1
|
Arminio M, Carbonaro D, Morbiducci U, Gallo D, Chiastra C. Fluid-structure interaction simulation of mechanical aortic valves: a narrative review exploring its role in total product life cycle. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1399729. [PMID: 39011523 PMCID: PMC11247014 DOI: 10.3389/fmedt.2024.1399729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/07/2024] [Indexed: 07/17/2024] Open
Abstract
Over the last years computer modelling and simulation has emerged as an effective tool to support the total product life cycle of cardiovascular devices, particularly in the device preclinical evaluation and post-market assessment. Computational modelling is particularly relevant for heart valve prostheses, which require an extensive assessment of their hydrodynamic performance and of risks of hemolysis and thromboembolic complications associated with mechanically-induced blood damage. These biomechanical aspects are typically evaluated through a fluid-structure interaction (FSI) approach, which enables valve fluid dynamics evaluation accounting for leaflets movement. In this context, the present narrative review focuses on the computational modelling of bileaflet mechanical aortic valves through FSI approach, aiming to foster and guide the use of simulations in device total product life cycle. The state of the art of FSI simulation of heart valve prostheses is reviewed to highlight the variety of modelling strategies adopted in the literature. Furthermore, the integration of FSI simulations in the total product life cycle of bileaflet aortic valves is discussed, with particular emphasis on the role of simulations in complementing and potentially replacing the experimental tests suggested by international standards. Simulations credibility assessment is also discussed in the light of recently published guidelines, thus paving the way for a broader inclusion of in silico evidence in regulatory submissions. The present narrative review highlights that FSI simulations can be successfully framed within the total product life cycle of bileaflet mechanical aortic valves, emphasizing that credible in silico models evaluating the performance of implantable devices can (at least) partially replace preclinical in vitro experimentation and support post-market biomechanical evaluation, leading to a reduction in both time and cost required for device development.
Collapse
Affiliation(s)
| | | | | | | | - Claudio Chiastra
- PoliToMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
2
|
Kreinin Y, Talmon Y, Levi M, Khoury M, Or I, Raad M, Bolotin G, Sznitman J, Korin N. A Fibrin-Thrombin Based In Vitro Perfusion System to Study Flow-Related Prosthetic Heart Valves Thrombosis. Ann Biomed Eng 2024; 52:1665-1677. [PMID: 38459196 PMCID: PMC11082030 DOI: 10.1007/s10439-024-03480-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/20/2024] [Indexed: 03/10/2024]
Abstract
Prosthetic heart valve (PHV) replacement has increased the survival rate and quality of life for heart valve-diseased patients. However, PHV thrombosis remains a critical problem associated with these procedures. To better understand the PHV flow-related thrombosis problem, appropriate experimental models need to be developed. In this study, we present an in vitro fibrin clot model that mimics clot accumulation in PHVs under relevant hydrodynamic conditions while allowing real-time imaging. We created 3D-printed mechanical aortic valve models that were inserted into a transparent glass aorta model and connected to a system that simulates human aortic flow pulse and pressures. Thrombin was gradually injected into a circulating fibrinogen solution to induce fibrin clot formation, and clot accumulation was quantified via image analysis. The results of valves positioned in a normal versus a tilted configuration showed that clot accumulation correlated with the local flow features and was mainly present in areas of low shear and high residence time, where recirculating flows are dominant, as supported by computational fluid dynamic simulations. Overall, our work suggests that the developed method may provide data on flow-related clot accumulation in PHVs and may contribute to exploring new approaches and valve designs to reduce valve thrombosis.
Collapse
Affiliation(s)
- Yevgeniy Kreinin
- Department of Biomedical Engineering, Technion-IIT, 3200003, Haifa, Israel
| | - Yahel Talmon
- Department of Biomedical Engineering, Technion-IIT, 3200003, Haifa, Israel
| | - Moran Levi
- Department of Biomedical Engineering, Technion-IIT, 3200003, Haifa, Israel
| | - Maria Khoury
- Department of Biomedical Engineering, Technion-IIT, 3200003, Haifa, Israel
| | - Itay Or
- Department of Cardiac Surgery, Rambam Health Care Campus, 3109601, Haifa, Israel
| | - Mahli Raad
- Department of Cardiac Surgery, Rambam Health Care Campus, 3109601, Haifa, Israel
| | - Gil Bolotin
- Department of Cardiac Surgery, Rambam Health Care Campus, 3109601, Haifa, Israel
- The Ruth Bruce Rappaport Faculty of Medicine, Technion-IIT, 3525433, Haifa, Israel
| | - Josué Sznitman
- Department of Biomedical Engineering, Technion-IIT, 3200003, Haifa, Israel
| | - Netanel Korin
- Department of Biomedical Engineering, Technion-IIT, 3200003, Haifa, Israel.
| |
Collapse
|
3
|
Ramella A, Lissoni V, Bridio S, Rodriguez Matas JF, Trimarchi S, Grossi B, Stefanini GG, Migliavacca F, Luraghi G. On the necessity to include arterial pre-stress in patient-specific simulations of minimally invasive procedures. Biomech Model Mechanobiol 2024; 23:525-537. [PMID: 38063955 PMCID: PMC10963513 DOI: 10.1007/s10237-023-01789-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/27/2023] [Indexed: 03/26/2024]
Abstract
Transcatheter aortic valve implantation (TAVI) and thoracic endovascular aortic repair (TEVAR) are minimally invasive procedures for treating aortic valves and diseases. Finite element simulations have proven to be valuable tools in predicting device-related complications. In the literature, the inclusion of aortic pre-stress has not been widely investigated. It plays a crucial role in determining the biomechanical response of the vessel and the device-tissue interaction. This study aims at demonstrating how and when to include the aortic pre-stress in patient-specific TAVI and TEVAR simulations. A percutaneous aortic valve and a stent-graft were implanted in aortic models reconstructed from patient-specific CT scans. Two scenarios for each patient were compared, i.e., including and neglecting the wall pre-stress. The neglection of pre-stress underestimates the contact pressure of 48% and 55%, the aorta stresses of 162% and 157%, the aorta strains of 77% and 21% for TAVI and TEVAR models, respectively. The stent stresses are higher than 48% with the pre-stressed aorta in TAVI simulations; while, similar results are obtained in TEVAR cases. The distance between the device and the aorta is similar with and without pre-stress. The inclusion of the aortic wall pre-stress has the capability to give a better representation of the biomechanical behavior of the arterial tissues and the implanted device. It is suggested to include this effect in patient-specific simulations replicating the procedures.
Collapse
Affiliation(s)
- Anna Ramella
- Computational Biomechanics Laboratory - LaBS, Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Piazza L. da Vinci 32, 20133, Milan, Italy
| | - Vittorio Lissoni
- Computational Biomechanics Laboratory - LaBS, Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Piazza L. da Vinci 32, 20133, Milan, Italy
| | - Sara Bridio
- Computational Biomechanics Laboratory - LaBS, Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Piazza L. da Vinci 32, 20133, Milan, Italy
| | - Jose Felix Rodriguez Matas
- Computational Biomechanics Laboratory - LaBS, Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Piazza L. da Vinci 32, 20133, Milan, Italy
| | - Santi Trimarchi
- Section of Vascular Surgery, Cardio Thoracic Vascular Department, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Via Della Commenda 19, 20122, Milan, Italy
| | - Benedetta Grossi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
| | - Giulio G Stefanini
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Francesco Migliavacca
- Computational Biomechanics Laboratory - LaBS, Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Piazza L. da Vinci 32, 20133, Milan, Italy
| | - Giulia Luraghi
- Computational Biomechanics Laboratory - LaBS, Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Piazza L. da Vinci 32, 20133, Milan, Italy.
| |
Collapse
|
4
|
Syed F, Khan S, Toma M. Modeling Dynamics of the Cardiovascular System Using Fluid-Structure Interaction Methods. BIOLOGY 2023; 12:1026. [PMID: 37508455 PMCID: PMC10376821 DOI: 10.3390/biology12071026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/07/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Using fluid-structure interaction algorithms to simulate the human circulatory system is an innovative approach that can provide valuable insights into cardiovascular dynamics. Fluid-structure interaction algorithms enable us to couple simulations of blood flow and mechanical responses of the blood vessels while taking into account interactions between fluid dynamics and structural behaviors of vessel walls, heart walls, or valves. In the context of the human circulatory system, these algorithms offer a more comprehensive representation by considering the complex interplay between blood flow and the elasticity of blood vessels. Algorithms that simulate fluid flow dynamics and the resulting forces exerted on vessel walls can capture phenomena such as wall deformation, arterial compliance, and the propagation of pressure waves throughout the cardiovascular system. These models enhance the understanding of vasculature properties in human anatomy. The utilization of fluid-structure interaction methods in combination with medical imaging can generate patient-specific models for individual patients to facilitate the process of devising treatment plans. This review evaluates current applications and implications of fluid-structure interaction algorithms with respect to the vasculature, while considering their potential role as a guidance tool for intervention procedures.
Collapse
Affiliation(s)
- Faiz Syed
- College of Osteopathic Medicine, New York Institute of Technology, Northern Boulevard, Old Westbury, NY 11568, USA
| | - Sahar Khan
- College of Osteopathic Medicine, New York Institute of Technology, Northern Boulevard, Old Westbury, NY 11568, USA
| | - Milan Toma
- College of Osteopathic Medicine, New York Institute of Technology, Northern Boulevard, Old Westbury, NY 11568, USA
| |
Collapse
|
5
|
Zhou J, Li Y, Li T, Tian X, Xiong Y, Chen Y. Analysis of the Effect of Thickness on the Performance of Polymeric Heart Valves. J Funct Biomater 2023; 14:309. [PMID: 37367273 DOI: 10.3390/jfb14060309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/17/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Polymeric heart valves (PHVs) are a promising and more affordable alternative to mechanical heart valves (MHVs) and bioprosthetic heart valves (BHVs). Materials with good durability and biocompatibility used for PHVs have always been the research focus in the field of prosthetic heart valves for many years, and leaflet thickness is a major design parameter for PHVs. The study aims to discuss the relationship between material properties and valve thickness, provided that the basic functions of PHVs are qualified. The fluid-structure interaction (FSI) approach was employed to obtain a more reliable solution of the effective orifice area (EOA), regurgitant fraction (RF), and stress and strain distribution of the valves with different thicknesses under three materials: Carbothane PC-3585A, xSIBS and SIBS-CNTs. This study demonstrates that the smaller elastic modulus of Carbothane PC-3585A allowed for a thicker valve (>0.3 mm) to be produced, while for materials with an elastic modulus higher than that of xSIBS (2.8 MPa), a thickness less than 0.2 mm would be a good attempt to meet the RF standard. What is more, when the elastic modulus is higher than 23.9 MPa, the thickness of the PHV is recommended to be 0.l-0.15 mm. Reducing the RF is one of the directions of PHV optimization in the future. Reducing the thickness and improving other design parameters are reliable means to reduce the RF for materials with high and low elastic modulus, respectively.
Collapse
Affiliation(s)
- Jingyuan Zhou
- Department of Applied Mechanics, Sichuan University, Chengdu 610065, China
| | - Yijing Li
- College of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Tao Li
- College of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaobao Tian
- Department of Applied Mechanics, Sichuan University, Chengdu 610065, China
| | - Yan Xiong
- College of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Yu Chen
- Department of Applied Mechanics, Sichuan University, Chengdu 610065, China
| |
Collapse
|
6
|
Esmailie F, Razavi A, Yeats B, Sivakumar SK, Chen H, Samaee M, Shah IA, Veneziani A, Yadav P, Thourani VH, Dasi LP. Biomechanics of Transcatheter Aortic Valve Replacement Complications and Computational Predictive Modeling. STRUCTURAL HEART : THE JOURNAL OF THE HEART TEAM 2022; 6:100032. [PMID: 37273734 PMCID: PMC10236878 DOI: 10.1016/j.shj.2022.100032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/09/2021] [Accepted: 11/03/2021] [Indexed: 06/06/2023]
Abstract
Transcatheter aortic valve replacement (TAVR) is a rapidly growing field enabling replacement of diseased aortic valves without the need for open heart surgery. However, due to the nature of the procedure and nonremoval of the diseased tissue, there are rates of complications ranging from tissue rupture and coronary obstruction to paravalvular leak, valve thrombosis, and permanent pacemaker implantation. In recent years, computational modeling has shown a great deal of promise in its capabilities to understand the biomechanical implications of TAVR as well as help preoperatively predict risks inherent to device-patient-specific anatomy biomechanical interaction. This includes intricate replication of stent and leaflet designs and tested and validated simulated deployments with structural and fluid mechanical simulations. This review outlines current biomechanical understanding of device-related complications from TAVR and related predictive strategies using computational modeling. An outlook on future modeling strategies highlighting reduced order modeling which could significantly reduce the high time and cost that are required for computational prediction of TAVR outcomes is presented in this review paper. A summary of current commercial/in-development software is presented in the final section.
Collapse
Affiliation(s)
- Fateme Esmailie
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University School of Medicine, Atlanta, Georgia, USA
| | - Atefeh Razavi
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University School of Medicine, Atlanta, Georgia, USA
| | - Breandan Yeats
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sri Krishna Sivakumar
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University School of Medicine, Atlanta, Georgia, USA
| | - Huang Chen
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University School of Medicine, Atlanta, Georgia, USA
| | - Milad Samaee
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University School of Medicine, Atlanta, Georgia, USA
| | - Imran A. Shah
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University School of Medicine, Atlanta, Georgia, USA
| | - Alessandro Veneziani
- Department of Mathematics, Department of Computer Science, Emory University, Atlanta, Georgia, USA
| | - Pradeep Yadav
- Department of Cardiology, Marcus Valve Center, Piedmont Heart Institute, Atlanta, Georgia, USA
| | - Vinod H. Thourani
- Department of Cardiovascular Surgery, Marcus Valve Center, Piedmont Heart Institute, Atlanta, Georgia, USA
| | - Lakshmi Prasad Dasi
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Liu X, Zhang W, Ye P, Luo Q, Chang Z. Fluid-Structure Interaction Analysis on the Influence of the Aortic Valve Stent Leaflet Structure in Hemodynamics. Front Physiol 2022; 13:904453. [PMID: 35634139 PMCID: PMC9136298 DOI: 10.3389/fphys.2022.904453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Transcatheter aortic valve replacement (TAVR) is a minimally invasive surgical treatment for heart valve disease. At present, personalized TAVR valves are not available for some patients. This study adopts the fluid-structure interaction (FSI) model of the research object that has a three-disc leaflet form and structural design in the valve leaflet area. The valve opening shape, orifice area, stress-strain, and distribution of hemodynamic flow and pressure were compared under the condition of equal contact area between valve and blood. The FSI method was used to simulate the complex three dimensional characteristics of the flow field more accurately around the valve after TAVR stent implantation. Three personalized stent systems were established to study the performance of the leaflet design based on computational fluid dynamics. By comparing the different leaflet geometries, the maximum stress on leaflets and stents of model B was relatively reduced, which effectively improved the reliability of the stent design. Such valve design also causes the opening area of the valve leaflet to increase and the low-velocity area of the flow field to decrease during the working process of the valve, thus reducing the possibility of thrombosis. These findings can underpin breakthroughs in product design, and provide important theoretical support and technical guidance for clinical research.
Collapse
|
8
|
Toma M, Singh-Gryzbon S, Frankini E, Wei Z(A, Yoganathan AP. Clinical Impact of Computational Heart Valve Models. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3302. [PMID: 35591636 PMCID: PMC9101262 DOI: 10.3390/ma15093302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 12/17/2022]
Abstract
This paper provides a review of engineering applications and computational methods used to analyze the dynamics of heart valve closures in healthy and diseased states. Computational methods are a cost-effective tool that can be used to evaluate the flow parameters of heart valves. Valve repair and replacement have long-term stability and biocompatibility issues, highlighting the need for a more robust method for resolving valvular disease. For example, while fluid-structure interaction analyses are still scarcely utilized to study aortic valves, computational fluid dynamics is used to assess the effect of different aortic valve morphologies on velocity profiles, flow patterns, helicity, wall shear stress, and oscillatory shear index in the thoracic aorta. It has been analyzed that computational flow dynamic analyses can be integrated with other methods to create a superior, more compatible method of understanding risk and compatibility.
Collapse
Affiliation(s)
- Milan Toma
- Department of Osteopathic Manipulative Medicine, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, NY 11568, USA;
| | - Shelly Singh-Gryzbon
- Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (S.S.-G.); (A.P.Y.)
| | - Elisabeth Frankini
- Department of Osteopathic Manipulative Medicine, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, NY 11568, USA;
| | - Zhenglun (Alan) Wei
- Department of Biomedical Engineering, Francis College of Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - Ajit P. Yoganathan
- Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (S.S.-G.); (A.P.Y.)
| |
Collapse
|
9
|
Cai L, Zhang R, Li Y, Zhu G, Ma X, Wang Y, Luo X, Gao H. The Comparison of Different Constitutive Laws and Fiber Architectures for the Aortic Valve on Fluid-Structure Interaction Simulation. Front Physiol 2021; 12:682893. [PMID: 34248670 PMCID: PMC8266211 DOI: 10.3389/fphys.2021.682893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
Built on the hybrid immersed boundary/finite element (IB/FE) method, fluid-structure interaction (FSI) simulations of aortic valve (AV) dynamics are performed with three different constitutive laws and two different fiber architectures for the AV leaflets. An idealized AV model is used and mounted in a straight tube, and a three-element Windkessel model is further attached to the aorta. After obtaining ex vivo biaxial tensile testing of porcine AV leaflets, we first determine the constitutive parameters of the selected three constitutive laws by matching the analytical stretch-stress relations derived from constitutive laws to the experimentally measured data. Both the average error and relevant R-squared value reveal that the anisotropic non-linear constitutive law with exponential terms for both the fiber and cross-fiber directions could be more suitable for characterizing the mechanical behaviors of the AV leaflets. We then thoroughly compare the simulation results from both structural mechanics and hemodynamics. Compared to the other two constitutive laws, the anisotropic non-linear constitutive law with exponential terms for both the fiber and cross-fiber directions shows the larger leaflet displacements at the opened state, the largest forward jet flow, the smaller regurgitant flow. We further analyze hemodynamic parameters of the six different cases, including the regurgitant fraction, the mean transvalvular pressure gradient, the effective orifice area, and the energy loss of the left ventricle. We find that the fiber architecture with body-fitted orientation shows better dynamic behaviors in the leaflets, especially with the constitutive law using exponential terms for both the fiber and cross-fiber directions. In conclusion, both constitutive laws and fiber architectures can affect AV dynamics. Our results further suggest that the strain energy function with exponential terms for both the fiber and cross-fiber directions could be more suitable for describing the AV leaflet mechanical behaviors. Future experimental studies are needed to identify competent constitutive laws for the AV leaflets and their associated fiber orientations with controlled experiments. Although limitations exist in the present AV model, our results provide important information for selecting appropriate constitutive laws and fiber architectures when modeling AV dynamics.
Collapse
Affiliation(s)
- Li Cai
- NPU-UoG International Cooperative Lab for Computation and Application in Cardiology, Northwestern Polytechnical University, Xi'an, China
- Xi'an Key Laboratory of Scientific Computation and Applied Statistics, Xi'an, China
| | - Ruihang Zhang
- NPU-UoG International Cooperative Lab for Computation and Application in Cardiology, Northwestern Polytechnical University, Xi'an, China
| | - Yiqiang Li
- NPU-UoG International Cooperative Lab for Computation and Application in Cardiology, Northwestern Polytechnical University, Xi'an, China
| | - Guangyu Zhu
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Xingshuang Ma
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Yongheng Wang
- NPU-UoG International Cooperative Lab for Computation and Application in Cardiology, Northwestern Polytechnical University, Xi'an, China
| | - Xiaoyu Luo
- School of Mathematics and Statistics, University of Glasgow, Glasgow, United Kingdom
| | - Hao Gao
- School of Mathematics and Statistics, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
10
|
Shao Z, Tao T, Xu H, Chen C, Lee I, Chung S, Dong Z, Li W, Ma L, Bai H, Chen Q. Recent progress in biomaterials for heart valve replacement: Structure, function, and biomimetic design. VIEW 2021. [DOI: 10.1002/viw.20200142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Ziyu Shao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine & Clinical Research Center for Oral Diseases of Zhejiang Province Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University Hangzhou 310006 China
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Tingting Tao
- Department of Cardiovascular Surgery The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang Province China
| | - Hongfei Xu
- Department of Cardiovascular Surgery The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang Province China
| | - Cen Chen
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou China
| | - In‐Seop Lee
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou China
- Institute of Natural Sciences Yonsei University Seoul Republic of Korea
| | - Sungmin Chung
- Biomaterials R&D Center GENOSS Co., Ltd. Suwon‐si Republic of Korea
| | - Zhihui Dong
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Weidong Li
- Department of Cardiovascular Surgery The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang Province China
| | - Liang Ma
- Department of Cardiovascular Surgery The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang Province China
| | - Hao Bai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine & Clinical Research Center for Oral Diseases of Zhejiang Province Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University Hangzhou 310006 China
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine & Clinical Research Center for Oral Diseases of Zhejiang Province Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University Hangzhou 310006 China
| |
Collapse
|
11
|
Addressing Discrepancies between Experimental and Computational Procedures. BIOLOGY 2021; 10:biology10060536. [PMID: 34203829 PMCID: PMC8232572 DOI: 10.3390/biology10060536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/03/2021] [Accepted: 06/10/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary This technical note addresses the need to consider uncertainties when using experimental procedures to extract a geometry that is consequently used for computational simulations. Many uncertainties enter the process in both the experimental and computational techniques. Abstract Imaging subject-specific heart valve, a crucial step to its design, has experimental variables that if unaccounted for, may lead to erroneous computational analysis and geometric errors of the resulting model. Preparation methods are developed to mitigate some sources of the geometric error. However, the resulting 3D geometry often does not retain the original dimensions before excision. Inverse fluid–structure interaction analysis is used to analyze the resulting geometry and to assess the valve’s closure. Based on the resulting closure, it is determined if the geometry used can yield realistic results. If full closure is not reached, the geometry is adjusted adequately until closure is observed.
Collapse
|
12
|
A Simplified In Silico Model of Left Ventricular Outflow in Patients After Transcatheter Mitral Valve Replacement with Anterior Leaflet Laceration. Ann Biomed Eng 2021; 49:1449-1461. [PMID: 33723704 DOI: 10.1007/s10439-021-02740-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022]
Abstract
In silico modeling has been proposed as a tool to simulate left ventricular (LV) outflow tract (LVOT) obstruction in patients undergoing transcatheter mitral valve replacement (TMVR). This study validated a simplified approach to simulate LV outflow hemodynamics in the setting of TMVR with anterior leaflet laceration, a clinical technique used to mitigate the risk of LVOT obstruction. Personalized, 3-dimensional computational fluid dynamics models were developed from computed tomography images of six patients who underwent TMVR with anterior leaflet laceration. LV outflow hemodynamics were simulated using the patient-specific anatomy and the peak systolic flow rate as boundary conditions. The peak outflow velocity, a clinically relevant hemodynamic metric, was extracted from each simulation (vsim-peak) and compared with the clinical measurement from Doppler echocardiography (vclin-peak) for validation. In silico models were successfully developed and implemented for all patients. The pre-processing time was 2 h per model and the simulation could be completed within 3 h. In three patients, the lacerated anterior leaflet exposed open cells of the transcatheter valve to flow. Good agreement was obtained between vsim-peak and vclin-peak (r = 0.97, p < 0.01) with average discrepancies of 5 ± 2% and 14 ± 1% for patients with exposed and unexposed cells of the transcatheter valve, respectively. The proposed in silico modeling paradigm therefore simulated LV outflow hemodynamics in a time-efficient manner and demonstrated good agreement with clinical measurements. Future studies should investigate the ability of this paradigm to support clinical applications.
Collapse
|
13
|
Fluid-Structure Interaction Analyses of Biological Systems Using Smoothed-Particle Hydrodynamics. BIOLOGY 2021; 10:biology10030185. [PMID: 33801566 PMCID: PMC8001855 DOI: 10.3390/biology10030185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/21/2022]
Abstract
Due to the inherent complexity of biological applications that more often than not include fluids and structures interacting together, the development of computational fluid-structure interaction models is necessary to achieve a quantitative understanding of their structure and function in both health and disease. The functions of biological structures usually include their interactions with the surrounding fluids. Hence, we contend that the use of fluid-structure interaction models in computational studies of biological systems is practical, if not necessary. The ultimate goal is to develop computational models to predict human biological processes. These models are meant to guide us through the multitude of possible diseases affecting our organs and lead to more effective methods for disease diagnosis, risk stratification, and therapy. This review paper summarizes computational models that use smoothed-particle hydrodynamics to simulate the fluid-structure interactions in complex biological systems.
Collapse
|
14
|
Toma M, Lu Y, Zhou H, Garcia JD. Thresholding Segmentation Errors and Uncertainty with Patient-Specific Geometries. J Biomed Phys Eng 2021; 11:115-122. [PMID: 33564647 PMCID: PMC7859371 DOI: 10.31661/jbpe.v0i0.2001-1062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022]
Abstract
Computer simulations provide virtual hands-on experience when actual hands-on experience is not possible. To use these simulations in medical science, they need to be able to predict the behavior of actual processes with actual patient-specific geometries. Many uncertainties enter in the process of developing these simulations, starting with creating the geometry. The actual patient-specific geometry is often complex and hard to process. Usually, simplifications to the geometry are introduced in exchange for faster results. However, when simplified, these simulations can no longer be considered patient-specific as they do not represent the actual patient they come from. The ultimate goal is to keep the geometries truly patient-specific without any simplification. However, even without simplifications, the patient-specific geometries are based on medical imaging modalities and consequent use of numerical algorithms to create and process the 3D surface. Multiple users are asked to process medical images of a complex geometry. Their resulting geometries are used to assess how the user’s choices determine the resulting dimensions of the 3D model. It is shown that the resulting geometry heavily depends on user’s choices.
Collapse
Affiliation(s)
- M Toma
- PhD, Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury Campus, Northern Boulevard, Old Westbury, New York 11568-8000, USA
- PhD, Department of Mechanical Engineering, College of Engineering & Computing Sciences, New York Institute of Technology, Old Westbury Campus, Northern Boulevard, Old Westbury, New York 11568-8000, USA
| | - Y Lu
- MSc, Department of Mechanical Engineering, College of Engineering & Computing Sciences, New York Institute of Technology, Old Westbury Campus, Northern Boulevard, Old Westbury, New York 11568-8000, USA
| | - H Zhou
- MSc, Department of Mechanical Engineering, College of Engineering & Computing Sciences, New York Institute of Technology, Old Westbury Campus, Northern Boulevard, Old Westbury, New York 11568-8000, USA
| | - J D Garcia
- DPT, Byrdine F. Lewis College of Nursing and Health Professions, Georgia State University, Urban Life Building, Suite 1280, Atlanta, GA, USA
| |
Collapse
|
15
|
Luraghi G, Rodriguez Matas JF, Migliavacca F. In silico approaches for transcatheter aortic valve replacement inspection. Expert Rev Cardiovasc Ther 2020; 19:61-70. [PMID: 33201738 DOI: 10.1080/14779072.2021.1850265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Introduction: Increasing applications of transcatheter aortic valve replacement (TAVR) to treat high- or medium-risk patients with aortic diseases have been proposed in recent years. Despite its increasing use, many influential factors are still to be understood. Furthermore, innovative applications of TAVR such as in bicuspid aortic valves or in low-risk patients are emerging in clinical use. Numerical analyses are increasingly used to reproduce clinical treatments. The future trends in this area are foreseen for in silico trials and personalized medicine. Areas covered: This review paper analyzes the recent years (Jan 2018 - Aug 2020) of in silico studies simulating the behavior of transcatheter aortic valves with emphasis on the addressed clinical question and the used modeling strategies. The manuscripts are firstly classified based on their clinical hypothesis. A second classification is based on the adopted modeling approach in terms of patient domain, device modeling, and inclusion or exclusion of the fluid domain. Expert opinion: The TAVR can be virtually performed in numerous vessel geometries and with different devices. This versatility allows a rapid evaluation of the feasibility of different implantation approaches for specific patients, and patient populations, resulting in faster and safer introduction or optimization of new treatments or devices.
Collapse
Affiliation(s)
- Giulia Luraghi
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta, Politecnico di Milano , Milan, Italy
| | - Jose Felix Rodriguez Matas
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta, Politecnico di Milano , Milan, Italy
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta, Politecnico di Milano , Milan, Italy
| |
Collapse
|
16
|
Gerrah R, Haller SJ. Computational fluid dynamics: a primer for congenital heart disease clinicians. Asian Cardiovasc Thorac Ann 2020; 28:520-532. [PMID: 32878458 DOI: 10.1177/0218492320957163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Computational fluid dynamics has become an important tool for studying blood flow dynamics. As an in-silico collection of methods, computational fluid dynamics is noninvasive and provides numerical values for the most important parameters of blood flow, such as velocity and pressure that are crucial in hemodynamic studies. In this primer, we briefly explain the basic theory and workflow of the two most commonly applied computational fluid dynamics techniques used in the congenital heart disease literature: the finite element method and the finite volume method. We define important terminology and include specific examples of how using these methods can answer important clinical questions in congenital cardiac surgery planning and perioperative patient management.
Collapse
Affiliation(s)
- Rabin Gerrah
- Stanford University, Samaritan Cardiovascular Surgery, Corvallis, OR, USA
| | | |
Collapse
|
17
|
Non-Newtonian Effects on Patient-Specific Modeling of Fontan Hemodynamics. Ann Biomed Eng 2020; 48:2204-2217. [PMID: 32372365 DOI: 10.1007/s10439-020-02527-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/29/2020] [Indexed: 12/15/2022]
Abstract
The Fontan procedure is a common palliative surgery for congenital single ventricle patients. In silico and in vitro patient-specific modeling approaches are widely utilized to investigate potential improvements of Fontan hemodynamics that are related to long-term complications. However, there is a lack of consensus regarding the use of non-Newtonian rheology, warranting a systematic investigation. This study conducted in silico patient-specific modeling for twelve Fontan patients, using a Newtonian and a non-Newtonian model for each patient. Differences were quantified by examining clinically relevant metrics: indexed power loss (iPL), indexed viscous dissipation rate (iVDR), hepatic flow distribution (HFD), and regions of low wall shear stress (AWSS). Four sets of "non-Newtonian importance factors" were calculated to explore their effectiveness in identifying the non-Newtonian effect. No statistical differences were observed in iPL, iVDR, and HFD between the two models at the population-level, but large inter-patient variations exist. Significant differences were detected regarding AWSS, and its correlations with non-Newtonian importance factors were discussed. Additionally, simulations using the non-Newtonian model were computationally faster than those using the Newtonian model. These findings distinguish good importance factors for identifying non-Newtonian rheology and encourage the use of a non-Newtonian model to assess Fontan hemodynamics.
Collapse
|
18
|
Loureiro-Ga M, Veiga C, Fdez-Manin G, Jimenez VA, Calvo-Iglesias F, Iñiguez A. A biomechanical model of the pathological aortic valve: simulation of aortic stenosis. Comput Methods Biomech Biomed Engin 2020; 23:303-311. [PMID: 31996041 DOI: 10.1080/10255842.2020.1720001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Aortic stenosis (AS) disease is a narrowing of the aortic valve (AV) opening which reduces blood flow from the heart causing several health complications. Although a lot of work has been done in AV simulations, most of the efforts have been conducted regarding healthy valves. In this article, a new three-dimensional patient-specific biomechanical model of the valve, based on a parametric formulation of the stenosis that permits the simulation of different degrees of pathology, is presented. The formulation is based on a double approach: the first one is done from the geometric point of view, reducing the effective ejection area of the AV by joining leaflets using a zipper effect to sew them; the second one, in terms of functionality, is based on the modification of AV tissue properties due to the effect of calcifications. Both healthy and stenotic valves were created using patient-specific data and results of the numerical simulation of the valve function are provided. Analysis of the results shows a variation in the first principal stress, geometric orifice area, and blood velocity which were validated against clinical data. Thus, the possibility to create a pipeline which allows the integration of patient-specific data from echocardiographic images and iFR studies to perform finite elements analysis is proved.
Collapse
Affiliation(s)
- Marcos Loureiro-Ga
- Applied Mathematics Department II - Telecommunications Engineering Faculty, Univeristiy of Vigo, Vigo, Spain.,Cardiology Department, Galicia Sur Health Research Institute (IIS Galicia Sur). SERGAS-UVIGO, Vigo, Spain
| | - Cesar Veiga
- Cardiology Department, Galicia Sur Health Research Institute (IIS Galicia Sur). SERGAS-UVIGO, Vigo, Spain
| | - Generosa Fdez-Manin
- Applied Mathematics Department II - Telecommunications Engineering Faculty, Univeristiy of Vigo, Vigo, Spain
| | - Victor Alfonso Jimenez
- Cardiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), Alvaro Cunqueiro Hospital, SERGAS, Vigo, Spain
| | - Francisco Calvo-Iglesias
- Cardiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), Alvaro Cunqueiro Hospital, SERGAS, Vigo, Spain
| | - Andres Iñiguez
- Cardiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), Alvaro Cunqueiro Hospital, SERGAS, Vigo, Spain
| |
Collapse
|
19
|
Wu C, Saikrishnan N, Chalekian AJ, Fraser R, Ieropoli O, Retta SM, Joseph R, Lee S, Marquez S, Mester D, Pan N, Vatanpour S, Weinberg C, Steinseifer U. In-Vitro Pulsatile Flow Testing of Prosthetic Heart Valves: A Round-Robin Study by the ISO Cardiac Valves Working Group. Cardiovasc Eng Technol 2019; 10:397-422. [PMID: 31240664 DOI: 10.1007/s13239-019-00422-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/08/2019] [Indexed: 01/12/2023]
Abstract
PURPOSE Hydrodynamic performance testing is one of the core in vitro assessments required by the ISO 5840 series of standards for all prosthetic heart valves. A round-robin study carried out in 2005 in accordance with ISO 5840:2005 revealed significant variabilities in prosthetic heart valve hydrodynamic performance measurements among the participating laboratories. In order to re-examine the inter-laboratory variability based on the "state-of-the-art" under ISO 5840-1 and 5840-2:2015, the ISO Cardiac Valve Working Groups decided in 2016 to repeat the round-robin study. METHODS A total of 13 international laboratories participated in the study. The test valves were chosen to be the St. Jude Medical Masters Series mechanical valves (19 mm aortic, 25 mm aortic, 25 mm mitral, and 31 mm mitral), which were circulated among the laboratories. The testing was conducted according to a common test run sequence, with prespecified flow conditions. RESULTS The study revealed improved, yet still significant variability among different laboratories as compared to the 2005 study. The coefficient of variation ranged from 7.7 to 21.6% for the effective orifice area, from 10.1 to 32.8% for the total regurgitant fraction, and from 14.7 to 45.5% for the mean transvalvular pressure gradient. CONCLUSIONS The study revealed the ambiguities in the current versions of the ISO 5840 series of standards and the shortcomings of some participating laboratories. This information has allowed the ISO Working Group to incorporate additional clarifying language into the ISO 5840-1, -2, and -3 standards that are currently under revision to improve in vitro assessments. The results presented here can also be used by the testing laboratories to benchmark pulse duplicator systems and to train and certify testing personnel.
Collapse
Affiliation(s)
- Changfu Wu
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA.
| | | | | | | | - Ornella Ieropoli
- Sorin Group Italia s.r.l. (fully owned by LivaNova Plc), Saluggia, VC, Italy
| | - Stephen M Retta
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
| | | | - Shouyan Lee
- Medical Implant Testing Lab, Irvine, CA, USA
| | | | - David Mester
- W. L. Gore & Associates, Inc., Flagstaff, AZ, USA
| | - Ning Pan
- Boston Scientific, Los Gatos, CA, USA
| | | | | | | |
Collapse
|
20
|
Luraghi G, Migliavacca F, García-González A, Chiastra C, Rossi A, Cao D, Stefanini G, Rodriguez Matas JF. On the Modeling of Patient-Specific Transcatheter Aortic Valve Replacement: A Fluid-Structure Interaction Approach. Cardiovasc Eng Technol 2019; 10:437-455. [PMID: 31309527 DOI: 10.1007/s13239-019-00427-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/04/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Transcatheter aortic valve replacement (TAVR) is a minimally invasive treatment for high-risk patients with aortic diseases. Despite its increasing use, many influential factors are still to be understood and require continuous investigation. The best numerical approach capable of reproducing both the valves mechanics and the hemodynamics is the fluid-structure interaction (FSI) modeling. The aim of this work is the development of a patient-specific FSI methodology able to model the implantation phase as well as the valve working conditions during cardiac cycles. METHODS The patient-specific domain, which included the aortic root, native valve and calcifications, was reconstructed from CT images, while the CAD model of the device, metallic frame and pericardium, was drawn from literature data. Ventricular and aortic pressure waveforms, derived from the patient's data, were used as boundary conditions. The proposed method was applied to two real clinical cases, which presented different outcomes in terms of paravalvular leakage (PVL), the main complication after TAVR. RESULTS The results confirmed the clinical prognosis of mild and moderate PVL with coherent values of regurgitant volume and effective regurgitant orifice area. Moreover, the final release configuration of the device and the velocity field were compared with postoperative CT scans and Doppler traces showing a good qualitative and quantitative matching. CONCLUSION In conclusion, the development of realistic and accurate FSI patient-specific models can be used as a support for clinical decisions before the implantation.
Collapse
Affiliation(s)
- Giulia Luraghi
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Piazza L. da Vinci 32, 20133, Milan, Italy.
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Piazza L. da Vinci 32, 20133, Milan, Italy
| | - Alberto García-González
- Laboratori de Càlcul Numèric (LaCàN), E.T.S. de Ingenieros de Caminos, Canales y Puertos, Universitat Politècnica de Catalunya (UPC), Jordi Girona 1-3, 08034, Barcelona, Spain
| | - Claudio Chiastra
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Piazza L. da Vinci 32, 20133, Milan, Italy.,PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Alexia Rossi
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy
| | - Davide Cao
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy
| | - Giulio Stefanini
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy
| | - Jose Felix Rodriguez Matas
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Piazza L. da Vinci 32, 20133, Milan, Italy
| |
Collapse
|
21
|
Sellers SL, Blanke P, Leipsic JA. Bioprosthetic Heart Valve Degeneration and Dysfunction: Focus on Mechanisms and Multidisciplinary Imaging Considerations. Radiol Cardiothorac Imaging 2019; 1:e190004. [PMID: 33778509 PMCID: PMC7977715 DOI: 10.1148/ryct.2019190004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/11/2019] [Accepted: 05/02/2019] [Indexed: 06/12/2023]
Abstract
Bioprosthetic heart valves (BPHVs) have fundamentally changed the treatment of valvular heart disease. Despite the continuous progress of BPHVs, from early valve designs for use in surgical replacement to the rapidly evolving use of transcatheter replacement techniques and designs, valve dysfunction and degeneration remain fundamental issues. Current guidelines and proposed standard definitions of BPHV dysfunction and degeneration outline the importance of imaging. Imaging plays a key role in understanding valve degeneration, including clinical imaging to identify transvalvular gradients, leaflet thickening, thrombosis, calcification, and restricted or reduced leaflet motion. Similarly, translational imaging approaches-including micro-CT, high-speed video, computational modeling, and high-resolution microscopy-and histologic analysis are crucial to understanding mechanisms of valve degeneration and factors that may contribute to valve dysfunction. This article provides an overview of valve dysfunction and degeneration and the role of imaging. © RSNA, 2019.
Collapse
|
22
|
Biomechanical modeling of transcatheter aortic valve replacement in a stenotic bicuspid aortic valve: deployments and paravalvular leakage. Med Biol Eng Comput 2019; 57:2129-2143. [PMID: 31372826 DOI: 10.1007/s11517-019-02012-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 07/08/2019] [Indexed: 12/17/2022]
Abstract
Calcific aortic valve disease (CAVD) is characterized by stiffened aortic valve leaflets. Bicuspid aortic valve (BAV) is the most common congenital heart disease. Transcatheter aortic valve replacement (TAVR) is a treatment approach for CAVD where a stent with mounted bioprosthetic valve is deployed on the stenotic valve. Performing TAVR in calcified BAV patients may be associated with post-procedural complications due to the BAV asymmetrical structure. This study aims to develop refined computational models simulating the deployments of Evolut R and PRO TAVR devices in a representative calcified BAV. The paravalvular leakage (PVL) was also calculated by computational fluid dynamics simulations. Computed tomography scan of severely stenotic BAV patient was acquired. The 3D calcium deposits were generated and embedded inside a parametric model of the BAV. Deployments of the Evolut R and PRO inside the calcified BAV were simulated in five bioprosthesis leaflet orientations. The hypothesis of asymmetric and elliptic stent deployment was confirmed. Positioning the bioprosthesis commissures aligned with the native commissures yielded the lowest PVL (15.7 vs. 29.5 mL/beat). The Evolut PRO reduced the PVL in half compared with the Evolut R (15.7 vs. 28.7 mL/beat). The proposed biomechanical computational model could optimize future TAVR treatment in BAV patients. Graphical abstract.
Collapse
|
23
|
Tango AM, Salmonsmith J, Ducci A, Burriesci G. Validation and Extension of a Fluid-Structure Interaction Model of the Healthy Aortic Valve. Cardiovasc Eng Technol 2018; 9:739-751. [PMID: 30406610 PMCID: PMC6290709 DOI: 10.1007/s13239-018-00391-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/27/2018] [Indexed: 12/18/2022]
Abstract
Purpose The understanding of the optimum function of the healthy aortic valve is essential in interpreting the effect of pathologies in the region, and in devising effective treatments to restore the physiological functions. Still, there is no consensus on the operating mechanism that regulates the valve opening and closing dynamics. The aim of this study is to develop a numerical model that can support a better comprehension of the valve function and serve as a reference to identify the changes produced by specific pathologies and treatments. Methods A numerical model was developed and adapted to accurately replicate the conditions of a previous in vitro investigation into aortic valve dynamics, performed by means of particle image velocimetry (PIV). The resulting velocity fields of the two analyses were qualitatively and quantitatively compared to validate the numerical model. In order to simulate more physiological operating conditions, this was then modified to overcome the main limitations of the experimental setup, such as the presence of a supporting stent and the non-physiological properties of the fluid and vessels. Results The velocity fields of the initial model resulted in good agreement with those obtained from the PIV, with similar flow structures and about 90% of the computed velocities after valve opening within the standard deviation of the equivalent velocity measurements of the in vitro model. Once the experimental limitations were removed from the model, the valve opening dynamics changed substantially, with the leaflets opening into the sinuses to a much greater extent, enlarging the effective orifice area by 11%, and reducing greatly the vortical structures previously observed in proximity of the Valsalva sinuses wall. Conclusions The study suggests a new operating mechanism for the healthy aortic valve leaflets considerably different from what reported in the literature to date and largely more efficient in terms of hydrodynamic performance. This work also confirms the crucial role that numerical approaches, complemented with experimental findings, can play in overcoming some of the limitations inherent in experimental techniques, supporting the full understanding of complex physiological phenomena. Electronic supplementary material The online version of this article (doi:10.1007/s13239-018-00391-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Maria Tango
- UCL Mechanical Engineering, Cardiovascular Engineering Laboratory, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Jacob Salmonsmith
- UCL Mechanical Engineering, Cardiovascular Engineering Laboratory, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Andrea Ducci
- UCL Mechanical Engineering, Cardiovascular Engineering Laboratory, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Gaetano Burriesci
- UCL Mechanical Engineering, Cardiovascular Engineering Laboratory, University College London, Torrington Place, London, WC1E 7JE, UK.
- Bioengineering Group, Ri.MED Foundation, Via Bandiera 11, 90133, Palermo, Italy.
| |
Collapse
|