1
|
Giakountis A, Stylianidou Z, Zaka A, Pappa S, Papa A, Hadjichristodoulou C, Mathiopoulos KD. Development of Toehold Switches as a Novel Ribodiagnostic Method for West Nile Virus. Genes (Basel) 2023; 14:237. [PMID: 36672977 PMCID: PMC9859090 DOI: 10.3390/genes14010237] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
West Nile virus (WNV) is an emerging neurotropic RNA virus and a member of the genus Flavivirus. Naturally, the virus is maintained in an enzootic cycle involving mosquitoes as vectors and birds that are the principal amplifying virus hosts. In humans, the incubation period for WNV disease ranges from 3 to 14 days, with an estimated 80% of infected persons being asymptomatic, around 19% developing a mild febrile infection and less than 1% developing neuroinvasive disease. Laboratory diagnosis of WNV infection is generally accomplished by cross-reacting serological methods or highly sensitive yet expensive molecular approaches. Therefore, current diagnostic tools hinder widespread surveillance of WNV in birds and mosquitoes that serve as viral reservoirs for infecting secondary hosts, such as humans and equines. We have developed a synthetic biology-based method for sensitive and low-cost detection of WNV. This method relies on toehold riboswitches designed to detect WNV genomic RNA as transcriptional input and process it to GFP fluorescence as translational output. Our methodology offers a non-invasive tool with reduced operating cost and high diagnostic value that can be used for field surveillance of WNV in humans as well as in bird and mosquito populations.
Collapse
Affiliation(s)
- Antonis Giakountis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis-Mezourlo, 41500 Larissa, Greece
| | - Zoe Stylianidou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis-Mezourlo, 41500 Larissa, Greece
| | - Anxhela Zaka
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis-Mezourlo, 41500 Larissa, Greece
| | - Styliani Pappa
- Department of Microbiology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anna Papa
- Department of Microbiology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Kostas D. Mathiopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis-Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
2
|
Acklin JA, Cattle JD, Moss AS, Brown JA, Foster GA, Krysztof D, Stramer SL, Lim JK. Evaluating the Safety of West Nile Virus Immunity During Congenital Zika Virus Infection in Mice. Front Immunol 2021; 12:686411. [PMID: 34220838 PMCID: PMC8250419 DOI: 10.3389/fimmu.2021.686411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
Antibody-dependent enhancement (ADE) is a phenomenon that occurs when cross-reactive antibodies generated from a previous flaviviral infection increase the pathogenesis of a related virus. Zika virus (ZIKV) is the most recent flavivirus introduced to the Western Hemisphere and has become a significant public health threat due to the unanticipated impact on the developing fetus. West Nile virus (WNV) is the primary flavivirus that circulates in North America, and we and others have shown that antibodies against WNV are cross-reactive to ZIKV. Thus, there is concern that WNV immunity could increase the risk of severe ZIKV infection, particularly during pregnancy. In this study, we examined the extent to which WNV antibodies could impact ZIKV pathogenesis in a murine pregnancy model. To test this, we passively transferred WNV antibodies into pregnant Stat2-/- mice on E6.5 prior to infection with ZIKV. Evaluation of pregnant dams showed weight loss following ZIKV infection; however, no differences in maternal weights or viral loads in the maternal brain, spleen, or spinal cord were observed in the presence of WNV antibodies. Resorption rates, and other fetal parameters, including fetal and placental size, were similarly unaffected. Further, the presence of WNV antibodies did not significantly alter the viral load or the inflammatory response in the placenta or the fetus in response to ZIKV. Our data suggest that pre-existing WNV immunity may not significantly impact the pathogenesis of ZIKV infection during pregnancy. Our findings are promising for the safety of implementing WNV vaccines in the continental US.
Collapse
Affiliation(s)
- Joshua A Acklin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Javier D Cattle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Arianna S Moss
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Julia A Brown
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Gregory A Foster
- Scientific Affairs, American Red Cross, Gaithersburg, MD, United States
| | - David Krysztof
- Scientific Affairs, American Red Cross, Gaithersburg, MD, United States
| | - Susan L Stramer
- Scientific Affairs, American Red Cross, Gaithersburg, MD, United States
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
3
|
de Bernadi Schneider A, Jacob Machado D, Guirales S, Janies DA. FLAVi: An Enhanced Annotator for Viral Genomes of Flaviviridae. Viruses 2020; 12:E892. [PMID: 32824044 PMCID: PMC7472247 DOI: 10.3390/v12080892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
Responding to the ongoing and severe public health threat of viruses of the family Flaviviridae, including dengue, hepatitis C, West Nile, yellow fever, and Zika, demands a greater understanding of how these viruses emerge and spread. Updated phylogenies are central to this understanding. Most cladograms of Flaviviridae focus on specific lineages and ignore outgroups, hampering the efficacy of the analysis to test ingroup monophyly and relationships. This is due to the lack of annotated Flaviviridae genomes, which has gene content variation among genera. This variation makes analysis without partitioning difficult. Therefore, we developed an annotation pipeline for the genera of Flaviviridae (Flavirirus, Hepacivirus, Pegivirus, and Pestivirus, named "Fast Loci Annotation of Viruses" (FLAVi; http://flavi-web.com/), that combines ab initio and homology-based strategies. FLAVi recovered 100% of the genes in Flavivirus and Hepacivirus genomes. In Pegivirus and Pestivirus, annotation efficiency was 100% except for one partition each. There were no false positives. The combined phylogenetic analysis of multiple genes made possible by annotation has clear impacts over the tree topology compared to phylogenies that we inferred without outgroups or data partitioning. The final tree is largely congruent with previous hypotheses and adds evidence supporting the close phylogenetic relationship between dengue and Zika.
Collapse
Affiliation(s)
- Adriano de Bernadi Schneider
- AntiViral Research Center, Department of Medicine, University of California San Diego, San Diego, CA 92103, USA;
| | - Denis Jacob Machado
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (S.G.); (D.A.J.)
| | - Sayal Guirales
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (S.G.); (D.A.J.)
| | - Daniel A. Janies
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (S.G.); (D.A.J.)
| |
Collapse
|
4
|
Rodriguez-Quijada C, Gomez-Marquez J, Hamad-Schifferli K. Repurposing Old Antibodies for New Diseases by Exploiting Cross-Reactivity and Multicolored Nanoparticles. ACS NANO 2020; 14:6626-6635. [PMID: 32478506 DOI: 10.1021/acsnano.9b09049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We exploit the cross-reactivity of dengue (DENV) and Zika (ZIKV) virus polyclonal antibodies for nonstructural protein 1 (NS1) to construct a selective sensor that can detect yellow fever virus (YFV) NS1 in a manner similar to chemical olfaction. DENV and ZIKV antibodies were screened for their ability to bind to DENV, ZIKV, and YFV NS1 by enzyme linked immunosorbent assay (ELISA) and in pairs in paper immunoassays. A strategic arrangement of antibodies immobilized on paper and conjugated to different colored gold NPs was used to distinguish the three biomarkers. Machine learning of test area RGB values showed that with two spots, readout accuracies of 100% and 87% were obtained for both pure NS1 and DENV/YFV mixtures, respectively. Additional image preprocessing allowed differentiation between all four DENV serotypes with 92% accuracy. The technique was extended to hack a commercial DENV test to detect YFV and ZIKV by augmentation with DENV and ZIKV polyclonal antibodies.
Collapse
Affiliation(s)
- Cristina Rodriguez-Quijada
- Department of Engineering, University of Massachusetts Boston, Boston, Massachusetts 02125, United States
| | - Jose Gomez-Marquez
- Little Devices Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kimberly Hamad-Schifferli
- Department of Engineering, University of Massachusetts Boston, Boston, Massachusetts 02125, United States
- School for the Environment, University of Massachusetts Boston, Boston, Massachusetts 02125, United States
| |
Collapse
|
5
|
Sotomayor-Bonilla J, Tolsá-García MJ, García-Peña GE, Santiago-Alarcon D, Mendoza H, Alvarez-Mendizabal P, Rico-Chávez O, Sarmiento-Silva RE, Suzán G. Insights into the Host Specificity of Mosquito-Borne Flaviviruses Infecting Wild Mammals. ECOHEALTH 2019; 16:726-733. [PMID: 31664588 DOI: 10.1007/s10393-019-01442-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Mosquito-borne flaviviruses (MBFVs) are of public and animal health concern because they cause millions of human deaths annually and impact domestic animals and wildlife globally. MBFVs are phylogenetically divided into two clades, one is transmitted by Aedes mosquitoes (Ae-MBFVs) associated with mammals and the other by Culex mosquitoes (Cx-MBFVs) associated with birds. However, this assumption has not been evaluated. Here, we synthesized 79 published reports of MBFVs from wild mammals, estimating their host. Then, we tested whether the host specificity was biased to sampling and investigation efforts or to phylogenetic relationships using a viral phylogenetic tree drawn from analyzing whole flavivirus genomes obtained in GenBank. We found in total 18 flaviviruses, nine related to Aedes spp. and nine to Culex spp. infecting 129 mammal species. Thus, this supports that vectors are transmitting MBFV across available host clades and that ornithophilic mosquitoes are readily infecting mammals. Although most of the mosquito species are generalists in their host-feeding preferences, we also found a certain degree of MBFV's specificity, as most of them infect closely related mammal species. The present study integrates knowledge regarding MBFVs, and it may help to understand their transmission dynamics between viruses, vectors, and mammal hosts.
Collapse
Affiliation(s)
- Jesús Sotomayor-Bonilla
- Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Circuito Interior S/N, Ciudad Universitaria, Coyoacán, 04520, Ciudad de México, Mexico
- Asociación Mexicana de Medicina de la Conservación Kalaan Kab AC, Ciclistas 63 Col. Country Club, Coyoacán, Ciudad de Mexico, Mexico
| | - María José Tolsá-García
- Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Circuito Interior S/N, Ciudad Universitaria, Coyoacán, 04520, Ciudad de México, Mexico.
- Asociación Mexicana de Medicina de la Conservación Kalaan Kab AC, Ciclistas 63 Col. Country Club, Coyoacán, Ciudad de Mexico, Mexico.
| | - Gabriel E García-Peña
- Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Circuito Interior S/N, Ciudad Universitaria, Coyoacán, 04520, Ciudad de México, Mexico
- Asociación Mexicana de Medicina de la Conservación Kalaan Kab AC, Ciclistas 63 Col. Country Club, Coyoacán, Ciudad de Mexico, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Circuito Interior S/N, Ciudad Universitaria, Coyoacán, Ciudad de México, Mexico
| | - Diego Santiago-Alarcon
- Red de Biología y Conservación de Vertebrados, Instituto de Ecología AC, Carretera Antigua a Coatepec 351, Xalapa, Veracruz, Mexico
| | - Hugo Mendoza
- Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Circuito Interior S/N, Ciudad Universitaria, Coyoacán, 04520, Ciudad de México, Mexico
- Asociación Mexicana de Medicina de la Conservación Kalaan Kab AC, Ciclistas 63 Col. Country Club, Coyoacán, Ciudad de Mexico, Mexico
| | - Paulina Alvarez-Mendizabal
- Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Circuito Interior S/N, Ciudad Universitaria, Coyoacán, 04520, Ciudad de México, Mexico
- Asociación Mexicana de Medicina de la Conservación Kalaan Kab AC, Ciclistas 63 Col. Country Club, Coyoacán, Ciudad de Mexico, Mexico
| | - Oscar Rico-Chávez
- Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Circuito Interior S/N, Ciudad Universitaria, Coyoacán, 04520, Ciudad de México, Mexico
- Asociación Mexicana de Medicina de la Conservación Kalaan Kab AC, Ciclistas 63 Col. Country Club, Coyoacán, Ciudad de Mexico, Mexico
| | - Rosa Elena Sarmiento-Silva
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Circuito Interior S/N, Ciudad Universitaria, Coyoacán, Ciudad de México, Mexico
| | - Gerardo Suzán
- Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Circuito Interior S/N, Ciudad Universitaria, Coyoacán, 04520, Ciudad de México, Mexico
- Asociación Mexicana de Medicina de la Conservación Kalaan Kab AC, Ciclistas 63 Col. Country Club, Coyoacán, Ciudad de Mexico, Mexico
| |
Collapse
|
6
|
Chown SL, Hodgins KA, Griffin PC, Oakeshott JG, Byrne M, Hoffmann AA. Biological invasions, climate change and genomics. Evol Appl 2015; 8:23-46. [PMID: 25667601 PMCID: PMC4310580 DOI: 10.1111/eva.12234] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/24/2014] [Indexed: 12/13/2022] Open
Abstract
The rate of biological invasions is expected to increase as the effects of climate change on biological communities become widespread. Climate change enhances habitat disturbance which facilitates the establishment of invasive species, which in turn provides opportunities for hybridization and introgression. These effects influence local biodiversity that can be tracked through genetic and genomic approaches. Metabarcoding and metagenomic approaches provide a way of monitoring some types of communities under climate change for the appearance of invasives. Introgression and hybridization can be followed by the analysis of entire genomes so that rapidly changing areas of the genome are identified and instances of genetic pollution monitored. Genomic markers enable accurate tracking of invasive species' geographic origin well beyond what was previously possible. New genomic tools are promoting fresh insights into classic questions about invading organisms under climate change, such as the role of genetic variation, local adaptation and climate pre-adaptation in successful invasions. These tools are providing managers with often more effective means to identify potential threats, improve surveillance and assess impacts on communities. We provide a framework for the application of genomic techniques within a management context and also indicate some important limitations in what can be achieved.
Collapse
Affiliation(s)
- Steven L Chown
- School of Biological Sciences, Monash UniversityClayton, Vic., Australia
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash UniversityClayton, Vic., Australia
| | - Philippa C Griffin
- Department of Genetics, Bio21 Institute, The University of MelbourneParkville, Vic., Australia
| | - John G Oakeshott
- CSIRO Land and Water Flagship, Black Mountain LaboratoriesCanberra, ACT, Australia
| | - Margaret Byrne
- Science and Conservation Division, Department of Parks and Wildlife, Bentley Delivery CentreBentley, WA, Australia
| | - Ary A Hoffmann
- Departments of Zoology and Genetics, Bio21 Institute, The University of MelbourneParkville, Vic., Australia
| |
Collapse
|