1
|
Erman A, Hawkins LJ, Storey KB. Changes in microRNA expression related to ischemia-reperfusion injury in the kidney of the thirteen-lined ground squirrel during torpor. Biochimie 2024; 225:40-48. [PMID: 38705508 DOI: 10.1016/j.biochi.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
During the hibernation season, the thirteen-lined ground squirrel undergoes cyclical torpor and arousal periods. The decrease and restoration of metabolic rate and oxygen delivery during torpor and arousal, respectively, may cause reperfusion-ischemia injury in the kidneys. In order to maintain the structural integrity of the kidneys necessary for renal function resumption during arousal, the thirteen-lined ground squirrel has developed adaptive methods to prevent and repair kidney injury. In this present study, computational methods were used to clean and analyze sequenced kidney RNA samples. Significantly differentially expressed microRNAs and enriched gene sets were also determined. From the gene set analysis, the results showed an increase in ubiquitin-related processes and p53 signaling pathways which suggested the occurrence of kidney damage during torpor. There was also an observed increase in cell cycle processes and the anchoring junction cellular compartment which may lend to the prevention of kidney injury. From the differentially expressed microRNAs, miR-27a (log2FC = 1.639; p-value = 0.023), miR-129 (log2FC = 2.516; p-value = 0.023), miR-let-7b (log2FC = 2.360; p-value = 0.025), miR-let-7c (log2FC = 2.291; p-value = 0.037) and miR-let-7i (log2FC = 1.564; p-value = 0.039) were found to be significantly upregulated. These biochemical adaptations may allow the thirteen-lined ground squirrel to maintain kidney structure and function during hibernation.
Collapse
Affiliation(s)
- Aylin Erman
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada.
| | - Liam J Hawkins
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| |
Collapse
|
2
|
Wang P, Xu X, Gu G, Guo Q, Rao Y, Yang K, Xi T, Yuan Y, Chen S, Qi X. Inhibition effect of copper-bearing metals on arterial neointimal hyperplasia via the AKT/Nrf2/ARE pathway in vitro and in vivo. Regen Biomater 2024; 11:rbae042. [PMID: 39027361 PMCID: PMC11256920 DOI: 10.1093/rb/rbae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 07/20/2024] Open
Abstract
In-stent restenosis can be caused by the activation, proliferation and migration of vascular smooth muscle cells (VSMCs), which affects long-term efficacy of interventional therapy. Copper (Cu) has been proved to accelerate the endothelialization and reduce thrombosis formation, but little is known about its inhibition effect on the excessive proliferation of VSMCs. In this study, 316L-Cu stainless steel and L605-Cu cobalt-based alloy with varying Cu content were fabricated and their effects on surface property, blood compatibility and VSMCs were studied in vitro and in vivo. CCK-8 assay and EdU assay indicated that the Cu-bearing metals had obvious inhibitory effect on proliferation of VSMCs. Blood clotting and hemolysis tests showed that the Cu-bearing metals had good blood compatibility. The inhibition effect of the Cu-bearing metals on migration of cells was detected by Transwell assay. Further studies showed that Cu-bearing metals significantly decreased the mRNA expressions of bFGF, PDGF-B, HGF, Nrf2, GCLC, GCLM, NQO1 and HO1. The phosphorylation of AKT and Nrf2 protein expressions in VSMCs were significantly decreased by Cu-bearing metals. Furthermore, it was also found that SC79 and TBHQ treatments could recover the protein expressions of phospho-AKT and Nrf2, and their downstream proteins as well. Moreover, 316L-Cu stent proved its inhibitory action on the proliferation of VSMCs in vivo. In sum, the results demonstrated that the Cu-bearing metals possessed apparent inhibitory effect on proliferation and migration of VSMCs via regulating the AKT/Nrf2/ARE pathway, showing the Cu-bearing metals as promising stent materials for long-term efficacy of implantation.
Collapse
Affiliation(s)
- Peng Wang
- Department of Interventional Therapy, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaohe Xu
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Guisong Gu
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Qianwen Guo
- Department of Interventional Therapy, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yanzhi Rao
- Department of Interventional Therapy, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ke Yang
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Tong Xi
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yonghui Yuan
- Liaoning Cancer Hospital & Institute, Clinical Research Center for Malignant Tumor of Liaoning Province, Cancer Hospital of China Medical University, Shenyang 110042, China
| | - Shanshan Chen
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xun Qi
- Department of Interventional Therapy, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
3
|
Sun R, Gu Q, Zhang X, Zeng R, Chen D, Yao J, Min J. Protective effect of cilostazol on vascular injury in rats with acute ischemic stroke complicated with chronic renal failure. Toxicol Res 2024; 40:189-202. [PMID: 38525134 PMCID: PMC10959867 DOI: 10.1007/s43188-023-00217-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 10/16/2023] [Accepted: 11/05/2023] [Indexed: 03/26/2024] Open
Abstract
Chronic renal failure (CRF) resulting in vascular calcification, which does damage to blood vessels and endothelium, is an independent risk factor for stroke. It has been reported that cilostazol has a protective effect on the focal cerebral ischemic infarct. However, its impact on vascular injury in CRF combined stroke and its molecular protection mechanism have not been investigated. In this study, we carried out the effect of cilostazol on CRF combined stroke rats, and the results confirmed that it improved the neurobehavior, renal function as well as pathologic changes in both the kidney and brain. In addition, the inflammation and oxidative stress factors in the kidney and brain were suppressed. Moreover, the rates of brain edema and infarction were decreased. The injured brain-blood barrier (BBB) was recovered with less Evans blue extravasation and more expressions of zonula occludens-1(ZO-1) and occludin. More cerebral blood flow (CBF) in the ipsilateral hemisphere and more expression of CD31 and vascular endothelial growth factor (VEGF) in brain and kidney were found in the cilostazol group. Furthermore, cell apoptosis and cell autophagy became less, on the contrary, proteins of vascular endothelial growth factor receptor 2 (VEGFR2) after the cilostazol treatment were increased. More importantly, this protective effect is related to the pathway of Janus Kinase (JAK)/signal transducer and activator of transcription 3 (STAT3), mammalian target of rapamycin (mTOR), and the hypoxia inducible factor-1α (HIF-1α). In conclusion, our results confirmed that cilostazol exerted a protective effect on the brain and kidney function, specifically in vascular injury, oxidative stress, cell apoptosis, cell autophagy, and inflammation response in CRF combined with stroke rats which were related to the upregulation of JAK/STAT3/mTOR signal pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-023-00217-w.
Collapse
Affiliation(s)
- Ru Sun
- Department of Neurology, the First People’s Hospital of Huzhou, First affiliated Hospital of Huzhou University, Huzhou, China
| | - Qun Gu
- Department of Neurology, the First People’s Hospital of Huzhou, First affiliated Hospital of Huzhou University, Huzhou, China
| | - Xufeng Zhang
- Department of Neurology, the First People’s Hospital of Huzhou, First affiliated Hospital of Huzhou University, Huzhou, China
| | - Ruiqi Zeng
- Department of Neurology, the First People’s Hospital of Huzhou, First affiliated Hospital of Huzhou University, Huzhou, China
| | - Dan Chen
- Department of Neurology, the First People’s Hospital of Huzhou, First affiliated Hospital of Huzhou University, Huzhou, China
| | - Jingjing Yao
- Department of Neurology, the First People’s Hospital of Huzhou, First affiliated Hospital of Huzhou University, Huzhou, China
| | - Jingjing Min
- Department of Neurology, the First People’s Hospital of Huzhou, First affiliated Hospital of Huzhou University, Huzhou, China
| |
Collapse
|
4
|
Refaie MMM, Fouli Gaber Ibrahim M, Fawzy MA, Abdel-Hakeem EA, Shaaban Mahmoud Abd El Rahman E, Zenhom NM, Shehata S. Molecular mechanisms mediate roflumilast protective effect against isoprenaline-induced myocardial injury. Immunopharmacol Immunotoxicol 2023; 45:650-662. [PMID: 37335038 DOI: 10.1080/08923973.2023.2222228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Myocardial necrosis is one of the most common cardiac and pathological diseases. Unfortunately, using the available medical treatment is not sufficient to rescue the myocardium. So that, we aimed in our model to study the possible cardioprotective effect of roflumilast (ROF) in an experimental model of induced myocardial injury using a toxic dose of isoprenaline (ISO) and detecting the role of vascular endothelial growth factor/endothelial nitric oxide synthase (VEGF/eNOS) and cyclic guanosine monophosphate/cyclic adenosine monophosphate/ sirtuin1 (cGMP/cAMP/SIRT1) signaling cascade. MATERIALS AND METHODS Animals were divided into five groups; control, ISO given group (150 mg/kg) i.p. on the 4th and 5th day, 3 ROF co-administered groups in different doses (0.25, 0.5, 1 mg/kg/day) for 5 days. RESULTS Our data revealed that ISO could induce cardiac toxicity as manifested by significant increases in troponin I, creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), malondialdehyde (MDA), tumor necrosis factor alpha (TNFα), and cleaved caspase-3 with toxic histopathological changes. Meanwhile, there were significant decreases in reduced glutathione (GSH), total antioxidant capacity (TAC), VEGF, eNOS, cGMP, cAMP and SIRT1. However, co-administration of ROF showed significant improvement and normalization of ISO induced cardiac damage. CONCLUSION We concluded that ROF successfully reduced ISO induced myocardial injury and this could be attributed to modulation of PDE4, VEGF/eNOS and cGMP/cAMP/SIRT1 signaling pathways with antioxidant, anti-inflammatory, and anti-apoptotic properties.
Collapse
Affiliation(s)
| | | | - Michael Atef Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | | | | | - Nagwa M Zenhom
- Department of Biochemistry, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Sayed Shehata
- Department of Cardiology, Faculty of Medicine, Minia University, El-Minia, Egypt
| |
Collapse
|
5
|
Mahdiani S, Omidkhoda N, Rezaee R, Heidari S, Karimi G. Induction of JAK2/STAT3 pathway contributes to protective effects of different therapeutics against myocardial ischemia/reperfusion. Biomed Pharmacother 2022; 155:113751. [PMID: 36162372 DOI: 10.1016/j.biopha.2022.113751] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
Insufficiency in coronary blood supply results in myocardial ischemia and consequently, various clinical syndromes and irreversible injuries. Myocardial damage occurs as a result of two processes during acute myocardial infarction (MI): ischemia and subsequent reperfusion. According to the available evidence, oxidative stress, excessive inflammation reaction, reactive oxygen species (ROS) generation, and apoptosis are crucial players in the pathogenesis of myocardial ischemia/reperfusion (IR) injury. There is emerging evidence that Janus tyrosine kinase 2 (JAK2) signal transducer and activator of the transcription 3 (STAT3) pathway offers cardioprotection against myocardial IR injury. This article reviews therapeutics that exert cardioprotective effects against myocardial IR injury through induction of JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Sina Mahdiani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Omidkhoda
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shadi Heidari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Refaie MMM, El-Hussieny M, Shehata S. TLR4/NF-κB/TNFα and cAMP/SIRT1 signaling cascade involved in mediating the dose-dependent effect of cilostazol in ovarian ischemia reperfusion-induced injury. Immunopharmacol Immunotoxicol 2022; 44:338-346. [PMID: 35209787 DOI: 10.1080/08923973.2022.2043901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND One of the most dangerous gynecological emergencies is ovarian ischemia that commonly occurs during surgical manipulation or presence of ovarian masses. OBJECTIVES finding new therapies to prevent the associated harmful effects of ischemia/reperfusion-induced damage is still a critical need. For the first time, we aimed to evaluate the possible role of phosphodiesterase (PDE) 3 A inhibitor (PDEI), cilostazol (CLZ) in the treatment of ovarian ischemia reperfusion induced damage (OIR). METHODS Rats were divided into five groups; sham, OIR group; CLZ (5, 10, 20 mg/kg) was given orally with induced OIR. Different biochemical parameters were detected such as total anti-oxidant capacity (TAC), reduced glutathione (GSH), malondialdehyde (MDA), cyclic adenosine monophosphate (cAMP), sirtuin1 (SIRT1), toll like receptor 4 (TLR4), nuclear factor kappa b (NF-κB) and tumor necrosis factor alpha (TNFα). In addition, histopathological features, ovarian weight changes and casapse3 immunoexpression were detected. RESULTS Data revealed significant increase in ovarian weight changes, MDA, TLR4, TNFα, NF-κB and caspase 3 expressions in OIR induced group. Moreover, OIR group had histopathological features of ovarian damage with depletion of cAMP, SIRT1, TAC and GSH. CONCLUSION CLZ could ameliorate OIR-induced damage due to PDE inhibition, anti-oxidant, anti-inflammatory and anti-apoptotic properties with modulation of TLR4/NF-κB/TNFα and cAMP/SIRT1 signaling pathways.
Collapse
Affiliation(s)
- Marwa M M Refaie
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Maram El-Hussieny
- Department of Pathology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Sayed Shehata
- Department of Cardiology, Faculty of Medicine, Minia University, El-Minia, Egypt
| |
Collapse
|
7
|
Cilostazol induces angiogenesis and regulates oxidative stress in a dose-dependent manner: A chorioallantoic membrane study. TURKISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2021; 29:449-456. [PMID: 35096441 PMCID: PMC8762914 DOI: 10.5606/tgkdc.dergisi.2021.22212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/25/2021] [Indexed: 11/21/2022]
Abstract
Background
In this study, we aimed to investigate the effects of cilostazol on angiogenesis and oxidative stress using the chorioallantoic membrane model.
Methods
In this experimental study, the Ross 308 chick embryos were used. The negative control group (n=10) received no intervention. The positive control group (n=10) consisted of eggs treated with epidermal growth factor for inducing angiogenesis. Three cilostazol groups were designed with 10-7 (n=10), 10-6 (n=10), and 10-5 (n=10) M concentrations. Each egg was punctured on the sixth day of incubation, and drug pellets were introduced to the positive control and drug groups at the prespecified doses. Vascular development was evaluated on the eighth day of application. The total oxidant status, total antioxidant capacity, and oxidative stress index levels were determined from albumen liquids obtained with a syringe before and after drug application.
Results
Lower oxidative stress index levels were obtained from the positive control and cilostazol groups compared to the negative control albumens (p=0.001). The increments in vascular junctions and newly developed vascular nodules were evaluated in drug-free and drug-applied chorioallantoic membranes. The highest activity was obtained in the 10-7 M concentration cilostazol group. An increased angiogenic activity was detected in all drug groups in each concentration compared to the negative control group (p=0.001). Angiogenic activity was similar in all the cilostazol-treated groups (p=0.43).
Conclusion
Cilostazol has a positive stimulant effect on angiogenesis and it seems to suppress oxidative stress during embryonic growth. Cilostazol exerts these effects significantly and similarly at different doses.
Collapse
|
8
|
Huang Y, Han X, Tang J, Long X, Wang X. Salidroside inhibits endothelial‑mesenchymal transition via the KLF4/eNOS signaling pathway. Mol Med Rep 2021; 24:692. [PMID: 34368873 PMCID: PMC8365603 DOI: 10.3892/mmr.2021.12324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/28/2021] [Indexed: 11/06/2022] Open
Abstract
Homocysteine (Hcy) was discovered to be an independent risk factor for the development of atherosclerosis (AS). Moreover, endothelial‑mesenchymal transition (EndMT) was found to be one of main mechanisms contributing to the pathogenesis of AS. Salidroside (SAL) has diverse pharmacological activities, including anti‑inflammatory, anti‑cancer, anti‑oxidative and anti‑fibrosis properties. However, whether SAL serves a beneficial role in Hcy‑induced EndMT remains unknown. The present study aimed to investigate whether SAL exerted its effects on Hcy‑induced EndMT via the Kruppel‑like factor 4 (KLF4)/endothelial nitric oxide (NO) synthase (eNOS) signaling pathway. HUVECs were pretreated with high and low doses (10 or 50 µmol/l) of SAL for 2 h, followed by 1 mmol/l Hcy for 48 h to induce EndMT. Western blotting was used to analyze the protein expression levels of the endothelial marker, VE‑cadherin, the mesenchymal cell marker, α‑smooth muscle actin (SMA), and the nuclear transcription factors, KLF4 and eNOS. Wound healing assays were used to determine the cell migratory ability, and the levels of NO in the cell culture supernatants were measured using a nitrate reductase assay. Cellular immunofluorescence was used to analyze the expression and localization of KLF4. Small interfering (si)RNA targeting KLF4 (siKLF4) was used to knock down KLF4 expression in HUVECs. The results of the present study revealed that treatment with SAL upregulated the expression levels of VE‑cadherin, downregulated the expression levels of α‑SMA, reduced cell migration and activated the eNOS/NO signaling axis, as well as downregulated KLF4 expression and translocation to the nucleus. Compared with the SAL + siKLF4 co‑administration group, no significant differences were observed in the expression levels of the phenotypic markers in the SAL or siKLF4 groups. In conclusion, the findings of the present study revealed that SAL may inhibit Hcy‑induced EndMT via regulation of the KLF4/eNOS signaling pathway.
Collapse
Affiliation(s)
- Yongpan Huang
- Department of Clinic, Medicine School, Changsha Social Work College, Changsha, Hunan 410004, P.R. China
| | - Xiaodong Han
- Department of Anesthesia, Medical College, Yan'an University, Yan'an, Shanxi 716000, P.R. China
| | - Jiayu Tang
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Xian Long
- Department of Clinic, Medicine School, Changsha Social Work College, Changsha, Hunan 410004, P.R. China
| | - Xiaoye Wang
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| |
Collapse
|
9
|
Thapa K, Singh TG, Kaur A. Cyclic nucleotide phosphodiesterase inhibition as a potential therapeutic target in renal ischemia reperfusion injury. Life Sci 2021; 282:119843. [PMID: 34298037 DOI: 10.1016/j.lfs.2021.119843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022]
Abstract
AIMS Ischemia/reperfusion (I/R) occurs in renal artery stenosis, partial nephrectomy and most commonly during kidney transplantation. It brings serious consequences such as DGF (Delayed Graft Function) or organ dysfunction leading to renal failure and ultimate death. There is no effective therapy to handle the consequences of Renal Ischemia/Reperfusion (I/R) injury. Cyclic nucleotides, cAMP and cGMP are the important second messengers that stimulate intracellular signal transduction for cell survival in response to growth factors and peptide hormones in normal tissues and in kidneys plays significant role that involves vascular tone regulation, inflammation and proliferation of parenchymal cells. Renal ischemia and subsequent reperfusion injury stimulate signal transduction pathways involved in oxidative stress, inflammation, alteration in renal blood flow leading to necrosis and apoptosis of renal cell. MATERIALS AND METHODS An extensive literature review of various search engines like PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out. To understand the functioning of Phosphodiesterases (PDEs) and its pharmacological modulation in Renal Ischemia-Reperfusion Injury. KEY FINDINGS Current therapeutic options may not be enough to treat renal I/R injury in group of patients and therefore, the current review has discussed the general characteristics and physiology of PDEs and preclinical-studies defining the relationship between PDEs expression in renal injury due to I/R and its outcome on renal function. SIGNIFICANCE The role of PDE inhibitors in renal I/R injury and the clinical status of drugs for various renal diseases have been summarized in this review.
Collapse
Affiliation(s)
- Komal Thapa
- Chitkara College of Pharmacy, Chitkara University, 140401 Punjab, India; School of Pharmacy, Himachal Pradesh, India
| | | | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, 140401 Punjab, India
| |
Collapse
|
10
|
He Z, Wang G, Wu J, Tang Z, Luo M. The molecular mechanism of LRP1 in physiological vascular homeostasis and signal transduction pathways. Biomed Pharmacother 2021; 139:111667. [PMID: 34243608 DOI: 10.1016/j.biopha.2021.111667] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/07/2021] [Accepted: 04/23/2021] [Indexed: 01/10/2023] Open
Abstract
Interactions between vascular smooth muscle cells (VSMCs), endothelial cells (ECs), pericytes (PCs) and macrophages (MФ), the major components of blood vessels, play a crucial role in maintaining vascular structural and functional homeostasis. Low-density lipoprotein (LDL) receptor-related protein-1 (LRP1), a transmembrane receptor protein belonging to the LDL receptor family, plays multifunctional roles in maintaining endocytosis, homeostasis, and signal transduction. Accumulating evidence suggests that LRP1 modulates vascular homeostasis mainly by regulating vasoactive substances and specific intracellular signaling pathways, including the plasminogen activator inhibitor 1 (PAI-1) signaling pathway, platelet-derived growth factor (PDGF) signaling pathway, transforming growth factor-β (TGF-β) signaling pathway and vascular endothelial growth factor (VEGF) signaling pathway. The aim of the present review is to focus on recent advances in the discovery and mechanism of vascular homeostasis regulated by LRP1-dependent signaling pathways. These recent discoveries expand our understanding of the mechanisms controlling LRP1 as a target for studies on vascular complications.
Collapse
Affiliation(s)
- Zhaohui He
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Department of Clinical Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Gang Wang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jianbo Wu
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - Zonghao Tang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Mao Luo
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
11
|
Jiang X, Chen W, Su H, Shen F, Xiao W, Sun W. Puerarin facilitates osteogenesis in steroid-induced necrosis of rabbit femoral head and osteogenesis of steroid-induced osteocytes via miR-34a upregulation. Cytokine 2021; 143:155512. [PMID: 33824083 DOI: 10.1016/j.cyto.2021.155512] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/03/2021] [Accepted: 03/19/2021] [Indexed: 12/26/2022]
Abstract
The present study investigated the effect of puerarin on promoting the osteogenesis in steroid-induced necrosis of the femoral head (SONFH). New Zealand rabbits were administrated with horse serum and methylprednisolone (MPS) for establishing SONFH in vivo model, which was then treated with puerarin treatment. Histo-morphological changes in the femoral head were examined by hematoxylin-eosin staining. Osteoblasts were isolated from healthy rabbits and treated by individual or combined administration of dexamethasone and puerarin. Osteoblast viability was measured by CCK-8 assay. Mineralized nodule formation was evaluated by alizarin red assay. Expressions of RUNX family transcription factor 2 (RUNX2), Type-I collagen α 1 (COL1A1), ALP and miR-34a in the femoral head were determined by qRT-PCR and Western blot. Puerarin attenuated the effect of SONFH on promoting histopathological abnormalities and counteracted SONFH inhibition on the expressions of ALP, RUNX2, COL1A1 and miR-34a in the rabbits. Rabbit osteoblasts were successfully isolated, as they showed red mineralized nodules. Dexamethasone exposure decreased osteoblast viability, which was increased by puerarin treatment. Furthermore, puerarin treatment attenuated dexamethasone-induced inhibition on the viability, osteoblastic differentiation, and the expressions of ALP, RUNX2, COL1A1 and miR-34a in the osteoblasts. Puerarin facilitated osteogenesis of steroid-induced necrosis of rabbit femoral head and osteogenesis of steroid-induced osteocytes via miR-34a upregulation.
Collapse
Affiliation(s)
- Xin Jiang
- Department of No. 5 Orthopedic Surgery, The Third Affiliated Hospital of Qiqihar Medical University, China
| | - Wenjing Chen
- Department of Pathology, The First Hospital of Qiqihar Affiliated Qiqihar Hospital, Southern Medical University, China
| | - Hang Su
- Department of No. 5 Orthopedic Surgery, The Third Affiliated Hospital of Qiqihar Medical University, China
| | - Fuguo Shen
- Department of No. 5 Orthopedic Surgery, The Third Affiliated Hospital of Qiqihar Medical University, China
| | - Wenlong Xiao
- Department of No. 5 Orthopedic Surgery, The Third Affiliated Hospital of Qiqihar Medical University, China
| | - Wencai Sun
- Department of No. 5 Orthopedic Surgery, The Third Affiliated Hospital of Qiqihar Medical University, China.
| |
Collapse
|
12
|
Abdel-Aziz AM, Mohamed ASM, Abdelazem O, Okasha AMM, Kamel MY. Cilostazol protects against cyclophosphamide-induced ovarian toxicity in female rats: role of cAMP and HO-1. Toxicol Mech Methods 2020; 30:526-535. [PMID: 32456565 DOI: 10.1080/15376516.2020.1774829] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Purpose: Cancer rates have been increased among women of reproductive age nowadays. Hence, many young female will be exposed to chemotherapeutic agents as cyclophosphamide (CP), carrying the hazards on female fertility. Cilostazol is a selective phosphodiesterase-3 inhibitor drug which exhibits antioxidant, anti-inflammatory, and anti-apoptotic activities. We aimed in this study to explore the possible protective effects of cilostazol against CP-induced ovarian damage in female rats.Methods: Cilostazol (10 mg/kg/day) was administered orally for 10 days in presence and absence of CP (150 mg/kg IP single dose) treatment. Serum follicle-stimulating hormone (FSH), luteinizing hormone (LH), estrogen (E2), and anti-Müllerian hormone (AMH) levels were determined. Ovarian oxidative stress parameters along with inflammatory biomarkers were measured. 3,5-Cyclic adenosine monophosphate (cAMP) ovarian level was detected. Ovarian histopathological examination and caspase-3 immunohistochemical study were evaluated.Results: CP-treated rats showed a significant increase in serum levels of FSH and LH with decreased serum E2 and AMH levels with an increase in the ovarian inflammatory and oxidative stress biomarkers besides a significant decrease in cAMP ovarian level with an evident histopathological picture of ovarian damage and a high caspase-3 immunoexpression. Cilostazol pretreatment significantly restored the distributed hormonal levels, the oxidative stress and inflammatory biomarkers to their normal levels with marked improvement in histopathological picture of ovarian damage with a significant decrease in caspase-3 immunoexpression.Conclusions: These data suggest that cilostazol protects against CP- induced ovarian damage, which may be related to an increase in cAMP with subsequent anti-inflammatory, antioxidant, and anti-apoptotic properties.
Collapse
Affiliation(s)
| | | | - Osama Abdelazem
- Department of Obstetrics & Gynecology, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | | | - Maha Yehia Kamel
- Department of Pharmacology, Faculty of Medicine, Minia University, Minya, Egypt
| |
Collapse
|
13
|
Use of Human Umbilical Vein Endothelial Cells (HUVEC) as a Model to Study Cardiovascular Disease: A Review. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030938] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, and extensive research has been performed to understand this disease better, using various experimental models. The endothelium plays a crucial role in the development of CVD, since it is an interface between bloodstream components, such as monocytes and platelets, and other arterial wall components. Human umbilical vein endothelial cell (HUVEC) isolation from umbilical cord was first described in 1973. To date, this model is still widely used because of the high HUVEC isolation success rate, and because HUVEC are an excellent model to study a broad array of diseases, including cardiovascular and metabolic diseases. We here review the history of HUVEC isolation, the HUVEC model over time, HUVEC culture characteristics and conditions, advantages and disadvantages of this model and finally, its applications in the area of cardiovascular diseases.
Collapse
|