1
|
Babiak PM, Battistoni CM, Cahya L, Athreya R, Minnich J, Panitch A, Liu JC. Tunable Blended Collagen I/II and Collagen I/III Hydrogels as Tissue Mimics. Macromol Biosci 2024; 24:e2400280. [PMID: 39427345 DOI: 10.1002/mabi.202400280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/03/2024] [Indexed: 10/22/2024]
Abstract
Collagen (Col) is commonly used as a natural biomaterial for biomedical applications. Although Col I is the most prevalent col type employed, many collagen types work together in vivo to confer function and biological activity. Thus, blending collagen types can better recapitulate many native environments. This work investigates how hydrogel properties can be tuned through blending collagen types (col I/II and col I/III) and by varying polymerization temperatures. Col I/II results in poorly developed fibril networks, which softened the gels, especially at lower polymerization temperatures. Conversely, col I/III hydrogels exhibit well-connected fibril networks with localized areas of fine fibrils and result in stiffer hydrogels. A decreased molecular mass recovery rate is observed in blended hydrogels. The altered fibril morphologies, mechanical properties, and biological signals of the blended gels can be leveraged to alter cell responses and can be used as models for different tissue types (e.g., healthy vs fibrotic tissue). Furthermore, the biomimetic hydrogel properties are a tool that can be used to modulate the transport of drugs, nutrients, and wastes in tissue engineering applications.
Collapse
Affiliation(s)
- Paulina M Babiak
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Carly M Battistoni
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Leonard Cahya
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Rithika Athreya
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Jason Minnich
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Alyssa Panitch
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Julie C Liu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
2
|
Zhao L, Liu H, Gao R, Zhang K, Gong Y, Cui Y, Ke S, Wang J, Wang H. Brown Adipose Stem Cell-Loaded Resilin Elastic Hydrogel Rebuilds Cardiac Function after Myocardial Infarction via Collagen I/III Reorganisation. Gels 2024; 10:568. [PMID: 39330170 PMCID: PMC11431146 DOI: 10.3390/gels10090568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Irreversible fibrosis following myocardial infarction (MI) stiffens the infarcted myocardium, which remains challenging to restore. This study aimed to investigate whether the injectable RLP12 hydrogel, derived from recombinant resilin protein, could serve as a vehicle for stem cells to enhance the function of the infarcted myocardium. The RLP12 hydrogel was prepared and injected into the myocardium of rats with MI, and brown adipose-derived mesenchymal stem cells (BADSCs) were loaded. The survival and differentiation of BADSCs in vivo were investigated using immunofluorescence one week and four weeks after treatment, respectively. The heart function, MI area, collagen deposition, and microvessel density were further assessed four weeks after treatment through echocardiography, histology, immunohistochemistry, and immunofluorescence. The RLP12 hydrogel was prepared with a shear modulus of 10-15 kPa. Four weeks after transplantation, the RLP12 hydrogel significantly improved cardiac function by increasing microvessel density and reducing infarct area size and collagen deposition in MI rats. Furthermore, the distribution ratio of collagen III to I increased in both the centre and edge areas of the MI, indicating the improved compliance of the infarct heart. Moreover, the RLP12 hydrogel also promoted the survival and differentiation of BADSCs into cardiac troponin T- and α-smooth muscle-positive cells. The RLP12 hydrogel can be utilised as an injectable vehicle of BADSCs for treating MI and regulating collagen I and III expression profiles to improve the mechanical microenvironment of the infarct site, thereby restoring heart function. The study provides novel insights into the mechanical interactions between the hydrogel and the infarct microenvironment.
Collapse
Affiliation(s)
- Le Zhao
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Huaying Liu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Rui Gao
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
- Department of Wound Infection and Drug, Army Medical Center of PLA (Daping Hospital), Army Medical University, Chongqing 400042, China
| | - Kaihui Zhang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
- School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Yuxuan Gong
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing 100850, China
| | - Yaya Cui
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Shen Ke
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Haibin Wang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
3
|
Pachter N, Allen K, Hookway TA. Exogenous ECM in an environmentally-mediated in vitro model for cardiac fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608840. [PMID: 39229021 PMCID: PMC11370619 DOI: 10.1101/2024.08.20.608840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Few clinical solutions exist for cardiac fibrosis, creating the need for a tunable in vitro model to better understand fibrotic disease mechanisms and screen potential therapeutic compounds. Here, we combined cardiomyocytes, cardiac fibroblasts, and exogenous extracellular matrix (ECM) proteins to create an environmentally-mediated in vitro cardiac fibrosis model. Cells and ECM were combined into 2 types of cardiac tissues- aggregates and tissue rings. The addition of collagen I had a drastic negative impact on aggregate formation, but ring formation was not as drastically affected. In both tissue types, collagen and other ECM did not severely affect contractile function. Histological analysis showed direct incorporation of collagen into tissues, indicating that we can directly modulate the cells' ECM environment. This modulation affects tissue formation and distribution of cells, indicating that this model provides a useful platform for understanding how cells respond to changes in their extracellular environment and for potential therapeutic screening.
Collapse
Affiliation(s)
- Natalie Pachter
- Department of Biomedical Engineering, Binghamton University, the State University of New York, Binghamton, NY 13902, United States
| | - Kristen Allen
- Department of Biomedical Engineering, Binghamton University, the State University of New York, Binghamton, NY 13902, United States
| | - Tracy A Hookway
- Department of Biomedical Engineering, Binghamton University, the State University of New York, Binghamton, NY 13902, United States
| |
Collapse
|
4
|
Alavarse AC, Silva JB, Ulrich H, Petri DFS. Poly(vinyl alcohol)/sodium alginate/magnetite composites: magnetic force microscopy for tracking magnetic domains. SOFT MATTER 2023; 19:2612-2622. [PMID: 36951357 DOI: 10.1039/d3sm00053b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hydrogels of poly(vinyl alcohol) (PVA)/sodium alginate (SA), and magnetic nanoparticles (MNPs) were prepared by solvent casting in the absence and in the presence of magnets, in order to obtain MNPs distributed randomly (PVA/SA-rMNP) and magnetically oriented MNPs (PVA/SA-gMNP) in the polymer matrix. Atomic force microscopy (AFM) and magnetic force microscopy (MFM) techniques were used to evaluate the topography and to map the distribution of magnetic domains in the polymer matrix, respectively. The tip-surface distance (lift distance) of 50 nm during the MFM analyses facilitated the mapping of magnetic domains because the van der Waals forces were minimized. The magnetic signal stemming from clusters of MNPs were more easily identified than that from isolated MNPs. PVA and SA, PVA/SA, PVA/SA-rMNP, and PVA/SA-gMNP coatings with surface roughness (Ra) values of 3.8 nm, 28.7 nm, and 49.8 nm, respectively, were tested for the proliferation of mouse hippocampal HT-22 cells. While PVA/SA, PVA/SA-rMNP, and PVA/SA-gMNP coatings preserved cell viability >70% in comparison to the control (plastic plate) over 48 h, cell proliferation tended to decrease on surfaces with higher Ra values (PVA/SA-gMNP). These findings showed that the orientation of magnetic domains led to an increase of surface roughness, which decreased the viability of HT-22 cells. Thus, these results might be interesting for situations, where the control of cell proliferation is necessary.
Collapse
Affiliation(s)
- Alex Carvalho Alavarse
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil.
| | - Jean Bezerra Silva
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Denise Freitas Siqueira Petri
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil.
| |
Collapse
|
5
|
Bilkic I, Sotelo D, Anujarerat S, Ortiz NR, Alonzo M, El Khoury R, Loyola CC, Joddar B. Development of an extrusion-based 3D-printing strategy for clustering of human neural progenitor cells. Heliyon 2022; 8:e12250. [PMID: 36636220 PMCID: PMC9830177 DOI: 10.1016/j.heliyon.2022.e12250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/28/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
3D bioprinting offers a simplified solution for the engineering of complex tissue parts for in-vitro drug discovery or, in-vivo implantation. However, significant amount of challenges exist in 3D bioprinting of neural tissues, as these are sensitive cell types to handle via extrusion bioprinting techniques. We assessed the feasibility of bioprinting human neural progenitor cells (NPCs) in 3D hydrogel lattices using a fibrinogen-alginate-chitosan bioink, previously optimized for neural-cell growth, and subsequently modified for structural support during extrusion printing, in this study. The original bioink used in this study was made by adding optimized amounts of high- and medium-viscosity alginate to the fibrinogen-chitosan-based bioink and making it extrudable under shear pressure. The mechanically robust 3D constructs promoted NPC cluster formation and maintained their morphology and viability during the entire culture period. This strategy may be useful for co-culturing of NPCs along with other cell types such as cardiac, vascular, and other cells during 3D bioprinting.
Collapse
Affiliation(s)
- Ines Bilkic
- Department of Chemical Engineering and Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Diana Sotelo
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, TX, 79968, USA
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Stephanie Anujarerat
- Department of Chemical Engineering and Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Nickolas R. Ortiz
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, TX, 79968, USA
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Matthew Alonzo
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, TX, 79968, USA
- Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX, 79968, USA
| | - Raven El Khoury
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, TX, 79968, USA
- Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX, 79968, USA
| | - Carla C. Loyola
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, TX, 79968, USA
- Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX, 79968, USA
| | - Binata Joddar
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, TX, 79968, USA
- Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX, 79968, USA
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX, 79968, USA
| |
Collapse
|
6
|
Joddar B, Natividad-Diaz SL, Padilla AE, Esparza AA, Ramirez SP, Chambers DR, Ibaroudene H. Engineering approaches for cardiac organoid formation and their characterization. Transl Res 2022; 250:46-67. [PMID: 35995380 PMCID: PMC10370285 DOI: 10.1016/j.trsl.2022.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022]
Abstract
Cardiac organoids are 3-dimensional (3D) structures composed of tissue or niche-specific cells, obtained from diverse sources, encapsulated in either a naturally derived or synthetic, extracellular matrix scaffold, and include exogenous biochemical signals such as essential growth factors. The overarching goal of developing cardiac organoid models is to establish a functional integration of cardiomyocytes with physiologically relevant cells, tissues, and structures like capillary-like networks composed of endothelial cells. These organoids used to model human heart anatomy, physiology, and disease pathologies in vitro have the potential to solve many issues related to cardiovascular drug discovery and fundamental research. The advent of patient-specific human-induced pluripotent stem cell-derived cardiovascular cells provide a unique, single-source approach to study the complex process of cardiovascular disease progression through organoid formation and incorporation into relevant, controlled microenvironments such as microfluidic devices. Strategies that aim to accomplish such a feat include microfluidic technology-based approaches, microphysiological systems, microwells, microarray-based platforms, 3D bioprinted models, and electrospun fiber mat-based scaffolds. This article discusses the engineering or technology-driven practices for making cardiac organoid models in comparison with self-assembled or scaffold-free methods to generate organoids. We further discuss emerging strategies for characterization of the bio-assembled cardiac organoids including electrophysiology and machine-learning and conclude with prospective points of interest for engineering cardiac tissues in vitro.
Collapse
Affiliation(s)
- Binata Joddar
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL); Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, Texas; Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas.
| | - Sylvia L Natividad-Diaz
- Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, Texas; Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas
| | - Andie E Padilla
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL); Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, Texas
| | - Aibhlin A Esparza
- Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, Texas
| | - Salma P Ramirez
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL); Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, Texas
| | | | | |
Collapse
|