1
|
Chen X, Chen G, Guo S, Wang Y, Sun J. SlSAMS1 enhances salt tolerance through regulation DNA methylation of SlGI in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111808. [PMID: 37482302 DOI: 10.1016/j.plantsci.2023.111808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/03/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
S-adenosylmethionine (SAM), which is synthesized from methionine and ATP catalyzed by S-adenosylmethionine synthetase (SAMS), is an important methyl donor in plants. SAMS and DNA methylation play an important role in the plant response to abiotic stresses. Previous studies have shown that SAMS improves salt tolerance in tomato plants, but it is not clear whether the DNA methylation pathway mediates SAMS-induced salt tolerance. This study confirmed that SlSAMS1-overexpressing plants exhibited improved salt tolerance. Through whole-genome bisulfite sequencing (WGBS) and transcriptome sequencing (RNA-seq) analysis, the study screened the circadian rhythm pathway and identified the gene SlGI in this pathway, which was regulated by SlSAMS1. The gene body region of SlGI, the core gene of the circadian rhythm pathway, was hypermethylated in SlSAMS1-overexpressing plants, and its expression level was significantly increased. Furthermore, the SlGI-overexpressing plants showed higher salt tolerance, less reduction in plant height and fresh weight, lower electrolyte leakage, malondialdehyde and H2O2 content, and higher antioxidant enzyme activity compared to wild type plants. Therefore, SlSAMS1-overexpressing plants regulated significant changes in CHG-type methylation sites of the SlGI gene body and its expression levels, leading to an enhanced salt tolerance of tomato plants.
Collapse
Affiliation(s)
- Xinyang Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangling Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shirong Guo
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jin Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Ulu S, Ulu ZO, Akar A, Ozgenturk NO. De novo Transcriptome Analysis and Gene Expression Profiling of Corylus Species. Folia Biol (Praha) 2023; 69:99-106. [PMID: 38206775 DOI: 10.14712/fb2023069030099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Hazelnut (Corylus), which has high commercial and nutritional benefits, is an important tree for producing nuts and nut oil consumed as ingredient especially in chocolate. While Corylus avellana L. (Euro-pean hazelnut, Betulaceae) and Corylus colurna L. (Turkish hazelnut, Betulaceae) are the two common hazelnut species in Europe, C. avellana L. (Tombul hazelnut) is grown as the most widespread hazelnut species in Turkey, and C. colurna L., which is the most important genetic resource for hazelnut breeding, exists naturally in Anatolia. We generated the transcriptome data of these two Corylus species and used these data for gene discovery and gene expression profiling. Total RNA from young leaves, flowers (male and female), buds, and husk shoots of C. avellana and C. colurna were used for two different libraries and were sequenced using Illumina HiSeq4000 with 100 bp paired-end reads. The transcriptome data 10.48 and 10.30 Gb of C. avellana and C. colurna, respectively, were assembled into 70,265 and 88,343 unigenes, respectively. These unigenes were functionally annotated using the TRAPID platform. We identified 25,312 and 27,051 simple sequen-ce repeats (SSRs) for C. avellana and C. colurna, respectively. TL1, GMPM1, N, 2MMP, At1g29670, CHIB1 unigenes were selected for validation with qPCR. The first de novo transcriptome data of C. co-lurna were used to compare data of C. avellana of commercial importance. These data constitute a valuable extension of the publicly available transcriptomic resource aimed at breeding, medicinal, and industrial research studies.
Collapse
Affiliation(s)
- Salih Ulu
- Department of Molecular Biology and Genetics, Faculty of Art and Science, Yildiz Technical University, Istanbul, Turkey
| | - Zehra Omeroglu Ulu
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Faculty of Art and Science, Yildiz Technical University, Istanbul, Turkey
| | - Aysun Akar
- Hazelnut Research Institution, Ministry of Food, Agriculture and Livestock, Giresun, Turkey
| | - Nehir Ozdemir Ozgenturk
- Department of Molecular Biology and Genetics, Faculty of Art and Science, Yildiz Technical University, Istanbul, Turkey.
| |
Collapse
|
3
|
Xiao F, Zhao Y, Wang X, Yang Y. Targeted Metabolic and Transcriptomic Analysis of Pinus yunnanensis var. pygmaea with Loss of Apical Dominance. Curr Issues Mol Biol 2022; 44:5485-5497. [PMID: 36354683 PMCID: PMC9688957 DOI: 10.3390/cimb44110371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 08/26/2023] Open
Abstract
Pinus yunnanensis var. pygmaea demonstrates obvious loss of apical dominance, inconspicuous main trunk, which can be used as an ideal material for dwarfing rootstocks. In order to find out the reasons for the lack of apical dominance of P. pygmaea, endogenous phytohormone content determination by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and comparative transcriptomes were performed on the shoot apical meristem and root apical meristem of three pine species (P. massoniana, P. pygmaea, and P. elliottii). The results showed that the lack of CK and the massive accumulation of ABA and GA-related hormones may be the reasons for the loss of shoot apical dominance and the formation of multi-branching, the abnormal synthesis of diterpenoid biosynthesis may lead to the influence of GA-related synthesis, and the high expression of GA 2-oxidase (GA2ox) gene may be the cause of dwarfing. Weighted correlation network analysis (WGCNA) screened some modules that were highly expressed in the shoot apical meristem of P. pygmaea. These findings provided valuable information for identifying the network regulation of shoot apical dominance loss in P. pygmaea and enhanced the understanding of the molecular mechanism of shoot apical dominance growth differences among Pinus species.
Collapse
Affiliation(s)
- Feng Xiao
- Institute for Forest Resources and Environment of Guizhou/Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province/College of Forestry, Guizhou University, Guiyang 550025, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Yang Zhao
- Institute for Forest Resources and Environment of Guizhou/Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province/College of Forestry, Guizhou University, Guiyang 550025, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Xiurong Wang
- Institute for Forest Resources and Environment of Guizhou/Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province/College of Forestry, Guizhou University, Guiyang 550025, China
| | - Yao Yang
- Institute for Forest Resources and Environment of Guizhou/Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province/College of Forestry, Guizhou University, Guiyang 550025, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| |
Collapse
|
4
|
Roy NS, Park NI, Kim NS, Park Y, Kim BY, Kim YD, Yu JK, Kim YI, Um T, Kim S, Choi IY. Comparative Transcriptomics for Genes Related to Berberine and Berbamine Biosynthesis in Berberidaceae. PLANTS (BASEL, SWITZERLAND) 2022; 11:2676. [PMID: 36297700 PMCID: PMC9610958 DOI: 10.3390/plants11202676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Berberine and berbamine are bioactive compounds of benzylisoquinoline alkaloids (BIAs) present in Berberis species. The contents of berbamine are 20 times higher than berberine in leaf tissues in three closely related species: Berberis koreana, B. thunbergii and B. amurensis. This is the first report on the quantification of berberine compared to the berbamine in the Berberis species. Comparative transcriptome analyses were carried out with mRNAs from the leaf tissues of the three-species. The comparison of the transcriptomes of B. thunbergii and B. amurensis to those of B. koreana, B. thunbergii showed a consistently higher number of differentially expressed genes than B. amurensis in KEGG and DEG analyses. All genes encoding enzymes involved in berberine synthesis were identified and their expressions were variable among the three species. There was a single copy of CYP80A/berbamunine synthase in B. koreana. Methyltransferases and cytochrome P450 mono-oxidases (CYPs) are key enzymes for BIA biosynthesis. The current report contains the copy numbers and other genomic characteristics of the methyltransferases and CYPs in Berberis species. Thus, the contents of the current research are valuable for molecular characterization for the medicinal utilization of the Berberis species.
Collapse
Affiliation(s)
- Neha Samir Roy
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Korea
| | - Nam-Il Park
- Department of Plant Science, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Nam-Soo Kim
- NBIT, Kangwon National University, Gangwondaehakgil-1, Bodeumkwan 504, Chuncheon 24341, Korea
| | - Yeri Park
- Department of Plant Science, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Bo-Yun Kim
- Plant Resources Division, National Institute of Biological Resources, Incheon 22689, Korea
| | - Young-Dong Kim
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Korea
| | - Ju-Kyung Yu
- Syngenta Crop Protection LLC, 9 Davis Drive, Research Triangle Park, NC 27709, USA
| | - Yong-In Kim
- On Biological Resource Research Institute, Chuncheon 24239, Korea
| | - Taeyoung Um
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Korea
| | - Soonok Kim
- Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Korea
| | - Ik-Young Choi
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
5
|
Jeon MJ, Roy NS, Choi BS, Oh JY, Kim YI, Park HY, Um T, Kim NS, Kim S, Choi IY. Identifying Terpenoid Biosynthesis Genes in Euphorbia maculata via Full-Length cDNA Sequencing. Molecules 2022; 27:molecules27144591. [PMID: 35889464 PMCID: PMC9316252 DOI: 10.3390/molecules27144591] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
The annual herb Euphorbia maculata L. produces anti-inflammatory and biologically active substances such as triterpenoids, tannins, and polyphenols, and it is used in traditional Chinese medicine. Of these bioactive compounds, terpenoids, also called isoprenoids, are major secondary metabolites in E. maculata. Full-length cDNA sequencing was carried out to characterize the transcripts of terpenoid biosynthesis reference genes and determine the copy numbers of their isoforms using PacBio SMRT sequencing technology. The Illumina short-read sequencing platform was also employed to identify differentially expressed genes (DEGs) in the secondary metabolite pathways from leaves, roots, and stems. PacBio generated 62 million polymerase reads, resulting in 81,433 high-quality reads. From these high-quality reads, we reconstructed a genome of 20,722 genes, in which 20,246 genes (97.8%) did not have paralogs. About 33% of the identified genes had two or more isoforms. DEG analysis revealed that the expression level differed among gene paralogs in the leaf, stem, and root. Whole sets of paralogs and isoforms were identified in the mevalonic acid (MVA), methylerythritol phosphate (MEP), and terpenoid biosynthesis pathways in the E. maculata L. The nucleotide information will be useful for identifying orthologous genes in other terpenoid-producing medicinal plants.
Collapse
Affiliation(s)
- Mi Jin Jeon
- Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Korea; (M.J.J.); (J.Y.O.)
| | - Neha Samir Roy
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Korea; (N.S.R.); (T.U.)
| | | | - Ji Yeon Oh
- Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Korea; (M.J.J.); (J.Y.O.)
| | - Yong-In Kim
- On Biological Resource Research Institute, Chuncheon 24239, Korea;
| | - Hye Yoon Park
- Biological Resources Assessment Division, National Institute of Biological Resources, Incheon 22689, Korea;
| | - Taeyoung Um
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Korea; (N.S.R.); (T.U.)
| | - Nam-Soo Kim
- BIT Institute, NBIT Co., Ltd., Chuncheon 24341, Korea;
- Correspondence: (N.-S.K.); (S.K.); (I.-Y.C.); Tel.: +82-10-5522-6472 (N.-S.K.); +82-32-590-7110 (S.K.); +82-33-250-7768 (I.-Y.C.)
| | - Soonok Kim
- Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Korea; (M.J.J.); (J.Y.O.)
- Correspondence: (N.-S.K.); (S.K.); (I.-Y.C.); Tel.: +82-10-5522-6472 (N.-S.K.); +82-32-590-7110 (S.K.); +82-33-250-7768 (I.-Y.C.)
| | - Ik-Young Choi
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Korea; (N.S.R.); (T.U.)
- BIT Institute, NBIT Co., Ltd., Chuncheon 24341, Korea;
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: (N.-S.K.); (S.K.); (I.-Y.C.); Tel.: +82-10-5522-6472 (N.-S.K.); +82-32-590-7110 (S.K.); +82-33-250-7768 (I.-Y.C.)
| |
Collapse
|
6
|
Freitas Moreira F, Rojas de Oliveira H, Lopez MA, Abughali BJ, Gomes G, Cherkauer KA, Brito LF, Rainey KM. High-Throughput Phenotyping and Random Regression Models Reveal Temporal Genetic Control of Soybean Biomass Production. FRONTIERS IN PLANT SCIENCE 2021; 12:715983. [PMID: 34539708 PMCID: PMC8446606 DOI: 10.3389/fpls.2021.715983] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Understanding temporal accumulation of soybean above-ground biomass (AGB) has the potential to contribute to yield gains and the development of stress-resilient cultivars. Our main objectives were to develop a high-throughput phenotyping method to predict soybean AGB over time and to reveal its temporal quantitative genomic properties. A subset of the SoyNAM population (n = 383) was grown in multi-environment trials and destructive AGB measurements were collected along with multispectral and RGB imaging from 27 to 83 days after planting (DAP). We used machine-learning methods for phenotypic prediction of AGB, genomic prediction of breeding values, and genome-wide association studies (GWAS) based on random regression models (RRM). RRM enable the study of changes in genetic variability over time and further allow selection of individuals when aiming to alter the general response shapes over time. AGB phenotypic predictions were high (R 2 = 0.92-0.94). Narrow-sense heritabilities estimated over time ranged from low to moderate (from 0.02 at 44 DAP to 0.28 at 33 DAP). AGB from adjacent DAP had highest genetic correlations compared to those DAP further apart. We observed high accuracies and low biases of prediction indicating that genomic breeding values for AGB can be predicted over specific time intervals. Genomic regions associated with AGB varied with time, and no genetic markers were significant in all time points evaluated. Thus, RRM seem a powerful tool for modeling the temporal genetic architecture of soybean AGB and can provide useful information for crop improvement. This study provides a basis for future studies to combine phenotyping and genomic analyses to understand the genetic architecture of complex longitudinal traits in plants.
Collapse
Affiliation(s)
| | | | - Miguel Angel Lopez
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | - Bilal Jamal Abughali
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, United States
| | - Guilherme Gomes
- Department of Statistics, Purdue University, West Lafayette, IN, United States
| | - Keith Aric Cherkauer
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, United States
| | - Luiz Fernando Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Katy Martin Rainey
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
7
|
Hoseinzadeh AH, Soorni A, Shoorooei M, Torkzadeh Mahani M, Maali Amiri R, Allahyari H, Mohammadi R. Comparative transcriptome provides molecular insight into defense-associated mechanisms against spider mite in resistant and susceptible common bean cultivars. PLoS One 2020; 15:e0228680. [PMID: 32017794 PMCID: PMC6999899 DOI: 10.1371/journal.pone.0228680] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/20/2020] [Indexed: 01/07/2023] Open
Abstract
Common bean (Phaseolus vulgaris L.) is a major source of proteins and one of the most important edible foods for more than three hundred million people in the world. The common bean plants are frequently attacked by spider mite (Tetranychus urticae Koch), leading to a significant decrease in plant growth and economic performance. The use of resistant cultivars and the identification of the genes involved in plant-mite resistance are practical solutions to this problem. Hence, a comprehensive study of the molecular interactions between resistant and susceptible common bean cultivars and spider mite can shed light into the understanding of mechanisms and biological pathways of resistance. In this study, one resistant (Naz) and one susceptible (Akhtar) cultivars were selected for a transcriptome comparison at different time points (0, 1 and 5 days) after spider mite feeding. The comparison of cultivars in different time points revealed several key genes, which showed a change increase in transcript abundance via spider mite infestation. These included genes involved in flavonoid biosynthesis process; a conserved MYB-bHLH-WD40 (MBW) regulatory complex; transcription factors (TFs) TT2, TT8, TCP, Cys2/His2-type and C2H2-type zinc finger proteins; the ethylene response factors (ERFs) ERF1 and ERF9; genes related to metabolism of auxin and jasmonic acid (JA); pathogenesis-related (PR) proteins and heat shock proteins.
Collapse
Affiliation(s)
- Abdul Hadi Hoseinzadeh
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Tehran, Karaj, Iran
| | - Aboozar Soorni
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Marie Shoorooei
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Tehran, Karaj, Iran
| | - Masoud Torkzadeh Mahani
- Department of Biotechnology, Institute of Science, High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, Iran
| | - Reza Maali Amiri
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Tehran, Karaj, Iran
| | - Hossein Allahyari
- Department of Plant Protection, Faculty of Agriculture, University of Tehran, Karaj, Iran
| | - Rahmat Mohammadi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Tehran, Karaj, Iran
| |
Collapse
|