1
|
Ko KB, Seo JH, Doshi A, Sen DG, Mittal R. Computational Study on the Effects of Valve Orientation on the Hemodynamics and Leaflet Dynamics of Bioprosthetic Pulmonary Valves. J Biomech Eng 2024; 146:121002. [PMID: 39109664 DOI: 10.1115/1.4066178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Indexed: 09/07/2024]
Abstract
Pulmonary valves do not display a fibrous annulus as do other valves in the heart; thus, pulmonary valves can be implanted at multiple orientations and locations within the right ventricular outflow tract (RVOT). This gives surgeons more freedom when implanting the valve but it also results in uncertainties regarding placement, particularly with respect to valve orientation. We investigate the pulmonary artery hemodynamics and valve leaflet dynamics of pulmonary valve replacements (PVRs) with various orientations via fluid-structure interaction (FSI) models. A canonical model of the branching pulmonary artery is coupled with a dynamic model of a pulmonary valve, and from this we quantify the effect of valve implant orientation on the postvalvular hemodynamics and leaflet dynamics. Metrics such as turbulent kinetic energy (TKE), branch pulmonary artery flow distributions, projected valve opening area (PVOA), and pressure differentials across the valve leaflets are analyzed. Our results indicate that off-axis orientation results in higher pressure forces and flow and energy asymmetry, which potentially have implications for long-term durability of implanted bioprosthetic valves.
Collapse
Affiliation(s)
- Kwang Bem Ko
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218
| | - Jung-Hee Seo
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218
| | - Ashish Doshi
- Division of Pediatric Cardiology, Department of Pediatrics, Johns Hopkins Medicine, 1800 Orleans Street, Baltimore, MD 21287
- Johns Hopkins Medicine
| | - Danielle Gottlieb Sen
- Division of Pediatric Cardiac Surgery, Department of Surgery, Johns Hopkins Medicine, 1800 Orleans Street, Baltimore, MD 21287
| | - Rajat Mittal
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218
| |
Collapse
|
2
|
Singh M, Roubertie F, Ozturk C, Borchiellini P, Rames A, Bonnemain J, Gollob SD, Wang SX, Naulin J, El Hamrani D, Dugot-Senant N, Gosselin I, Grenet C, L'Heureux N, Roche ET, Kawecki F. Hemodynamic evaluation of biomaterial-based surgery for Tetralogy of Fallot using a biorobotic heart, in silico, and ovine models. Sci Transl Med 2024; 16:eadk2936. [PMID: 38985852 DOI: 10.1126/scitranslmed.adk2936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/12/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024]
Abstract
Tetralogy of Fallot is a congenital heart disease affecting newborns and involves stenosis of the right ventricular outflow tract (RVOT). Surgical correction often widens the RVOT with a transannular enlargement patch, but this causes issues including pulmonary valve insufficiency and progressive right ventricle failure. A monocusp valve can prevent pulmonary regurgitation; however, valve failure resulting from factors including leaflet design, morphology, and immune response can occur, ultimately resulting in pulmonary insufficiency. A multimodal platform to quantitatively evaluate the effect of shape, size, and material on clinical outcomes could optimize monocusp design. This study introduces a benchtop soft biorobotic heart model, a computational fluid model of the RVOT, and a monocusp valve made from an entirely biological cell-assembled extracellular matrix (CAM) to tackle the multifaceted issue of monocusp failure. The hydrodynamic and mechanical performance of RVOT repair strategies was assessed in biorobotic and computational platforms. The monocusp valve design was validated in vivo in ovine models through echocardiography, cardiac magnetic resonance, and catheterization. These models supported assessment of surgical feasibility, handling, suturability, and hemodynamic and mechanical monocusp capabilities. The CAM-based monocusp offered a competent pulmonary valve with regurgitation of 4.6 ± 0.9% and a transvalvular pressure gradient of 4.3 ± 1.4 millimeters of mercury after 7 days of implantation in sheep. The biorobotic heart model, in silico analysis, and in vivo RVOT modeling allowed iteration in monocusp design not now feasible in a clinical environment and will support future surgical testing of biomaterials for complex congenital heart malformations.
Collapse
Affiliation(s)
- Manisha Singh
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - François Roubertie
- IHU Liryc, Electrophysiology and Heart Modeling Institute, F-33604 Pessac, France
- Congenital Heart Diseases Department, CHU de Bordeaux, F-33604 Pessac, France
| | - Caglar Ozturk
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Paul Borchiellini
- University of Bordeaux, INSERM, BioTis, U1026, F-33000 Bordeaux, France
| | - Adeline Rames
- University of Bordeaux, INSERM, BioTis, U1026, F-33000 Bordeaux, France
| | - Jean Bonnemain
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Adult Intensive Care Medicine, Lausanne University Hospital and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Samuel Dutra Gollob
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sophie X Wang
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Jérôme Naulin
- IHU Liryc, Electrophysiology and Heart Modeling Institute, F-33604 Pessac, France
| | - Dounia El Hamrani
- IHU Liryc, Electrophysiology and Heart Modeling Institute, F-33604 Pessac, France
| | - Nathalie Dugot-Senant
- Plateforme d'histopathologie, TBMcore INSERM US005-CNRS 3427, F-33000 Bordeaux, France
| | - Isalyne Gosselin
- Plateforme d'histopathologie, TBMcore INSERM US005-CNRS 3427, F-33000 Bordeaux, France
| | - Célia Grenet
- University of Bordeaux, INSERM, BioTis, U1026, F-33000 Bordeaux, France
| | - Nicolas L'Heureux
- University of Bordeaux, INSERM, BioTis, U1026, F-33000 Bordeaux, France
| | - Ellen T Roche
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Fabien Kawecki
- University of Bordeaux, INSERM, BioTis, U1026, F-33000 Bordeaux, France
| |
Collapse
|
3
|
Rocchi M, Ingram M, Claus P, D'hooge J, Meyns B, Fresiello L. Use of 3D anatomical models in mock circulatory loops for cardiac medical device testing. Artif Organs 2023; 47:260-272. [PMID: 36370033 DOI: 10.1111/aor.14433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/16/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Mock circulatory loops (MCLs) are mechanical representations of the cardiovascular system largely used to test the hemodynamic performance of cardiovascular medical devices (MD). Thanks to 3 dimensional (3D) printing technologies, MCLs can nowadays also incorporate anatomical models so to offer enhanced testing capabilities. The aim of this review is to provide an overview on MCLs and to discuss the recent developments of 3D anatomical models for cardiovascular MD testing. METHODS The review first analyses the different techniques to develop 3D anatomical models, in both rigid and compliant materials. In the second section, the state of the art of MCLs with 3D models is discussed, along with the testing of different MDs: implantable blood pumps, heart valves, and imaging techniques. For each class of MD, the MCL is analyzed in terms of: the cardiovascular model embedded, the 3D model implemented (the anatomy represented, the material used, and the activation method), and the testing applications. DISCUSSIONS AND CONCLUSIONS MCLs serve the purpose of testing cardiovascular MDs in different (patho-)physiological scenarios. The addition of 3D anatomical models enables more realistic connections of the MD with the implantation site and enhances the testing capabilities of the MCL. Current attempts focus on the development of personalized MCLs to test MDs in patient-specific hemodynamic and anatomical scenarios. The main limitation of MCLs is the impossibility to assess the impact of a MD in the long-term and at a biological level, for which animal experiments are still needed.
Collapse
Affiliation(s)
- Maria Rocchi
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Marcus Ingram
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Piet Claus
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Jan D'hooge
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Bart Meyns
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.,Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Libera Fresiello
- Cardiovasuclar and Respiratory Physiology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
4
|
An In Vitro Circulatory Loop Model of the Pediatric Right Ventricular Outflow Tract as a Platform for Valve Evaluation. Cardiovasc Eng Technol 2022; 14:217-229. [PMID: 36456745 DOI: 10.1007/s13239-022-00648-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022]
Abstract
PURPOSE Tetralogy of Fallot and other conditions affecting the right ventricular outflow tract (RVOT) are common in pediatric patients, but there is a lack of quantitative comparison among techniques for repairing or replacing the pulmonary valve. The aim of this study was to develop a robust in vitro system for quantifying flow conditions after various RVOT interventions. METHODS An infant-sized mock circulatory loop that includes a 3D-printed RVOT anatomical model was developed to evaluate flow conditions after different simulated surgical repairs. Physiologically correct flow and pressure were achieved with custom compliant tubing and a tunable flow restrictor. Pressure gradient, flow regurgitation, and coaptation height were measured for two monocusp leaflet designs after tuning the system with a 12 mm Hancock valved conduit. RESULTS Measurements were repeatable across multiple samples of two different monocusp designs, with the wider leaflet in the 50% backwall model consistently exhibiting lower pressure gradient but higher regurgitation compared to the leaflet in the 40% backwall model. Coaptation height was measured via direct visualization with endoscopic cameras, revealing a shorter area of contact for the wider leaflet (3.3-4.0 mm) compared to the narrower one (4.3 mm). CONCLUSION The 3D-printed RVOT anatomical model and in vitro pulmonary circulatory loop developed in this work provide a platform for planning and evaluating surgical interventions in the pediatric population. Measurements of regurgitation, pressure gradient, and coaptation provide a quantitative basis for comparison among different valve designs and positions.
Collapse
|
5
|
Kaiser AD, Shad R, Schiavone N, Hiesinger W, Marsden AL. Controlled Comparison of Simulated Hemodynamics Across Tricuspid and Bicuspid Aortic Valves. Ann Biomed Eng 2022; 50:1053-1072. [PMID: 35748961 PMCID: PMC10775905 DOI: 10.1007/s10439-022-02983-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/16/2022] [Indexed: 11/01/2022]
Abstract
Bicuspid aortic valve is the most common congenital heart defect, affecting 1-2% of the global population. Patients with bicuspid valves frequently develop dilation and aneurysms of the ascending aorta. Both hemodynamic and genetic factors are believed to contribute to dilation, yet the precise mechanism underlying this progression remains under debate. Controlled comparisons of hemodynamics in patients with different forms of bicuspid valve disease are challenging because of confounding factors, and simulations offer the opportunity for direct and systematic comparisons. Using fluid-structure interaction simulations, we simulate flows through multiple aortic valve models in a patient-specific geometry. The aortic geometry is based on a healthy patient with no known aortic or valvular disease, which allows us to isolate the hemodynamic consequences of changes to the valve alone. Four fully-passive, elastic model valves are studied: a tricuspid valve and bicuspid valves with fusion of the left- and right-, right- and non-, and non- and left-coronary cusps. The resulting tricuspid flow is relatively uniform, with little secondary or reverse flow, and little to no pressure gradient across the valve. The bicuspid cases show localized jets of forward flow, excess streamwise momentum, elevated secondary and reverse flow, and clinically significant levels of stenosis. Localized high flow rates correspond to locations of dilation observed in patients, with the location related to which valve cusps are fused. Thus, the simulations support the hypothesis that chronic exposure to high local flow contributes to localized dilation and aneurysm formation.
Collapse
Affiliation(s)
- Alexander D Kaiser
- Institute for Computational & Mathematical Engineering, Stanford University, Stanford, CA, USA
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Rohan Shad
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Nicole Schiavone
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - William Hiesinger
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Alison L Marsden
- Institute for Computational & Mathematical Engineering, Stanford University, Stanford, CA, USA.
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford, CA, USA.
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|