1
|
Guo S, Mao X, Liu J. Multi-faceted roles of C1q/TNF-related proteins family in atherosclerosis. Front Immunol 2023; 14:1253433. [PMID: 37901246 PMCID: PMC10611500 DOI: 10.3389/fimmu.2023.1253433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Purpose of review C1q/TNF-related proteins (CTRPs) are involved in the modulation of the development and prognosis of atherosclerosis (AS). Here, we summarizes the pathophysiological roles of individual members of the CTRP superfamily in the development of AS. Currently, there is no specific efficacious treatment for AS-related diseases, therefore it is urgent to develop novel therapeutic strategies aiming to target key molecules involved in AS. Recent findings Recently, mounting studies verified the critical roles of the CTRP family, including CTRP1-7, CTRP9 and CTRP11-15, in the development and progression of AS by influencing inflammatory response, modulating glucose and lipid metabolism, regulating endothelial functions and the proliferation of vascular smooth muscle cells (VSMCs). Conclusions CTRP family regulate different pathophysiology stages of AS. CTRP3, CTRP9, CTRP12, CTRP13 and CTRP15 play a clear protective role in AS, while CTRP5 and CTRP7 play a pro-atherosclerotic role in AS. The remarkable progress in our understanding of CTRPs' role in AS will provide an attractive therapeutic target for AS.
Collapse
Affiliation(s)
- Shuren Guo
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaohuan Mao
- Department of Clinical Laboratory, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jun Liu
- College of Life Science and Technology, Xinjiang University, Xinjiang, China
| |
Collapse
|
2
|
Nicolaus HF, Klonisch T, Paulsen F, Garreis F. C1q/TNF-Related Proteins 1, 6 and 8 Are Involved in Corneal Epithelial Wound Closure by Targeting Relaxin Receptor RXFP1 In Vitro. Int J Mol Sci 2023; 24:ijms24076839. [PMID: 37047812 PMCID: PMC10095411 DOI: 10.3390/ijms24076839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/21/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Inadequate wound healing of ocular surface injuries can lead to permanent visual impairment. The relaxin ligand-receptor system has been demonstrated to promote corneal wound healing through increased cell migration and modulation of extracellular matrix formation. Recently, C1q/tumor necrosis factor-related protein (CTRP) 8 was identified as a novel interaction partner of relaxin receptor RXFP1. Additional data also suggest a role for CTRP1 and CTRP6 in RXFP1-mediated cAMP signaling. However, the role of CTRP1, CTRP6 and CTRP8 at the ocular surface remains unclear. In this study, we investigated the effects of CTRP1, CTRP6, and CTRP8 on epithelial ocular surface wound closure and their dependence on the RXFP1 receptor pathway. CTRP1, CTRP6, and CTRP8 expression was analyzed by RT-PCR and immunohistochemistry in human tissues and cell lines derived from the ocular surface and lacrimal apparatus. In vitro ocular surface wound modeling was performed using scratch assays. We analyzed the effects of recombinant CTRP1, CTRP6, and CTRP8 on cell proliferation and migration in human corneal and conjunctival epithelial cell lines. Dependence on RXFP1 signaling was established by inhibiting ligand binding to RXFP1 using a specific anti-RXFP1 antibody. We detected the expression of CTRP1, CTRP6, and CTRP8 in human tissue samples of the cornea, conjunctiva, meibomian gland, efferent tear ducts, and lacrimal gland, as well as in human corneal, conjunctival, and meibomian gland epithelial cell lines. Scratch assays revealed a dose-dependent increase in the closure rate of surface defects in human corneal epithelial cells after treatment with CTRP1, CTRP6, and CTRP8, but not in conjunctival epithelial cells. Inhibition of RXFP1 fully attenuated the effect of CTRP8 on the closure rate of surface defects in human corneal epithelial cells, whereas the CTRP1 and CTRP6 effects were not completely suppressed. Conclusions: Our findings demonstrate a novel role for CTRP1, CTRP6, and CTRP8 in corneal epithelial wound closure and suggest an involvement of the relaxin receptor RXFP1 signaling pathway. This could be a first step toward new approaches for pharmacological and therapeutic intervention.
Collapse
Affiliation(s)
- Hagen Fabian Nicolaus
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, College of Medicine, Winnipeg, MB R3E 0J9, Canada
- Department of Pathology, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- Department of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Research Institute in Oncology and Hematology (RIOH), Cancer Care Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Fabian Garreis
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
3
|
Wang Y, Li H, Yu XH, Tang CK. CTRP1: A novel player in cardiovascular and metabolic diseases. Cytokine 2023; 164:156162. [PMID: 36812667 DOI: 10.1016/j.cyto.2023.156162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/01/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023]
Abstract
Cardiovascular diseases (CVDs) are a series of diseases induced by inflammation and lipid metabolism disorders, among others. Metabolic diseases can cause inflammation and abnormal lipid metabolism. C1q/TNF-related proteins 1 (CTRP1) is a paralog of adiponectin that belongs to the CTRP subfamily. CTRP1 is expressed and secreted in adipocytes, macrophages, cardiomyocytes, and other cells. It promotes lipid and glucose metabolism but has bidirectional effects on the regulation of inflammation. Inflammation can also inversely stimulate CTRP1 production. A vicious circle may exist between the two. This article introduces CTRP1 from the structure, expression, and different roles of CTRP1 in CVDs and metabolic diseases, to summarize the role of CTRP1 pleiotropy. Moreover, the proteins which may interact with CTRP1 are predicted through GeneCards and STRING, speculating their effects, to provide new ideas for the study of CTRP1.
Collapse
Affiliation(s)
- Yang Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Heng Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hua Yu
- Institute of clinical medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
4
|
Gao J, Lu J, Qiu J, Sun D, Xu B, Wang Z, Lei T. CTRP4
is Associated with Coronary Artery Disease in Patients with type 2 diabetes. J Diabetes Investig 2022; 13:1723-1731. [PMID: 35598316 PMCID: PMC9533036 DOI: 10.1111/jdi.13842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
Aims/Introduction To evaluate the correlation of circulating C1q tumor necrosis factor‐related protein 4 (CTRP4) with coronary artery disease (CAD) in type 2 diabetes mellitus patients. Methods A total of 240 individuals with type 2 diabetes mellitus were enrolled in our center between January 2020 and December 2020. They were assigned into two groups, including the CAD and non‐CAD groups, based on coronary angiography or computed tomography angiography findings. Serum CTRP4 levels were detected by an enzyme‐linked immunosorbent assay kit. The association of CTRP4 with CAD was determined by logistic regression analysis. The predictive value of CTRP4 for CAD was calculated by receiver operating characteristic curve analysis. Results Median serum CTRP4 amounts were markedly elevated in the CAD group in comparison with the non‐CAD group (10.37 vs 3.75 ng/mL, P < 0.01). Binary logistic regression showed that CTRP4 was associated with CAD and even the amount of coronary artery lesions (P < 0.05). In receiver operating characteristic curve analysis, the area under the receiver operating characteristic curve was greater for CTRP4 compared with HbA1c or CRP (0.87 vs 0.74, 0.87 vs 0.80, P < 0.01). The area under the curve for CTRP4 and glycated hemoglobin in combination was larger than that obtained for CTRP4 combined with CRP (0.91 vs 0.87, P < 0.01). According to the maximum Youden index criteria, the optimal cut‐off of CTRP4 was 5.42 ng/mL, which yielded a sensitivity of 84.4% and a specificity of 76.7% in predicting CAD in type 2 diabetes mellitus patients. Conclusions Serum CTRP4 levels are positively correlated with CAD occurrence and severity. Combining CTRP4 and glycated hemoglobin has a better predictive value for CAD in type 2 diabetes mellitus patients.
Collapse
Affiliation(s)
- Jie Gao
- Department of Endocrinology, Putuo Hospital Shanghai University of Traditional Chinese Medicine Shanghai China
| | - Jun Lu
- Department of Endocrinology, Putuo Hospital Shanghai University of Traditional Chinese Medicine Shanghai China
| | - Junhui Qiu
- Department of Endocrinology, Putuo Hospital Shanghai University of Traditional Chinese Medicine Shanghai China
- Shanghai Putuo Central School of Clinical Medicine Anhui Medical University
| | - Dusang Sun
- Department of Endocrinology, Putuo Hospital Shanghai University of Traditional Chinese Medicine Shanghai China
| | - Bilin Xu
- Department of Endocrinology, Putuo Hospital Shanghai University of Traditional Chinese Medicine Shanghai China
| | - Zhihua Wang
- Department of Cardiology, Putuo Hospital Shanghai University of Traditional Chinese Medicine Shanghai China
| | - Tao Lei
- Department of Endocrinology, Putuo Hospital Shanghai University of Traditional Chinese Medicine Shanghai China
- Shanghai Putuo Central School of Clinical Medicine Anhui Medical University
| |
Collapse
|
5
|
Raeisy H, Bayati P, Noorbakhsh F, Hakim Shooshtari M, Eftekhar Ardebili M, Shekarabi M, Mojtabavi N. C1q/TNF-related protein-1: Potential biomarker for early diagnosis of autism spectrum disorder. Int J Immunopathol Pharmacol 2022; 36:3946320221079471. [PMID: 35202556 PMCID: PMC8883289 DOI: 10.1177/03946320221079471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Autism spectrum disorders (ASDs) are neurodevelopmental diseases characterized by communication inabilities, social interaction impairment, repetitive behavior, as well as learning problems. Although the exact mechanism underlying this disease is still obscure, researchers believe that several factors play a significant role in its development and pathogenesis. Some authors have reported an association between adipokines family and autism. C1q/TNF-related protein-1 (CTRP1) is a member of the adipokines family, and we hypothesized that this adipokine might have an influential role in the pathogenesis of ASDs. Since there is no specific marker for screening the disease, we evaluated CTRP1 as a potential marker for achieving this purpose. METHODS Blood samples were collected from 82 (41 ASDs boys, 41 healthy boys as controls) children aged 5-7 years old. CTRP1 gene expression and CTRP1 serum level were measured by quantitative realtime-PCR and enzyme-linked immunosorbent assay methods, respectively. RESULTS It was found that CTRP1 is significantly elevated in autistic children in comparison to healthy controls, both at the gene expression level, as well as at the serum level; demonstrating a good diagnostic value with a good range of sensitivity and specificity for detecting ASDs. CONCLUSION CTRP1 expression is elevated in ASDs boys aged 5-7 years old, suggesting a role for this adipokine in ASDs pathophysiology. Also, receiver operating characteristic curve analyses revealed that this adipokine could be utilized as a diagnostic biomarker for differentiating ASDs patients from healthy individuals along with other recently proposed biomarkers.
Collapse
Affiliation(s)
- Hamed Raeisy
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Paria Bayati
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra Hakim Shooshtari
- Department of Psychiatry, School of Behavioral Sciences and Mental Health, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Eftekhar Ardebili
- Mental Health Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shekarabi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Mojtabavi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
C1q tumor necrosis factor-related protein 1: a promising therapeutic target for atherosclerosis. J Cardiovasc Pharmacol 2021; 79:273-280. [PMID: 34840267 DOI: 10.1097/fjc.0000000000001186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/06/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Atherosclerosis serves as the pathological basis of most cardiovascular and cerebrovascular diseases. C1q tumor necrosis factor-related protein (CTRP1) is a 35-kDa glycoprotein synthesized by various tissues and cells, such as adipose tissue and macrophages. As an adiponectin paralog, CTRP1 signals through adiponectin receptor 1 (AdipoR1) and participates in a variety of pathophysiological processes. Circulating CTRP1 levels are significantly increased in patients with coronary artery disease. Importantly, CTRP1 was shown to accelerate the development of atherosclerosis by promoting vascular inflammation, macrophage foam cell formation and endothelial barrier dysfunction. This review focused on recent advances regarding the role of CTRP1 in atherogenesis with an emphasis on its potential as a novel biomarker and a promising therapeutic target for atherosclerosis-related diseases.
Collapse
|
7
|
Tsai YT, Yeh HY, Chao CT, Chiang CK. Superoxide Dismutase 2 (SOD2) in Vascular Calcification: A Focus on Vascular Smooth Muscle Cells, Calcification Pathogenesis, and Therapeutic Strategies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6675548. [PMID: 33728027 PMCID: PMC7935587 DOI: 10.1155/2021/6675548] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/27/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022]
Abstract
Vascular calcification (VC) describes the pathophysiological phenotype of calcium apatite deposition within the vascular wall, leading to vascular stiffening and the loss of compliance. VC is never benign; the presence and severity of VC correlate closely with the risk of myocardial events and cardiovascular mortality in multiple at-risk populations such as patients with diabetes and chronic kidney disease. Mitochondrial dysfunction involving each of vascular wall constituents (endothelia and vascular smooth muscle cells (VSMCs)) aggravates various vascular pathologies, including atherosclerosis and VC. However, few studies address the pathogenic role of mitochondrial dysfunction during the course of VC, and mitochondrial reactive oxygen species (ROS) seem to lie in the pathophysiologic epicenter. Superoxide dismutase 2 (SOD2), through its preferential localization to the mitochondria, stands at the forefront against mitochondrial ROS in VSMCs and thus potentially modifies the probability of VC initiation or progression. In this review, we will provide a literature-based summary regarding the relationship between SOD2 and VC in the context of VSMCs. Apart from the conventional wisdom of attenuating mitochondrial ROS, SOD2 has been found to affect mitophagy and the formation of the autophagosome, suppress JAK/STAT as well as PI3K/Akt signaling, and retard vascular senescence, all of which underlie the beneficial influences on VC exerted by SOD2. More importantly, we outline the therapeutic potential of a novel SOD2-targeted strategy for the treatment of VC, including an ever-expanding list of pharmaceuticals and natural compounds. It is expected that VSMC SOD2 will become an important druggable target for treating VC in the future.
Collapse
Affiliation(s)
- You-Tien Tsai
- 1Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital BeiHu Branch, Taipei, Taiwan
| | - Hsiang-Yuan Yeh
- 2School of Big Data Management, Soochow University, Taipei, Taiwan
| | - Chia-Ter Chao
- 1Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital BeiHu Branch, Taipei, Taiwan
- 3Nephrology Division, Department of Internal Medicine, National Taiwan University School of Medicine, Taipei, Taiwan
- 4Graduate Institute of Toxicology, National Taiwan University School of Medicine, Taipei, Taiwan
| | - Chih-Kang Chiang
- 4Graduate Institute of Toxicology, National Taiwan University School of Medicine, Taipei, Taiwan
| |
Collapse
|
8
|
Pak VM, Butts B, Hertzberg V, Collop N, Quyyumi AA, Cox J, Rogers A, Dunbar SB. Daytime sleepiness predicts inflammation and ambulatory blood pressure in sleep apnoea. ERJ Open Res 2020; 6:00310-2019. [PMID: 33263040 PMCID: PMC7682673 DOI: 10.1183/23120541.00310-2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/19/2020] [Indexed: 11/24/2022] Open
Abstract
Introduction Sleepiness in obstructive sleep apnoea is associated with cardiovascular risk; however, the biological mechanisms are not known. This study explored whether those with subjective sleepiness have increased plasma tumour necrosis factor-related protein 1 (C1qTNF1), a novel adipose-derived hormone (adipokine), and 24-h ambulatory blood pressure (ABP) compared to those without sleepiness in newly diagnosed, treatment-naïve participants with obstructive sleep apnoea. Methods Overall, 94 participants were included in the analysis. Participants completed the Epworth Sleepiness Scale (ESS), 24-h ABP was monitored, and plasma C1qTNF1 was measured. Sleepy participants were defined as ESS≥10 and nonsleepy as ESS<10. Multiple linear regression was used to explore differences in C1qTNF1, and 24-h mean arterial pressure (MAP) between sleepy and nonsleepy participants, adjusting for age, sex, body mass index, apnoea–hypopnoea index, and smoking status. Results C1qTNF1 was significantly higher in sleepy participants (n=57) compared to nonsleepy participants (n=37) (β=0.41 NPX, 95% CI 0.02, 0.80; p=0.04). The 24-h MAP was significantly higher in sleepy participants compared to nonsleepy participants (β=4.06 mmHg, 95% CI 0.36, 7.77; p=0.03). Conclusions Our findings show that sleepiness is associated with inflammation and higher 24-h MAP in sleep apnoea. Excessive sleepiness experienced by treatment-naïve patients with obstructive sleep apnoea is associated with inflammation, higher daily systolic ambulatory blood pressure and higher 24 h mean arterial pressurehttps://bit.ly/3goeqGD
Collapse
Affiliation(s)
- Victoria M Pak
- Emory Nell Hodgson Woodruff School of Nursing, Atlanta, GA, USA
| | - Brittany Butts
- Emory Nell Hodgson Woodruff School of Nursing, Atlanta, GA, USA
| | - Vicki Hertzberg
- Emory Nell Hodgson Woodruff School of Nursing, Atlanta, GA, USA
| | | | | | - John Cox
- Emory Nell Hodgson Woodruff School of Nursing, Atlanta, GA, USA
| | - Ann Rogers
- Emory Nell Hodgson Woodruff School of Nursing, Atlanta, GA, USA
| | - Sandra B Dunbar
- Emory Nell Hodgson Woodruff School of Nursing, Atlanta, GA, USA
| |
Collapse
|
9
|
Shanaki M, Shabani P, Goudarzi A, Omidifar A, Bashash D, Emamgholipour S. The C1q/TNF-related proteins (CTRPs) in pathogenesis of obesity-related metabolic disorders: Focus on type 2 diabetes and cardiovascular diseases. Life Sci 2020; 256:117913. [DOI: 10.1016/j.lfs.2020.117913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
|
10
|
Abstract
Purpose of Review In recent years, a family of adiponectin paralogs designated as C1q/TNF-related protein (CTRP) has attracted increasing attention. They are inflammatory adipocytokines mostly secreted from epicardial adipose tissue, which modulate the development and prognosis of coronary artery disease (CAD). This review summarizes the pathophysiological roles of individual members of the CTRP superfamily in the development of CAD. Recent Findings Recent studies have revealed how members of the CTRP family, CTRP1, CTRP3, CTRP5, CTRP9, CTRP12, and CTRP13, can influence both development and progression of CAD by modulating metabolic pathways, influencing immuno-inflammatory response, and regulating cardiovascular functions. Summary Research to date has not been sufficient to answer the specific mechanism of the CTRP family in the occurrence and development of CAD. This review explores the evidence of CTRP superfamily regulating different pathophysiology stages of CAD through the immuno-inflammation, glucose and lipid metabolism, and vascular endothelial function.
Collapse
Affiliation(s)
- Yueqiao Si
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China
| | - Wenjun Fan
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China
| | - Lixian Sun
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China.
| |
Collapse
|
11
|
Janowska JD. C1q/TNF-related Protein 1, a Multifunctional Adipokine: An Overview of Current Data. Am J Med Sci 2020; 360:222-228. [PMID: 32591091 DOI: 10.1016/j.amjms.2020.05.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/10/2020] [Accepted: 05/20/2020] [Indexed: 01/10/2023]
Abstract
The present review aimed to present the research highlights on C1q/TNF-related protein 1 (CTRP1), a member of the recently discovered family of highly conserved adiponectin paralog proteins, C1q tumor necrosis factor-related proteins. CTRP1 plays an important role in regulating body energy homeostasis and sensitivity to insulin. Studies on animal models have shown that it lowers the concentration of glucose. Elevated concentrations of CTRP1 reduce weight gain and diet-induced insulin resistance. CTRP1 limits the extent of ischemia-reperfusion injury in acute myocardial infarction. It inhibits platelet aggregation by blocking von Willebrand factor binding to collagen. In patients with chronic kidney disease, an increase in CTRP1 levels is associated with a lesser degree of disease progression. CTRP1 stimulates aldosterone synthesis in the adrenal cortex by affecting aldosterone synthase expression. In dehydration, an increase in CTRP1 concentration helps to maintain normotension. It participates in processes related to the proliferation and maturation of chondrocytes. It also promotes atherosclerosis, and a surge in its concentration is correlated with a higher cardiovascular risk in patients with coronary atherosclerosis. In vascular smooth muscle cells, it induces the expression of proinflammatory cytokines. An increase in CTRP1 levels is correlated with the progression of the neoplastic process in patients with glioblastoma.
Collapse
Affiliation(s)
- Joanna Dorota Janowska
- Department of Pathophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland.
| |
Collapse
|
12
|
Weng H, Pei Q, Yang M, Zhang J, Cheng Z, Yi Q. Hypomethylation of C1q/tumor necrosis factor-related protein-1 promoter region in whole blood and risks for coronary artery aneurysms in Kawasaki disease. Int J Cardiol 2020; 307:159-163. [PMID: 32081468 DOI: 10.1016/j.ijcard.2020.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/20/2020] [Accepted: 02/02/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND Kawasaki disease (KD) is characterized as a self-limited systemic vasculitis. C1q/tumor necrosis factor-related protein-1 (CTRP1) had been associated with the occurrence of vasculitis in KD. Methylation at the promoter region of certain genes was reported to be involved in the development process of KD. This study aims to investigate the methylation levels of CTRP1 in KD, as well as, its potential to predict coronary artery aneurysms (CAAs). METHODS 31 patients with KD and 14 healthy controls (HCs) were recruited into this study. The KD group was further divided into KD with CAA (KD-CAAs) group and KD without NCAAs (KD-NCAAs) group. Methylation levels of CpG sites were determined by MethylTarget sequencing, a method that uses multiple targeted CpG methylation analysis. RESULTS The methylation levels of CTRP1 promoter region in the KD group were lower than that in the HC group at all predicted CpG sites, especially at sites 34, 51, 69, 79, 176 and 206. Compared with KD-CAAs group, the methylation levels of almost every CpG sites of CTRP1 were increased in the KD-NCAAs group, with site 69 and 154 found to be strongly related to the occurrence of CAAs. CONCLUSIONS The difference in methylation levels of CTRP1 promoter may be involved in the development process of KD, and may be a potential predictive marker for the occurrence of CAAs.
Collapse
Affiliation(s)
- Haobo Weng
- Department of Cardiovascular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, People's Republic of China
| | - Qiongfei Pei
- Department of Cardiovascular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, People's Republic of China
| | - Maoling Yang
- Department of Cardiovascular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, People's Republic of China
| | - Jing Zhang
- Department of Cardiovascular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, People's Republic of China
| | - Zhenli Cheng
- Department of Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China.
| | - Qijian Yi
- Department of Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China.
| |
Collapse
|
13
|
Loosen SH, Koch A, Tacke F, Roderburg C, Luedde T. The Role of Adipokines as Circulating Biomarkers in Critical Illness and Sepsis. Int J Mol Sci 2019; 20:ijms20194820. [PMID: 31569348 PMCID: PMC6801868 DOI: 10.3390/ijms20194820] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022] Open
Abstract
Sepsis represents a major global health burden. Early diagnosis of sepsis as well as guiding early therapeutic decisions in septic patients still represent major clinical challenges. In this context, a whole plethora of different clinical and serum-based markers have been tested regarding their potential for early detection of sepsis and their ability to stratify patients according to their probability to survive critical illness and sepsis. Adipokines represent a fast-growing class of proteins that have gained an increasing interest with respect to their potential to modulate immune responses in inflammatory and infectious diseases. We review current knowledge on the role of different adipokines in diagnostic work-up and risk stratification of sepsis as well as critical illness. We discuss recent data from animal models as well as from clinical studies and finally highlight the limitations of these analyses that currently prevent the use of adipokines as biomarkers in daily practice.
Collapse
Affiliation(s)
- Sven H. Loosen
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany (A.K.); (T.L.)
| | - Alexander Koch
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany (A.K.); (T.L.)
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Augustenburger Platz 1, 10117 Berlin, Germany;
| | - Christoph Roderburg
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Augustenburger Platz 1, 10117 Berlin, Germany;
- Correspondence: ; Tel.: +49-3045-0653-022; Fax: +49-3045-0553-902
| | - Tom Luedde
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany (A.K.); (T.L.)
- Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| |
Collapse
|
14
|
Yagmur E, Buergerhausen D, Koek GH, Weiskirchen R, Trautwein C, Koch A, Tacke F. Elevated CTRP1 Plasma Concentration Is Associated with Sepsis and Pre-Existing Type 2 Diabetes Mellitus in Critically Ill Patients. J Clin Med 2019; 8:jcm8050661. [PMID: 31083558 PMCID: PMC6572622 DOI: 10.3390/jcm8050661] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/16/2022] Open
Abstract
The adipokine family of C1q/TNF-like proteins (CTRP) plays a critical role in regulating systemic energy homeostasis and insulin sensitivity. It is involved in pathophysiological processes including inflammation and insulin-resistant obesity. Sepsis is associated with metabolic alterations and dysregulated adipokines, but the role of CTRP1 in critical illness and sepsis is unclear. We investigated CTRP1 plasma concentrations in 145 septic and 73 non-septic critically ill patients at admission to the medical intensive care unit (ICU) in comparison to 66 healthy controls. We also assessed associations of CTRP1 with clinical characteristics, adipokine levels, metabolic and inflammatory parameters. CTRP1 plasma concentration was significantly elevated in critically ill patients compared to healthy subjects. CTRP1 levels were significantly higher in ICU patients with sepsis. CTRP1 correlated strongly with markers of inflammatory response, renal function, liver damage and cholestasis. Furthermore, CTRP1 levels were higher in ICU patients with type 2 diabetes mellitus, and correlated with HbA1c and body mass index. This study demonstrates significantly elevated levels of CTRP1 in critically ill patients, particularly with sepsis, and links circulating CTRP1 to inflammatory and metabolic disturbances.
Collapse
Affiliation(s)
- Eray Yagmur
- Medical Care Center, Dr. Stein and Colleagues, D-41169 Mönchengladbach, Germany.
| | - David Buergerhausen
- Department of Medicine III, RWTH-University Hospital Aachen, D-52074 Aachen, Germany.
| | - Ger H Koek
- Section of Gastroenterology and Hepatology, Department of Internal Medicine, Maastricht University Medical Medical Centre (MUMC), 6202AZ Maastricht, The Netherlands.
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH-University Hospital Aachen, D-52074 Aachen, Germany.
| | - Christian Trautwein
- Department of Medicine III, RWTH-University Hospital Aachen, D-52074 Aachen, Germany.
| | - Alexander Koch
- Department of Medicine III, RWTH-University Hospital Aachen, D-52074 Aachen, Germany.
| | - Frank Tacke
- Department of Medicine III, RWTH-University Hospital Aachen, D-52074 Aachen, Germany.
- Department of Hepatology and Gastroenterology, Charité University Medical Center, D-10117 Berlin, Germany.
| |
Collapse
|