1
|
Wang H, Yang L, Yang Y. A review of sodium alginate-based hydrogels: Structure, mechanisms, applications, and perspectives. Int J Biol Macromol 2024; 292:139151. [PMID: 39725117 DOI: 10.1016/j.ijbiomac.2024.139151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
With the global emphasis on green and sustainable development, sodium alginate-based hydrogels (SAHs), as a renewable and biocompatible environmental material, have garnered widespread attention for their research and application. This review summarizes the latest advancements in the study of SAHs, thoroughly discussing their structural characteristics, formation mechanisms, and current applications in various fields, as well as prospects for future development. Initially, the chemical structure of SA and the network structure of hydrogels are introduced, and the impact of factors such as molecular weight, crosslinking density, and environmental conditions on the hydrogel structure is explored. Subsequently, the formation mechanisms of SAHs, including physical and chemical crosslinking, are detailed. Furthermore, a systematic review of the applications of SAHs in tissue engineering, drug delivery, medical dressings, wastewater treatment, strain sensor, and food science is provided. Finally, future research directions for SAHs are outlined. This work not only offers researchers a comprehensive framework for the study of SAHs but also provides significant theoretical and experimental foundations for the development of new hydrogel materials.
Collapse
Affiliation(s)
- Hong Wang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China; Shaanxi Key Laboratory of Intelligent Processing for Big Energy Data, Yan'an 716000, China
| | - Liang Yang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China; Shaanxi Key Laboratory of Intelligent Processing for Big Energy Data, Yan'an 716000, China.
| | - Yanning Yang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China; Shaanxi Key Laboratory of Intelligent Processing for Big Energy Data, Yan'an 716000, China
| |
Collapse
|
2
|
Arafa EG, Mahmoud R, Gadelhak Y, Gawad OFA. Design, preparation, and performance of different adsorbents based on carboxymethyl chitosan/sodium alginate hydrogel beads for selective adsorption of Cadmium (II) and Chromium (III) metal ions. Int J Biol Macromol 2024; 273:132809. [PMID: 38825296 DOI: 10.1016/j.ijbiomac.2024.132809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Developing cost-effective and efficient adsorbents for heavy metals in multicomponent systems is a challenge that needs to be resolved to meet the challenges of wastewater treatment technology. Two adsorbents were synthesized, characterized, and investigated for the removal of Cd2+ and Cr3+ as model heavy metals in their single and binary solutions. The first adsorbent (ACZ) was a nanocomposite formed of O-Carboxymethyl chitosan, sodium alginate, and zeolite. While, the other (ACL) contained ZnFe layered double hydroxides instead of the zeolite phase. Adsorbents were characterized using XRD, FTIR, SEM, and swelling degree analysis. For single heavy metal adsorption isotherms, data for both adsorbents was best fitted and indicated a multilayer adsorption nature. For binary adsorption, Langmuir model with interacting parameters showed the best results compared to other models for both pollutants. For single system, Avrami model was found to be the best model representing the adsorption kinetics data, which indicates that the mechanism of adsorption follows multiple kinetic orders that may change during duration of adsorption process. Numerous interaction mechanisms can occur between the heavy metals and functional groups in the synthesized hydrogels such as NH2, COOH, and OH groups leading to efficient adsorption of metal ions.
Collapse
Affiliation(s)
- Esraa Gaber Arafa
- Department of Chemistry, Faculty of Science, Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Rehab Mahmoud
- Department of Chemistry, Faculty of Science, Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Yasser Gadelhak
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Science (PSAS), Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Omayma Fawzy Abdel Gawad
- Department of Chemistry, Faculty of Science, Beni-Suef University, 62511 Beni-Suef, Egypt; Petroleum Chemistry, Faculty of Basic Sciences, King Salman International University, South Saini, Egypt.
| |
Collapse
|
3
|
Khan F, Momtaz S, Abdollahi M. The relationship between mercury exposure and epigenetic alterations regarding human health, risk assessment and diagnostic strategies. J Trace Elem Med Biol 2019; 52:37-47. [PMID: 30732897 DOI: 10.1016/j.jtemb.2018.11.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Exposure to the environmental toxicants poses a serious threat to human health. The extent of exposure and the development of diseases are interrelated with each other. Chronic exposure to mercury (Hg) increases the risk of developing serious human disorders from embryo to adulthood. OBJECTIVES The purpose of this review is to highlight the most common human disorders induced by Hg exposure on the basis of epigenetic mechanisms. A growing body of evidence shows that Hg exposure leads to alterations in the epigenetic markers. METHODS We performed an organized search of the available literature using PubMed, Google Scholar, Medline, Reaxys, EMBASE and Scopus databases. All the relevant citations, including research and review articles in English were evaluated. The search terms included mercury, Hg, epigenetics, epigenetic alterations, DNA methylation, histone modifications, microRNAs (miRNAs), and risk assessment. RESULTS Data on human toxicity due to Hg exposure shows broad variations in terms of chemical nature, doses, and the rate of exposure. Hg consumption either via foods or environmental sources may create deleterious health effects on various physiological systems at least partially through an epigenetic mechanism. CONCLUSION Hg exposure could trigger epigenetic alterations, hence leading to various human disorders including reduced newborn cerebellum size, adverse behavioral outcomes, atherosclerosis and myocardial infarction. Similarly, in adults, occupational Hg exposure has been associated with an increased risk of autoimmunity. It has been revealed that miRNAs in the woman's cervix are a novel responder to maternal Hg exposure during pregnancy. Hg-induced epigenetic alterations analysis of kidney tissues showed a significant interruption in renal function. DNA methylation and histone post-translation modifications are predominant types of Hg epigenetic alterations.
Collapse
Affiliation(s)
- Fazlullah Khan
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Nematidil N, Sadeghi M. Fabrication and characterization of a novel biosorbent and its evaluation as adsorbent for heavy metal ions. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2646-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Kim YJ, Lee YJ, Kim HJ, Kim HS, Kang MS, Lee SK, Park MK, Murata K, Kim HL, Seo YR. A molecular mechanism of nickel (II): reduction of nucleotide excision repair activity by structural and functional disruption of p53. Carcinogenesis 2018; 39:1157-1164. [DOI: 10.1093/carcin/bgy070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/29/2018] [Indexed: 01/23/2023] Open
Affiliation(s)
- Yeo Jin Kim
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Young Ju Lee
- Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyo Jeong Kim
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Hyun Soo Kim
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Mi-Sun Kang
- Department of Pharmacology, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Sung-Keun Lee
- Department of Pharmacology, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kazuyoshi Murata
- Section of Electron Microscopy, Section of Brain Structure Information, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Hye Lim Kim
- Forensic DNA Division, Gwangju Institute of National Forensic Service, Jangseong-gun, Jeonnam, Republic of Korea
| | - Young Rok Seo
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, Goyang-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
6
|
Vachon J, Pagé-Larivière F, Sirard MA, Rodriguez MJ, Levallois P, Campagna C. Availability, Quality, and Relevance of Toxicogenomics Data for Human Health Risk Assessment: A Scoping Review of the Literature on Trihalomethanes. Toxicol Sci 2018; 163:364-373. [PMID: 29514332 DOI: 10.1093/toxsci/kfy050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Human health risk assessment (HHRA) must be adapted to the challenges of the 21st century, and the use of toxicogenomics data in HHRA is among the changes that regulatory agencies worldwide are trying to implement. However, the use of toxicogenomics data in HHRA is still limited. The purpose of this study was to explore the availability, quality, and relevance to HHRA of toxicogenomics publications as potential barriers to their use in HHRA. We conducted a scoping review of available toxicogenomics literature, using trihalomethanes as a case study. Four bibliographic databases (including the Comparative Toxicogenomics Database) were assessed. An evaluation table was developed to characterize quality and relevance of studies included on the basis of criteria proposed in the literature. Studies were selected and analyzed by 2 independent reviewers. Only 9 studies, published between 1997 and 2015, were included in the analysis. Based on the selected criteria, critical methodological details were often missing; in fact, only 3 out of 9 studies were considered to be of adequate quality for HHRA. No studies met >3 (out of 7) criteria of relevance to HHRA (eg, adequate number of doses and sample size). This first scoping review of toxicogenomics publications on trihalomethanes shows that low availability, quality, and relevance to HHRA of toxicogenomics publications presents potential barriers to their use in HHRA. Improved reporting of methodological details and study design is needed in the future so that toxicogenomics studies can be appropriately assessed regarding their quality and value for HHRA.
Collapse
Affiliation(s)
- Julien Vachon
- Direction de la Santé Environnementale et de la Toxicologie, Institut National de Santé Publique du Québec (INSPQ), Québec, Québec, Canada G1V 5B3
| | - Florence Pagé-Larivière
- Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec, Québec, Canada G1V 0A6
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Québec, Québec, Canada G1V 0A6
| | - Marc-André Sirard
- Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec, Québec, Canada G1V 0A6
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Québec, Québec, Canada G1V 0A6
| | - Manuel J Rodriguez
- École Supérieure d'Aménagement du Territoire et de Développement Régional, Université Laval, Québec, Québec, Canada G1V 0A6
- Chaire de Recherche CRSNG en Eau Potable, Université Laval, Québec, Québec, Canada G1V 0A6
| | - Patrick Levallois
- Direction de la Santé Environnementale et de la Toxicologie, Institut National de Santé Publique du Québec (INSPQ), Québec, Québec, Canada G1V 5B3
- Département de Médecine Sociale et Préventive, Faculté de Médecine, Université Laval, Québec, Québec, Canada G1V 0A6
- Axe Santé des Populations et Pratiques Optimales en Santé, Centre de Recherche du Centre Hospitalier Universitaire de Québec (CRCHUQ), Québec, Québec, Canada G1S 4L8
| | - Céline Campagna
- Direction de la Santé Environnementale et de la Toxicologie, Institut National de Santé Publique du Québec (INSPQ), Québec, Québec, Canada G1V 5B3
- Département de Médecine Sociale et Préventive, Faculté de Médecine, Université Laval, Québec, Québec, Canada G1V 0A6
| |
Collapse
|
7
|
Cho Y, Song MK, Kim TS, Ryu JC. Identification of novel cytokine biomarkers of hexanal exposure associated with pulmonary toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:810-817. [PMID: 28779894 DOI: 10.1016/j.envpol.2017.06.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 06/07/2023]
Abstract
We aimed to investigate whether exposure to low-molecular-weight saturated aliphatic aldehydes induces an airway inflammation related to lung toxicity. In previous studies, we identified that several aldehydes induced inflammatory responses through the secretion of pro-inflammatory cytokines. Here, we elucidate on whether hexanal exposure induces the lung inflammatory response through the secretion of cytokines. Hexanal is one of the aldehydes, which are major components of indoor environmental irritants. Based on a multiplexed cytokine antibody array, we investigated the cytokine expression profiles to identify the significant biomarkers of hexanal exposure and to predict the possibility of adverse effects on pulmonary toxicity using in vitro and in vivo model systems. We identified the cytokines as biomarkers involved in LEPTIN, Interleukin(IL)-10, MCP-1, and VEGF that showed similar expression patterns in both in vitro and in vivo models under hexanal exposure. These cytokines are known to be associated with diverse lung diseases, such as lung fibrosis, chronic obstructive pulmonary disease (COPD), and non-small cell lung cancer. Although further studies are needed to identify the mechanisms that underlie hexanal pulmonary toxicity, these results provide the key cytokine biomarkers in response to hexanal exposure and indicate meaningful mechanistic previewing that can be indirectly attributed to lung disease.
Collapse
Affiliation(s)
- Yoon Cho
- Center for Environment, Health and Welfare Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science and Technology (KIST), Republic of Korea; Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Republic of Korea
| | - Mi-Kyung Song
- National Center for Efficacy Evaluation for Respiratory Disease Product, Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Republic of Korea
| | - Tae Sung Kim
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Republic of Korea
| | - Jae-Chun Ryu
- Center for Environment, Health and Welfare Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science and Technology (KIST), Republic of Korea; Human and Environmental Toxicology, University of Science and Technology, Republic of Korea.
| |
Collapse
|
8
|
Kim J, Song H, Heo HR, Kim JW, Kim HR, Hong Y, Yang SR, Han SS, Lee SJ, Kim WJ, Hong SH. Cadmium-induced ER stress and inflammation are mediated through C/EBP-DDIT3 signaling in human bronchial epithelial cells. Exp Mol Med 2017; 49:e372. [PMID: 28860664 PMCID: PMC5628270 DOI: 10.1038/emm.2017.125] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 02/07/2023] Open
Abstract
Cadmium (Cd), a major component of cigarette smoke, disrupts the normal functions of airway cells and can lead to the development of various pulmonary diseases such as chronic obstructive pulmonary disease (COPD). However, the molecular mechanisms involved in Cd-induced pulmonary diseases are poorly understood. Here, we identified a cluster of genes that are altered in response to Cd exposure in human bronchial epithelial cells (BEAS-2B) and demonstrated that Cd-induced ER stress and inflammation are mediated via CCAAT-enhancer-binding proteins (C/EBP)-DNA-damaged-inducible transcript 3 (DDIT3) signaling in BEAS-2B cells. Cd treatment led to marked upregulation and downregulation of genes associated with the cell cycle, apoptosis, oxidative stress and inflammation as well as various signal transduction pathways. Gene set enrichment analysis revealed that Cd treatment stimulated the C/EBP signaling pathway and induced transcriptional activation of its downstream target genes, including DDIT3. Suppression of DDIT3 expression using specific small interfering RNA effectively alleviated Cd-induced ER stress and inflammatory responses in both BEAS-2B and normal primary normal human bronchial epithelial cells. Taken together, these data suggest that C/EBP signaling may have a pivotal role in the early induction of ER stress and inflammatory responses by Cd exposure and could be a molecular target for Cd-induced pulmonary disease.
Collapse
Affiliation(s)
- Jeeyoung Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea.,Environmental Health Center, Kangwon National University Hospital, Chuncheon, South Korea
| | - Haengseok Song
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, South Korea
| | - Hye-Ryeon Heo
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea.,Environmental Health Center, Kangwon National University Hospital, Chuncheon, South Korea
| | - Jung Woon Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea.,Environmental Health Center, Kangwon National University Hospital, Chuncheon, South Korea
| | - Hye-Ryun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, South Korea
| | - Yoonki Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea.,Environmental Health Center, Kangwon National University Hospital, Chuncheon, South Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Seon-Sook Han
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea.,Environmental Health Center, Kangwon National University Hospital, Chuncheon, South Korea
| | - Seung-Joon Lee
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea.,Environmental Health Center, Kangwon National University Hospital, Chuncheon, South Korea
| | - Woo Jin Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea.,Environmental Health Center, Kangwon National University Hospital, Chuncheon, South Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea.,Environmental Health Center, Kangwon National University Hospital, Chuncheon, South Korea
| |
Collapse
|
9
|
Jeong JH, Kim J, Kim J, Heo HR, Jeong JS, Ryu YJ, Hong Y, Han SS, Hong SH, Lee SJ, Kim WJ. ACN9 Regulates the Inflammatory Responses in Human Bronchial Epithelial Cells. Tuberc Respir Dis (Seoul) 2017; 80:247-254. [PMID: 28747957 PMCID: PMC5526951 DOI: 10.4046/trd.2017.80.3.247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Airway epithelial cells are the first line of defense, against pathogens and environmental pollutants, in the lungs. Cellular stress by cadmium (Cd), resulting in airway inflammation, is assumed to be directly involved in tissue injury, linked to the development of lung cancer, and chronic obstructive pulmonary disease (COPD). We had earlier shown that ACN9 (chromosome 7q21), is a potential candidate gene for COPD, and identified significant interaction with smoking, based on genetic studies. However, the role of ACN9 in the inflammatory response, in the airway cells, has not yet been reported. METHODS We first checked the anatomical distribution of ACN9 in lung tissues, using mRNA in situ hybridization, and immunohistochemistry. Gene expression profiling in bronchial epithelial cells (BEAS-2B), was performed, after silencing ACN9. We further tested the roles of ACN9, in the intracellular mechanism, leading to Cd-induced production, of proinflammatory cytokines in BEAS-2B. RESULTS ACN9 was localized in lymphoid, and epithelial cells, of human lung tissues. ACN9 silencing, led to differential expression of 216 genes. Pathways of sensory perception to chemical stimuli, and cell surface receptor-linked signal transduction, were significantly enriched. ACN9 silencing, further increased the expression of proinflammatory cytokines, in BEAS-2B after Cd exposure. CONCLUSION Our findings suggest, that ACN9 may have a role, in the inflammatory response in the airway.
Collapse
Affiliation(s)
- Jae Hoon Jeong
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Jeeyoung Kim
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea.,Environmental Health Center, Kangwon National University Hospital, Chuncheon, Korea
| | - Jeongwoon Kim
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea.,Environmental Health Center, Kangwon National University Hospital, Chuncheon, Korea
| | - Hye-Ryeon Heo
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea.,Environmental Health Center, Kangwon National University Hospital, Chuncheon, Korea
| | - Jin Seon Jeong
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Young-Joon Ryu
- Department of Pathology, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Yoonki Hong
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea.,Environmental Health Center, Kangwon National University Hospital, Chuncheon, Korea
| | - Seon-Sook Han
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea.,Environmental Health Center, Kangwon National University Hospital, Chuncheon, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea.,Environmental Health Center, Kangwon National University Hospital, Chuncheon, Korea
| | - Seung-Joon Lee
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea.,Environmental Health Center, Kangwon National University Hospital, Chuncheon, Korea
| | - Woo Jin Kim
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea.,Environmental Health Center, Kangwon National University Hospital, Chuncheon, Korea
| |
Collapse
|
10
|
Fabrication of carboxymethyl chitosan–hemicellulose resin for adsorptive removal of heavy metals from wastewater. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.11.015] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|