1
|
Soto DF, Franzetti A, Gómez I, Huovinen P. Functional filtering and random processes affect the assembly of microbial communities of snow algae blooms at Maritime Antarctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150305. [PMID: 34818790 DOI: 10.1016/j.scitotenv.2021.150305] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/04/2021] [Accepted: 09/08/2021] [Indexed: 05/10/2023]
Abstract
The increasing temperatures at the West Antarctic Peninsula (Maritime Antarctic) could lead to a higher occurrence of snow algal blooms which are ubiquitous events that change the snow coloration, reducing albedo and in turn exacerbating melting. However, there is a limited understanding of snow algae blooms biodiversity, composition, and their functional profiles, especially in one of the world's areas most affected by climate change. In this study we used 16S rRNA and 18S rRNA metabarcoding, and shotgun metagenomics to assess the diversity, composition, and functional potential of the snow algae blooms bacterial and eukaryotic communities at three different sites of Maritime Antarctic, between different colors of the algae blooms and between seasonal and semi-permanent snowfields. We tested the hypothesis that the functional potential of snow algae blooms is conserved despite a changing taxonomic composition. Furthermore, we determined taxonomic co-occurrence patterns of bacteria and eukaryotes and assessed the potential for the exchange of metabolites among bacterial taxa. Here, we tested the prediction that there are co-occurring taxa within snow algae whose biotic interactions are marked by the exchange of metabolites. Our results show that the composition of snow algae blooms vary significantly among sites. For instance, a higher abundance of fungi and protists were detected in Fildes Peninsula compared with Doumer Island and O'Higgins. Likewise, the composition varied between snow colors and snow types. However, the functional potential varied only among sampling sites with a higher abundance of genes involved in tolerance to environmental stress at O'Higgins. Co-occurrence patterns of dominant bacterial genera such as Pedobacter, Polaromonas, Flavobacterium and Hymenobacter were recorded, contrasting the absence of co-occurring patterns displayed by Chlamydomonadales algae with other eukaryotes. Finally, genome-scale metabolic models revealed that bacteria within snow algae blooms likely compete for resources instead of forming cooperative communities.
Collapse
Affiliation(s)
- Daniela F Soto
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Research Centre on Dynamics of High Latitude Marine Ecosystems (IDEAL), Valdivia, Chile.
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Milan, Italy
| | - Iván Gómez
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Research Centre on Dynamics of High Latitude Marine Ecosystems (IDEAL), Valdivia, Chile
| | - Pirjo Huovinen
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Research Centre on Dynamics of High Latitude Marine Ecosystems (IDEAL), Valdivia, Chile
| |
Collapse
|
2
|
Gálvez FE, Saldarriaga-Córdoba M, Huovinen P, Silva AX, Gómez I. Revealing the Characteristics of the Antarctic Snow Alga Chlorominima collina gen. et sp. nov. Through Taxonomy, Physiology, and Transcriptomics. FRONTIERS IN PLANT SCIENCE 2021; 12:662298. [PMID: 34163502 PMCID: PMC8215615 DOI: 10.3389/fpls.2021.662298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/10/2021] [Indexed: 05/13/2023]
Abstract
Snow algae play crucial roles in cold ecosystems, however, many aspects related to their biology, adaptations and especially their diversity are not well known. To improve the identification of snow algae from colored snow, in the present study we used a polyphasic approach to describe a new Antarctic genus, Chlorominima with the species type Chlorominima collina. This new taxon was isolated of colored snow collected from the Collins Glacier (King George Island) in the Maritime Antarctic region. Microscopy revealed biflagellated ellipsoidal cells with a rounded posterior end, a C-shaped parietal chloroplast without a pyrenoid, eyespot, and discrete papillae. Several of these characteristics are typical of the genus Chloromonas, but the new isolate differs from the described species of this genus by the unusual small size of the cells, the presence of several vacuoles, the position of the nucleus and the shape of the chloroplast. Molecular analyzes confirm that the isolated alga does not belong to Chloromonas and therefore forms an independent lineage, which is closely related to other unidentified Antarctic and Arctic strains, forming a polar subclade in the Stephanosphaerinia phylogroup within the Chlamydomonadales. Secondary structure comparisons of the ITS2 rDNA marker support the idea that new strain is a distinct taxon within of Caudivolvoxa. Physiological experiments revealed psychrophilic characteristics, which are typical of true snow algae. This status was confirmed by the partial transcriptome obtained at 2°C, in which various cold-responsive and cryoprotective genes were identified. This study explores the systematics, cold acclimatization strategies and their implications for the Antarctic snow flora.
Collapse
Affiliation(s)
- Francisca E. Gálvez
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
- *Correspondence: Francisca E. Gálvez,
| | - Mónica Saldarriaga-Córdoba
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O’Higgins, Santiago, Chile
| | - Pirjo Huovinen
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Andrea X. Silva
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- AUSTRAL-omics, Vicerrectoría de Investigación, Desarrollo y Creación Artística, Universidad Austral de Chile, Valdivia, Chile
| | - Iván Gómez
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| |
Collapse
|
3
|
Song H, He M, Wu C, Gu C, Wang C. Global transcriptomic analysis of an Arctic Chlorella-Arc reveals its eurythermal adaptivity mechanisms. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
Zhao Y, Hou Y, Chai W, Liu Z, Wang X, He C, Hu Z, Chen S, Wang W, chen F. Transcriptome analysis of Haematococcus pluvialis of multiple defensive systems against nitrogen starvation. Enzyme Microb Technol 2020; 134:109487. [DOI: 10.1016/j.enzmictec.2019.109487] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/05/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
|
5
|
Anne-Marie K, Yee W, Loh SH, Aziz A, Cha TS. Influence of nitrogen availability on biomass, lipid production, fatty acid profile, and the expression of fatty acid desaturase genes in Messastrum gracile SE-MC4. World J Microbiol Biotechnol 2020; 36:17. [PMID: 31912247 DOI: 10.1007/s11274-019-2790-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/20/2019] [Indexed: 10/25/2022]
Abstract
In this study, the effects of limited and excess nitrate on biomass, lipid production, and fatty acid profile in Messastrum gracile SE-MC4 were determined. The expression of fatty acid desaturase genes, namely stearoyl-ACP desaturase (SAD), omega-6 fatty acid desaturase (ω-6 FAD), omega-3 fatty acid desaturase isoform 1 (ω-3 FADi1), and omega-3 fatty acid desaturase isoform 2 (ω-3 FADi2) was also assessed. It was found that nitrate limitation generally increased the total oil, α-linolenic acid (C18:3n3) and total polyunsaturated fatty acid (PUFA) contents in M. gracile. The reduction of nitrate concentration from 1.76 to 0.11 mM increased the total oil content significantly from 32.5 to 41.85% (dry weight). Palmitic (C16:0) and oleic (C18:1) acids as the predominant fatty acids in this microalgae constituted between 82 and 87% of the total oil content and were relatively consistent throughout all nitrate concentrations tested. The expression of SAD, ω-6 FAD, and ω-3 FADi2 genes increased under nitrate limitation, especially at 0.11 mM nitrate. The ω-3 FADi1 demonstrated a binary up-regulation pattern of expression under both nitrate-deficient (0.11 mM) and -excess (3.55 mM) conditions. Thus, findings from this study suggested that limited or excess nitrate could be used as part of a cultivation strategy to increase oil and PUFA content following media optimisation and more efficient culture methodology. Data obtained from the expression of desaturase genes would provide valuable insights into their roles under excess and limited nitrate conditions in M. gracile, potentially paving the way for future genetic modifications.
Collapse
Affiliation(s)
- Kaben Anne-Marie
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia.,Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Willy Yee
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Saw Hong Loh
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Ahmad Aziz
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Thye San Cha
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia. .,Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia.
| |
Collapse
|
6
|
Raymond-Bouchard I, Chourey K, Altshuler I, Iyer R, Hettich RL, Whyte LG. Mechanisms of subzero growth in the cryophile Planococcus halocryophilus determined through proteomic analysis. Environ Microbiol 2017; 19:4460-4479. [PMID: 28834033 DOI: 10.1111/1462-2920.13893] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/13/2017] [Indexed: 01/22/2023]
Abstract
The eurypsychrophilic bacterium Planococcus halocryophilus is capable of growth down to -15°C, making it ideal for studying adaptations to subzero growth. To increase our understanding of the mechanisms and pathways important for subzero growth, we performed proteomics on P. halocryophilus grown at 23°C, 23°C with 12% w/v NaCl and -10°C with 12% w/v NaCl. Many proteins with increased abundances at -10°C versus 23°C also increased at 23C-salt versus 23°C, indicating a closely tied relationship between salt and cold stress adaptation. Processes which displayed the largest changes in protein abundance were peptidoglycan and fatty acid (FA) synthesis, translation processes, methylglyoxal metabolism, DNA repair and recombination, and protein and nucleotide turnover. We identified intriguing targets for further research at -10°C, including PlsX and KASII (FA metabolism), DD-transpeptidase and MurB (peptidoglycan synthesis), glyoxalase family proteins (reactive electrophile response) and ribosome modifying enzymes (translation turnover). PemK/MazF may have a crucial role in translational reprogramming under cold conditions. At -10°C P. halocryophilus induces stress responses, uses resources efficiently, and carefully controls its growth and metabolism to maximize subzero survival. The present study identifies several mechanisms involved in subzero growth and enhances our understanding of cold adaptation.
Collapse
Affiliation(s)
- Isabelle Raymond-Bouchard
- Macdonald Campus, McGill University, 21,111 Lakeshore Rd, Ste.-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Karuna Chourey
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831, USA
| | - Ianina Altshuler
- Macdonald Campus, McGill University, 21,111 Lakeshore Rd, Ste.-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Ramsunder Iyer
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831, USA.,Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831, USA
| | - Lyle G Whyte
- Macdonald Campus, McGill University, 21,111 Lakeshore Rd, Ste.-Anne-de-Bellevue, QC, H9X 3V9, Canada
| |
Collapse
|
7
|
Jung W, Kim EJ, Han SJ, Kang SH, Choi HG, Kim S. Enzymatic modification by point mutation and functional analysis of an omega-6 fatty acid desaturase from Arctic Chlamydomonas sp. Prep Biochem Biotechnol 2017; 47:143-150. [PMID: 27191514 DOI: 10.1080/10826068.2016.1188311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Arctic Chlamydomonas sp. is a dominant microalgal strain in cold or frozen freshwater in the Arctic region. The full-length open reading frame of the omega-6 fatty acid desaturase gene (AChFAD6) was obtained from the transcriptomic database of Arctic Chlamydomonas sp. from the KOPRI culture collection of polar micro-organisms. Amino acid sequence analysis indicated the presence of three conserved histidine-rich segments as unique characteristics of omega-6 fatty acid desaturases, and three transmembrane regions transported to plastidic membranes by chloroplast transit peptides in the N-terminal region. The AChFAD6 desaturase activity was examined by expressing wild-type and V254A mutant (Mut-AChFAD6) heterologous recombinant proteins. Quantitative gas chromatography indicated that the concentration of linoleic acids in AChFAD6-transformed cells increased more than 3-fold [6.73 ± 0.13 mg g-1 dry cell weight (DCW)] compared with cells transformed with vector alone. In contrast, transformation with Mut-AChFAD6 increased the concentration of oleic acid to 9.23 ± 0.18 mg g-1 DCW, indicating a change in enzymatic activity to mimic that of stearoyl-CoA desaturase. These results demonstrate that AChFAD6 of Arctic Chlamydomonas sp. increases membrane fluidity by enhancing denaturation of C18 fatty acids and facilitates production of large quantities of linoleic fatty acids in prokaryotic expression systems.
Collapse
Affiliation(s)
- Woongsic Jung
- a Division of Polar Life Sciences, Korea Polar Research Institute , Korea Institute of Ocean Science and Technology , Incheon , Republic of Korea
| | - Eun Jae Kim
- a Division of Polar Life Sciences, Korea Polar Research Institute , Korea Institute of Ocean Science and Technology , Incheon , Republic of Korea.,b Department of Polar Life Sciences , University of Science and Technology , Incheon , Republic of Korea
| | - Se Jong Han
- a Division of Polar Life Sciences, Korea Polar Research Institute , Korea Institute of Ocean Science and Technology , Incheon , Republic of Korea.,b Department of Polar Life Sciences , University of Science and Technology , Incheon , Republic of Korea
| | - Sung-Ho Kang
- c Division of Polar Ocean Sciences, Korea Polar Research Institute , Korea Institute of Ocean Science and Technology , Incheon , Republic of Korea
| | - Han-Gu Choi
- a Division of Polar Life Sciences, Korea Polar Research Institute , Korea Institute of Ocean Science and Technology , Incheon , Republic of Korea
| | - Sanghee Kim
- a Division of Polar Life Sciences, Korea Polar Research Institute , Korea Institute of Ocean Science and Technology , Incheon , Republic of Korea
| |
Collapse
|
8
|
Gao Z, Miao X, Zhang X, Wu G, Guo Y, Wang M, Li B, Li X, Gao Y, Hu S, Sun J, Cui J, Meng C, Li Y. Comparative fatty acid transcriptomic test and iTRAQ-based proteomic analysis in Haematococcus pluvialis upon salicylic acid (SA) and jasmonic acid (JA) inductions. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Gao Z, Li Y, Wu G, Li G, Sun H, Deng S, Shen Y, Chen G, Zhang R, Meng C, Zhang X. Transcriptome Analysis in Haematococcus pluvialis: Astaxanthin Induction by Salicylic Acid (SA) and Jasmonic Acid (JA). PLoS One 2015; 10:e0140609. [PMID: 26484871 PMCID: PMC4979887 DOI: 10.1371/journal.pone.0140609] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/27/2015] [Indexed: 11/30/2022] Open
Abstract
Haematococcus pluvialis is an astaxanthin-rich microalga that can increase its astaxanthin production by salicylic acid (SA) or jasmonic acid (JA) induction. The genetic transcriptome details of astaxanthin biosynthesis were analyzed by exposing the algal cells to 25 mg/L of SA and JA for 1, 6 and 24 hours, plus to the control (no stress). Based on the RNA-seq analysis, 56,077 unigenes (51.7%) were identified with functions in response to the hormone stress. The top five identified subcategories were cell, cellular process, intracellular, catalytic activity and cytoplasm, which possessed 5600 (~9.99%), 5302 (~9.45%), 5242 (~9.35%), 4407 (~7.86%) and 4195 (~7.48%) unigenes, respectively. Furthermore, 59 unigenes were identified and assigned to 26 putative transcription factors (TFs), including 12 plant-specific TFs. They were likely associated with astaxanthin biosynthesis in Haematococcus upon SA and JA stress. In comparison, the up-regulation of differential expressed genes occurred much earlier, with higher transcript levels in the JA treatment (about 6 h later) than in the SA treatment (beyond 24 h). These results provide valuable information for directing metabolic engineering efforts to improve astaxanthin biosynthesis in H. pluvialis.
Collapse
Affiliation(s)
- Zhengquan Gao
- School of Life Sciences, Shandong University of Technology, Zibo, 255049, P.R. China
| | - Yan Li
- College of Marine and Environmental Sciences, James Cook University, Douglas, 4811, Australia
- School of Food and Agriculture Sciences, University of Queensland, St. Lucia, 4072, Australia
| | - Guanxun Wu
- School of Life Sciences, Shandong University of Technology, Zibo, 255049, P.R. China
| | - Guoqiang Li
- School of Life Sciences, Shandong University of Technology, Zibo, 255049, P.R. China
| | - Haifeng Sun
- School of Life Sciences, Shandong University of Technology, Zibo, 255049, P.R. China
| | - Suzhen Deng
- School of Life Sciences, Shandong University of Technology, Zibo, 255049, P.R. China
| | - Yicheng Shen
- School of Life Sciences, Shandong University of Technology, Zibo, 255049, P.R. China
| | - Guoqiang Chen
- School of Life Sciences, Shandong University of Technology, Zibo, 255049, P.R. China
| | - Ruihao Zhang
- School of Life Sciences, Shandong University of Technology, Zibo, 255049, P.R. China
| | - Chunxiao Meng
- School of Life Sciences, Shandong University of Technology, Zibo, 255049, P.R. China
- * E-mail: (CXM); (XWZ)
| | - Xiaowen Zhang
- Yellow Sea Fishery Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, P.R. China
- * E-mail: (CXM); (XWZ)
| |
Collapse
|
10
|
Dong S, Liu Y, Niu J, Ning Y, Lin S, Zhang Z. De novo transcriptome analysis of the Siberian apricot (Prunus sibirica L.) and search for potential SSR markers by 454 pyrosequencing. Gene 2014; 544:220-7. [PMID: 24746601 DOI: 10.1016/j.gene.2014.04.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/10/2014] [Accepted: 04/17/2014] [Indexed: 11/29/2022]
Abstract
The Siberian apricot, an economically and ecologically important plant in China, contains seeds high in oil and can grow on marginal land. Although this species has multiple purposes and may be a feedstock of biofuel in China, transcriptome information and molecular research on this species remain limited. RNA-Seq technology has been widely applied to transcriptomics, genomics and the development of molecular markers, and functional gene studies. In this study, we obtained 1,243,067 high-quality reads with a mean size of 425 bp in a single run, totaling 528.4 Mb of sequence data using 454 GS FLX Titanium sequencing. All reads were assembled de novo into 46,940 unigenes with a mean size of 651 bp (range: 45-5566 bp). Assembled unigenes were annotated in multiple public databases based on similarity alignments to genes and proteins. 191 unigenes involving in lipid biosynthesis and metabolism were found, among them, expression patterns of two desaturase enzymes were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR), based on six tissues from Siberian apricot, the seeds had the highest expression. 7304 simple sequence repeats (SSR) were identified from 6509 unigenes, a total of 9930 primer pairs were designed, 50 primer pairs were randomly selected to validate of the usefulness, and 24 (48%) primer pairs produced bands of the expected size. These data provide a base of sequence information to improve agronomic characters and molecular marker-assisted breeding to alter the composition of fatty acids in seeds from this plant, and hence, facilitate its utilization as a future biodiesel feedstock.
Collapse
Affiliation(s)
- Shubin Dong
- Lab of Systematic Evolution and Biogeography of Woody Plants, College of Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yulin Liu
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jun Niu
- Lab of Systematic Evolution and Biogeography of Woody Plants, College of Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yu Ning
- Lab of Systematic Evolution and Biogeography of Woody Plants, College of Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Shanzhi Lin
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Zhixiang Zhang
- Lab of Systematic Evolution and Biogeography of Woody Plants, College of Nature Conservation, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|