1
|
Mahur M, Singh M, Gurjar OP, Semwal MK. Assessment of Surface and Build-up Doses for a 6 MV Photon Beam using Parallel Plate Chamber, EBT3 Gafchromic Films, and PRIMO Monte Carlo Simulation Code. J Biomed Phys Eng 2022; 12:455-464. [PMID: 36313413 PMCID: PMC9589075 DOI: 10.31661/jbpe.v0i0.2101-1274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/25/2021] [Indexed: 11/06/2022]
Abstract
Background: Accurate assessment of surface and build-up doses has a key role in radiotherapy, especially for the superficial lesions with uncertainties involved while performing measurements in the build-up region. Objective: This study aimed to assess surface and build-up doses for 6 MV photon beam from linear accelerator using parallel plate ionization chamber, EBT3 Gafchromic films, and PRIMO Monte Carlo (MC) simulation code. Material and Methods: In this experimental study, parallel plate chamber (PPC05) and EBT3 Gafchromic films were used to measure doses in a build-up region for 6 MV beam from the linear accelerator for different field sizes at various depths ranging from 0 to 2 cm from the surface with 100 cm source to surface distance (SSD) in a solid water phantom. Measured results were compared with Monte Carlo simulated results using PENELOPE-based PRIMO simulation code for the same setup conditions. Effect of gantry angle incidence and SSD were also analyzed for depth doses at the surface and build-up regions using PPC05 ion chamber and EBT3 Gafchromic films. Results: Doses measured at the surface were 14.78%, 19.87%, 25.83%, and 31.54% for field sizes of 5×5, 10×10, 15×15, and 20×20 cm2, respectively for a 6 MV photon beam with a parallel plate chamber and 14.20%, 19.14%, 25.149%, and 30.90%, respectively for EBT3 Gafchromic films. Both measurement sets were in good agreement with corresponding simulated results from the PRIMO MC simulation code; doses increase with the increase in field sizes. Conclusion: Good agreement was observed between the measured depth doses using parallel plate ionization chamber, EBT3 Gafchromic films, and the simulated depth doses using PRIMO Monte Carlo simulation code.
Collapse
Affiliation(s)
- Mamta Mahur
- MSc, Department of Radiation Oncology, Delhi State Cancer Institute, Dilshad Garden, Delhi, India
- MSc, Department of Physics, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Munendra Singh
- PhD, Department of Physics, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Om Prakash Gurjar
- PhD, Government Cancer Hospital, Mahatma Gandhi Memorial Medical College, Indore-452001, India
| | - Manoj Kumar Semwal
- PhD, Department of Radiation Oncology, Army Hospital (Research & Referral), Delhi Cantonment New Delhi-110010, India
| |
Collapse
|
2
|
Asfia A, Deepak B, Novak JI, Rolfe B, Kron T. Multi-jet fusion for additive manufacturing of radiotherapy immobilization devices: Effects of color, thickness, and orientation on surface dose and tensile strength. J Appl Clin Med Phys 2022; 23:e13548. [PMID: 35212139 PMCID: PMC8992947 DOI: 10.1002/acm2.13548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/21/2021] [Accepted: 01/19/2022] [Indexed: 12/05/2022] Open
Abstract
Immobilization devices are used to obtain reproducible patient setup during radiotherapy treatment, improving accuracy, and reducing damage to surrounding healthy tissue. Additive manufacturing is emerging as a viable method for manufacturing and personalizing such devices. The goal of this study was to investigate the dosimetric and mechanical properties of a recent additive technology called multi‐jet fusion (MJF) for radiotherapy applications, including the ability for this process to produce full color parts. Skin dose testing included 50 samples with dimensions 100 mm × 100 mm with five different thicknesses (1 mm, 2 mm, 3 mm, 4 mm, and 5 mm) and grouped into colored (cyan, magenta, yellow, and black (CMYK) additives) and non‐colored (white) samples. Results using a 6 MV beam found that surface dose readings were predominantly independent of the colored additives. However, for an 18 MV beam, the additives affected the surface dose, with black recording significantly lower surface dose readings compare to other colors. The accompanying tensile testing of 175 samples designed to ASTM D638 type I standards found that the black agent resulted in the lowest ultimate tensile strength (UTS) for each thickness of 1–5 mm. It was also found that the print orientation had influence on the skin dose and mechanical properties of the samples. When all data were combined and analyzed using a multiple‐criteria decision‐making technique, magenta was found to offer the best balance between high UTS and low surface dose across different thicknesses and orientations, making it an optimal choice for immobilization devices. This is the first study to consider the use of color MJF for radiotherapy immobilization devices, and suggests that color additives can affect both dosimetry and mechanical performance. This is important as industrial additive technologies like MJF become increasingly adopted in the health and medical sectors.
Collapse
Affiliation(s)
- Amirhossein Asfia
- School of Engineering, Faculty of Science, Engineering and Built Environment, Deakin University, Victoria, Australia.,ARC Industrial Transformation Training Centre in Additive Bio-manufacturing, Queensland University of Technology, Queensland, Australia
| | - Basaula Deepak
- Department of Physical Science, Peter MacCallum Cancer Centre, Victoria, Australia
| | - James Ivan Novak
- School of Architecture, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Queensland, Australia.,Herston Biofabrication Institute, Metro North Hospital and Health Service, Level 12, Block 7, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Bernard Rolfe
- School of Engineering, Faculty of Science, Engineering and Built Environment, Deakin University, Victoria, Australia
| | - Tomas Kron
- ARC Industrial Transformation Training Centre in Additive Bio-manufacturing, Queensland University of Technology, Queensland, Australia.,Department of Physical Science, Peter MacCallum Cancer Centre, Victoria, Australia
| |
Collapse
|
3
|
Surface dose and build-up region depth dose measurements in non-standard beams of Cyberknife and tomotherapy systems. Radiol Phys Technol 2021; 14:309-317. [PMID: 34224082 DOI: 10.1007/s12194-021-00629-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022]
Abstract
The purpose of this study was to measure the surface dose and build-up region depth dose characteristics of 6 MV photon beams in Cyberknife and helical tomotherapy (HT) systems for non-standard small fields using parallel plate chambers (Roos and Markus), Gafchromic EBT3 films, and nanoDot optically stimulated luminescence dosimeters (OSLDs), as well as to investigate the effect of oblique incidence on the surface dose of the beam. All measurements were conducted in a virtual water phantom under machine-specific reference conditions. The Roos and OSLDs overestimated the surface dose when compared with the Markus chamber and EBT3 films by 20%. We applied water equivalent thickness (WET) correction to account for the intrinsic build-up thickness of the detectors from their effective point of measurement (EPOM). With WET correction, a reasonably close surface dose estimate was obtained for all detectors, within 1.9% agreement for the 60 mm collimator of Cyberknife and 3.1% agreement for the HT system, with a 5 × 10 cm2 field size. The surface dose increased from the normally incident Cyberknife and HT fields with increasing angle of incidence. The surface dose increased to twice its value at normal incidence for highly oblique angles of incidence above 55°. For the tested fields, a reasonable surface dose estimate could be measured with the detectors if the correction for intrinsic buildup thickness was applied. Nevertheless, the use of Roos chambers with large dimensions and nanoDot OSLDs is not recommended for estimating the surface dose for small fields.
Collapse
|
4
|
Niroomand‐Rad A, Chiu‐Tsao S, Grams MP, Lewis DF, Soares CG, Van Battum LJ, Das IJ, Trichter S, Kissick MW, Massillon‐JL G, Alvarez PE, Chan MF. Report of AAPM Task Group 235 Radiochromic Film Dosimetry: An Update to TG‐55. Med Phys 2020; 47:5986-6025. [DOI: 10.1002/mp.14497] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
| | | | | | | | | | | | - Indra J. Das
- Radiation Oncology Northwestern University Memorial Hospital Chicago IL USA
| | - Samuel Trichter
- New York‐Presbyterian HospitalWeill Cornell Medical Center New York NY USA
| | | | - Guerda Massillon‐JL
- Instituto de Fisica Universidad Nacional Autonoma de Mexico Mexico City Mexico
| | - Paola E. Alvarez
- Imaging and Radiation Oncology Core MD Anderson Cancer Center Houston TX USA
| | - Maria F. Chan
- Memorial Sloan Kettering Cancer Center Basking Ridge NJ USA
| |
Collapse
|
5
|
Asfia A, Deepak B, Novak JI, Rolfe B, Kron T. Infill selection for 3D printed radiotherapy immobilisation devices. Biomed Phys Eng Express 2020; 6. [DOI: 10.1088/2057-1976/abb981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022]
|
6
|
Butson M, Butson E, Morales J, Hill R. Skin and build up dose determination for a 2.5 MV medical linear accelerator imaging beam. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2019; 42:1177-1181. [DOI: 10.1007/s13246-019-00792-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/14/2019] [Indexed: 11/25/2022]
|
7
|
Surface dose measurements in and out of field: Implications for breast radiotherapy with megavoltage photon beams. Z Med Phys 2017; 27:318-323. [PMID: 28595775 DOI: 10.1016/j.zemedi.2017.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 04/30/2017] [Accepted: 05/15/2017] [Indexed: 11/22/2022]
Abstract
This study examines the difference in surface dose between flat and flattening filter free (FFF) photon beams in the context of breast radiotherapy. The surface dose was measured for 6MV, 6MV FFF, 10MV, 10MV FFF and 18MV photon beams using a thin window ionisation chamber for various field sizes. Profiles were acquired to ascertain the change in surface dose off-axis. Out-of-field measurements were included in a clinically representative half beam block tangential breast field. In the field centres of FFF beams the surface dose was found to be increased for small fields and decreased for large fields compared to flat beams. For FFF beams, surface dose was found to decrease off-axis and resulted in lower surface dose out-of-field compared to flat beams.
Collapse
|
8
|
Butson M, Chen T, Alzaidi S, Pope D, Butson E, Gorjiara T, Poder J, Cho G, Gill S, Morales J, Haque M, Whitaker M, Hill R. Extrapolated skin dose assessment with optically stimulated luminescent dosimeters. Biomed Phys Eng Express 2016. [DOI: 10.1088/2057-1976/2/4/047001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Reynolds TA, Higgins P. Surface dose measurements with commonly used detectors: a consistent thickness correction method. J Appl Clin Med Phys 2015; 16:358–366. [PMID: 26699319 PMCID: PMC5690169 DOI: 10.1120/jacmp.v16i5.5572] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/06/2015] [Accepted: 04/29/2015] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study was to review application of a consistent correction method for the solid state detectors, such as thermoluminescent dosimeters (chips (cTLD) and powder (pTLD)), optically stimulated detectors (both closed (OSL) and open (eOSL)), and radiochromic (EBT2) and radiographic (EDR2) films. In addition, to compare measured surface dose using an extrapolation ionization chamber (PTW 30-360) with other parallel plate chambers RMI-449 (Attix), Capintec PS-033, PTW 30-329 (Markus) and Memorial. Measurements of surface dose for 6MV photons with parallel plate chambers were used to establish a baseline. cTLD, OSLs, EDR2, and EBT2 measurements were corrected using a method which involved irradiation of three dosimeter stacks, followed by linear extrapolation of individual dosimeter measurements to zero thickness. We determined the magnitude of correction for each detector and compared our results against an alternative correction method based on effective thickness. All uncorrected surface dose measurements exhibited overresponse, compared with the extrapolation chamber data, except for the Attix chamber. The closest match was obtained with the Attix chamber (-0.1%), followed by pTLD (0.5%), Capintec (4.5%), Memorial (7.3%), Markus (10%), cTLD (11.8%), eOSL (12.8%), EBT2 (14%), EDR2 (14.8%), and OSL (26%). Application of published ionization chamber corrections brought all the parallel plate results to within 1% of the extrapolation chamber. The extrapolation method corrected all solid-state detector results to within 2% of baseline, except the OSLs. Extrapolation of dose using a simple three-detector stack has been demonstrated to provide thickness corrections for cTLD, eOSLs, EBT2, and EDR2 which can then be used for surface dose measurements. Standard OSLs are not recommended for surface dose measurement. The effective thickness method suffers from the subjectivity inherent in the inclusion of measured percentage depth-dose curves and is not recommended for these types of measurements.
Collapse
Affiliation(s)
- Tatsiana A. Reynolds
- Department of Radiation OncologyUniversity of Minnesota Med School‐Twin CitiesMinneapolisMNUSA
| | - Patrick Higgins
- Department of Radiation OncologyUniversity of Minnesota Med School‐Twin CitiesMinneapolisMNUSA
| |
Collapse
|
10
|
Morales JE, Crowe SB, Hill R, Freeman N, Trapp JV. Dosimetry of cone-defined stereotactic radiosurgery fields with a commercial synthetic diamond detector. Med Phys 2014; 41:111702. [DOI: 10.1118/1.4895827] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
11
|
Cho GA, Ralston A, Tin MM, Martin D, Pickard S, Kim JH, Tse R. In vivoand phantom measurements versus Eclipse TPS prediction of near surface dose for SBRT treatments. ACTA ACUST UNITED AC 2014. [DOI: 10.1088/1742-6596/489/1/012008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
A comparison of surface doses for very small field size x-ray beams: Monte Carlo calculations and radiochromic film measurements. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2014; 37:303-9. [DOI: 10.1007/s13246-014-0260-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 03/04/2014] [Indexed: 12/15/2022]
|
13
|
Cavan A, Meyer J. Digital holographic interferometry: A novel optical calorimetry technique for radiation dosimetry. Med Phys 2014; 41:022102. [DOI: 10.1118/1.4861822] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
14
|
Rutter CE, Qin L, Higgins SA, Moran MS, Evans SB. Dosimetric and clinical predictors of the development of moist desquamation in breast cancer irradiation. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s13566-013-0129-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Fricker K, Thompson C, Meyer J. Assessment of concomitant testicular dose with radiochromic film. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2013; 36:269-77. [PMID: 23794085 DOI: 10.1007/s13246-013-0208-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/17/2013] [Indexed: 12/26/2022]
Abstract
To assess the suitability of EBT2 and XRQA2 Gafchromic film for measuring low doses in the periphery of treatment fields, and to measure the accumulative concomitant dose to the contralateral testis resulting from CT imaging, pre-treatment imaging (CBCT) and seminoma radiotherapy with and without gonadal shielding. Superficial peripheral dose measurements made using EBT2 Gafchromic film on the surface of water equivalent material were compared to measurements made with an ionisation chamber in a water phantom to evaluate the suitability and accuracy of the film dosimeter for such measurements. Similarly, XRQA2 was used to measure surface doses within a kilovoltage beam and compared with ionisation chamber measurements. Gafchromic film was used to measure CT, CBCT and seminoma treatment related testicular doses on an anthropomorphic phantom. Doses were assessed for two clinical plans, both with and without gonadal shielding. Testicular doses resulting from the treatment of up to 0.83 ± 0.17 Gy were measured per treatment. Additional doses of up to 0.49 ± 0.01 and 2.35 ± 0.05 cGy were measured per CBCT and CT image, respectively. Reductions in the testicular dose in the order of 10, 36 and 78% were observed when gonadal shielding was fitted for treatment, CT and CBCT imaging, respectively. Gafchromic film was found to be suitable for measuring dose in the periphery of treatment fields. The dose to the testis should be limited to minimise the risk of radiation related side effects. This can be achieved by using appropriate gonadal shielding, irrespective of the treatment fields employed.
Collapse
Affiliation(s)
- Katherine Fricker
- Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.
| | | | | |
Collapse
|