Six patients with 23-mm SAPIEN 3 valves were then selected from the cohort and used to create patient-specific post-TAVR computational fluid dynamic models. Regions of flow stasis (%Volstasis, velocities below 0.05 m/s) were identified. The results showed that all post-TAVR anatomical measurements were significantly different in patients with and without thrombus, but only sinus diameter had a linear correlation with thrombus volume (r = 0.471, p = 0.008). A linear correlation was observed between %Volstasis and thrombus volume (r = 0.821, p = 0.007). The combination of anatomy and valve deployment created a unique geometry in each patient, which when combined with patient-specific cardiac output, resulted in distinct flow patterns. While parametric studies have shown individual anatomical or deployment metrics may relate to flow stasis, the combined effects of these metrics potentially contributes to the biomechanical environment promoting thrombosis, therefore hemodynamic studies of TAVR should account for these patient-specific factors.
Collapse
|
12
|
Hatoum H, Maureira P, Lilly S, Dasi LP. Impact of Leaflet Laceration on Transcatheter Aortic Valve-in-Valve Washout: BASILICA to Solve Neosinus and Sinus Stasis. JACC Cardiovasc Interv 2020; 12:1229-1237. [PMID: 31272669 DOI: 10.1016/j.jcin.2019.04.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/26/2019] [Accepted: 04/09/2019] [Indexed: 11/17/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate any potential leaflet washout benefits after bioprosthetic or native aortic scallop intentional laceration to prevent iatrogenic coronary artery obstruction during TAVR (BASILICA) in transcatheter valve-in-valve (ViV) in the context of leaflet thrombosis. BACKGROUND Leaflet thrombosis after transcatheter aortic valve replacement is secondary to flow stasis in both the sinus and neosinus. Strategies to improve washout and ameliorate neosinus and sinus flow velocities may have the potential to mitigate the occurrence of clinical and subclinical leaflet thrombosis. METHODS A 23-mm Edwards SAPIEN 3 and a 26-mm Medtronic Evolut were deployed in a 23-mm transparent surgical aortic valve model before and after leaflet laceration. The valves were placed in the aortic position of a pulse duplicator flow loop. Particle image velocimetry was performed to quantify sinus flow hemodynamic status. A tracing fluorescent dye was injected to evaluate the number of cycles to washout in both regions of interest. RESULTS The leaflet laceration procedure led to an increase in the velocities in the sinus and the neosinus by 50% for Evolut ViV and 61.9% for SAPIEN 3 ViV. In addition, leaflet laceration led to a reduction in overall cycles to washout in the neosinus by at least 56% with the Evolut and 54.5% with the SAPIEN 3 and in the sinus by at least 16.7% with the Evolut and 60.8% with the SAPIEN. CONCLUSIONS Leaflet laceration using a BASILICA-type approach may hold the potential to mitigate neosinus and sinus flow stasis. Controlled in vivo trials are necessary to establish the potential benefit of BASILICA to reduce the occurrence of leaflet thrombosis.
Collapse
Affiliation(s)
- Hoda Hatoum
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Pablo Maureira
- Department of Cardiovascular Surgery, CHU de Nancy, Nancy, France
| | - Scott Lilly
- Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio
| | - Lakshmi Prasad Dasi
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
13
|
Hydrodynamic Noise of Pulsating Jets through Bileaflet Mechanical Mitral Valve. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1024096. [PMID: 32566648 PMCID: PMC7277049 DOI: 10.1155/2020/1024096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/18/2020] [Indexed: 11/18/2022]
Abstract
Experimental research results of hydrodynamic noise of pulsating flow through a bileaflet mechanical mitral valve are presented. The pulsating flow of pure water corresponds to the diastolic mode of the cardiac rhythm heart. The valve was located between the model of the left atrium and the model of the left ventricle of the heart. A coordinate device, on which a block of miniature sensors of absolute pressure and pressure fluctuations was installed, was located inside the model of the left ventricle. It is found that the hydrodynamic noise of the pulsating side jet of the semiclosed valve is higher than for the open valve. The pressure fluctuation levels gradually decrease with the removal from the mitral valve. It is established that at the second harmonic of the pulsating flow frequency, the spectral levels of the hydrodynamic noise of the semiclosed bileaflet mechanical mitral valve are almost 5 times higher than the open valve. With the removal from the mitral valve, spectral levels of hydrodynamic noise are decreased, especially strongly at the frequency of the pulsating water flow and its higher harmonics.
Collapse
|
14
|
Wium E, Jordaan CJ, Botes L, Smit FE. Alternative mechanical heart valves for the developing world. Asian Cardiovasc Thorac Ann 2019; 28:431-443. [PMID: 31752500 DOI: 10.1177/0218492319891255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Due to the prevalence of rheumatic heart disease in the developing world, mechanical heart valves in the younger patient population remain the prostheses of choice if repair is not feasible. Despite their durability, mechanical valves are burdened by coagulation and thromboembolism. Modern design tools can be utilized during the design process of mechanical valves, which allow a more systematic design approach and more detailed analysis of the blood flow through and around valves. These tools include computer-aided design, manufacturing, and engineering, such as computational fluid dynamics and finite element analysis, modern manufacturing techniques such as additive manufacturing, and sophisticated in-vitro and in-vivo tests. Following this systematic approach, a poppet valve was redesigned and the results demonstrate the benefits of the method. More organized flow patterns and fewer complex fluid structures were observed. The alternative trileaflet valve design has also been identified as a potential solution and, if a similar design approach is adopted, it could lead to the development of an improved mechanical heart valve in the future. It is imperative that researchers in developing countries continue their search for a mechanical heart valve with a reduced thromboembolic risk, requiring less or no anticoagulation.
Collapse
Affiliation(s)
- Elsmari Wium
- Robert WM Frater Cardiovascular Research Centre, Department of Cardiothoracic Surgery, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa.,Department of Mechanical and Mechatronic Engineering, Faculty of Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Christiaan Johannes Jordaan
- Robert WM Frater Cardiovascular Research Centre, Department of Cardiothoracic Surgery, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Lezelle Botes
- Department of Health Sciences, Central University of Technology, Bloemfontein, South Africa
| | - Francis Edwin Smit
- Robert WM Frater Cardiovascular Research Centre, Department of Cardiothoracic Surgery, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
15
|
Wu C, Saikrishnan N, Chalekian AJ, Fraser R, Ieropoli O, Retta SM, Joseph R, Lee S, Marquez S, Mester D, Pan N, Vatanpour S, Weinberg C, Steinseifer U. In-Vitro Pulsatile Flow Testing of Prosthetic Heart Valves: A Round-Robin Study by the ISO Cardiac Valves Working Group. Cardiovasc Eng Technol 2019; 10:397-422. [PMID: 31240664 DOI: 10.1007/s13239-019-00422-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/08/2019] [Indexed: 01/12/2023]
Abstract
PURPOSE Hydrodynamic performance testing is one of the core in vitro assessments required by the ISO 5840 series of standards for all prosthetic heart valves. A round-robin study carried out in 2005 in accordance with ISO 5840:2005 revealed significant variabilities in prosthetic heart valve hydrodynamic performance measurements among the participating laboratories. In order to re-examine the inter-laboratory variability based on the "state-of-the-art" under ISO 5840-1 and 5840-2:2015, the ISO Cardiac Valve Working Groups decided in 2016 to repeat the round-robin study. METHODS A total of 13 international laboratories participated in the study. The test valves were chosen to be the St. Jude Medical Masters Series mechanical valves (19 mm aortic, 25 mm aortic, 25 mm mitral, and 31 mm mitral), which were circulated among the laboratories. The testing was conducted according to a common test run sequence, with prespecified flow conditions. RESULTS The study revealed improved, yet still significant variability among different laboratories as compared to the 2005 study. The coefficient of variation ranged from 7.7 to 21.6% for the effective orifice area, from 10.1 to 32.8% for the total regurgitant fraction, and from 14.7 to 45.5% for the mean transvalvular pressure gradient. CONCLUSIONS The study revealed the ambiguities in the current versions of the ISO 5840 series of standards and the shortcomings of some participating laboratories. This information has allowed the ISO Working Group to incorporate additional clarifying language into the ISO 5840-1, -2, and -3 standards that are currently under revision to improve in vitro assessments. The results presented here can also be used by the testing laboratories to benchmark pulse duplicator systems and to train and certify testing personnel.
Collapse
Affiliation(s)
- Changfu Wu
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA.
| | | | | | | | - Ornella Ieropoli
- Sorin Group Italia s.r.l. (fully owned by LivaNova Plc), Saluggia, VC, Italy
| | - Stephen M Retta
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
| | | | - Shouyan Lee
- Medical Implant Testing Lab, Irvine, CA, USA
| | | | - David Mester
- W. L. Gore & Associates, Inc., Flagstaff, AZ, USA
| | - Ning Pan
- Boston Scientific, Los Gatos, CA, USA
| | | | | | | |
Collapse
|
16
|
High-Resolution Measurements of Leakage Flow Inside the Hinge of a Large-scale Bileaflet Mechanical Heart Valve Hinge Model. Cardiovasc Eng Technol 2019; 10:469-481. [PMID: 31236828 DOI: 10.1007/s13239-019-00423-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 06/13/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE It is believed that non-physiological leakage flow through hinge gaps during diastole contributes to thrombus formation in Bileaflet Mechanical Heart Valves (BMHVs). Because of the small scale and difficulty of experimental access, fluid dynamics inside the hinge cavity has not yet been characterised in detail. The objective is to investigate small-scale structure inside the hinge experimentally, and gain insight into its role in stimulating cellular responses. METHODS An optically accessible scaled-up model of a BMHV hinge was designed and built, preserving dynamic similarity to a clinical BMHV. Particle Image Velocimetry (PIV) was used to visualize and quantify the flow fields inside the hinge at physiological Reynolds number and dimensionless pressure drop. The flow was measured at in-plane and out-of-plane spatial resolution of 32 and 86 μm, respectively, and temporal resolution of [Formula: see text] RESULTS: Likely flow separation on the ventricular surface of the cavity has been observed for the first time, and is a source of unsteadiness and perhaps turbulence. The shear stress found in all planes exceeds the threshold of platelet activation, ranging up to 168 Pa. CONCLUSIONS The scale-up approach provided new insight into the nature of the hinge flow and enhanced understanding of its complexity. This study revealed flow features that may induce blood element damage.
Collapse
|
17
|
Saaid H, Voorneveld J, Schinkel C, Westenberg J, Gijsen F, Segers P, Verdonck P, de Jong N, Bosch JG, Kenjeres S, Claessens T. Tomographic PIV in a model of the left ventricle: 3D flow past biological and mechanical heart valves. J Biomech 2019; 90:40-49. [DOI: 10.1016/j.jbiomech.2019.04.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/14/2019] [Accepted: 04/15/2019] [Indexed: 10/27/2022]
|
18
|
Mitral Valve Prosthesis Design Affects Hemodynamic Stasis and Shear In The Dilated Left Ventricle. Ann Biomed Eng 2019; 47:1265-1280. [DOI: 10.1007/s10439-019-02218-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/23/2019] [Indexed: 11/26/2022]
|
19
|
Use of Computational Fluid Dynamics to Analyze Blood Flow, Hemolysis and Sublethal Damage to Red Blood Cells in a Bileaflet Artificial Heart Valve. FLUIDS 2019. [DOI: 10.3390/fluids4010019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Artificial heart valves may expose blood to flow conditions that lead to unnaturally high stress and damage to blood cells as well as issues with thrombosis. The purpose of this research was to predict the trauma caused to red blood cells (RBCs), including hemolysis, from the stresses applied to them and their exposure time as determined by analysis of simulation results for blood flow through both a functioning and malfunctioning bileaflet artificial heart valve. The calculations provided the spatial distribution of the Kolmogorov length scales that were used to estimate the spatial and size distributions of the smallest turbulent flow eddies in the flow field. The number and surface area of these eddies in the blood were utilized to predict the amount of hemolysis experienced by RBCs. Results indicated that hemolysis levels are low while suggesting stresses at the leading edge of the leaflet may contribute to subhemolytic damage characterized by shortened circulatory lifetimes and reduced RBC deformability.
Collapse
|