1
|
Raeisi H, Azimirad M, Asadi-Sanam S, Asadzadeh Aghdaei H, Yadegar A, Zali MR. The anti-inflammatory and anti-apoptotic effects of Achillea millefolium L. extracts on Clostridioides difficile ribotype 001 in human intestinal epithelial cells. BMC Complement Med Ther 2024; 24:37. [PMID: 38218845 PMCID: PMC10790267 DOI: 10.1186/s12906-024-04335-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Clostridioides difficile infection (CDI) is one of the most common health care-acquired infections. The dramatic increase in antimicrobial resistance of C. difficile isolates has led to growing demand to seek new alternative medicines against CDI. Achillea millefolium L. extracts exhibit strong biological activity to be considered as potential therapeutic agents. In this work, the inhibitory effects of A. millefolium, its decoction (DEC) and ethanol (ETOH) extracts, were investigated on the growth of C. difficile RT001 and its toxigenic cell-free supernatant (Tox-S) induced inflammation and apoptosis. METHODS Phytochemical analysis of extracts was performed by HPLC and GC analysis. The antimicrobial properties of extracts were evaluated against C. difficile RT001. Cell viability and cytotoxicity of Caco-2 and Vero cells treated with various concentrations of extracts and Tox-S were examined by MTT assay and microscopy, respectively. Anti-inflammatory and anti-apoptotic effects of extracts were assessed in Tox-S stimulated Caco-2 cells by RT-qPCR. RESULTS Analysis of the phytochemical profile of extracts revealed that the main component identified in both extracts was chlorogenic acid. Both extracts displayed significant antimicrobial activity against C. difficile RT001. Moreover, both extracts at concentration 50 µg/mL had no significant effect on cell viability compared to untreated cells. Pre-treatment of cells with extracts (50 µg/mL) significantly reduced the percentage of Vero cells rounding induced by Tox-S. Also, both pre-treatment and co-treatment of Tox-S stimulated Caco-2 cells with extracts significantly downregulated the gene expression level of IL-8, IL-1β, TNF-α, TGF-β, iNOS, Bax, caspase-9 and caspase-3 and upregulated the expression level of Bcl-2. CONCLUSION The results of the present study for the first time demonstrate the antimicrobial activity and protective effects of A. millefolium extracts on inflammatory response and apoptosis induced by Tox-S from C. difficile RT001 clinical strain in vitro. Further research is needed to evaluate the potential application of A. millefolium extracts as supplementary medicine for CDI prevention and treatment in clinical setting.
Collapse
Affiliation(s)
- Hamideh Raeisi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Asadi-Sanam
- Medicinal Plants Research Division, Research Institute of Forests and Rangelands, Agricultural Research, Education & Extension Organization (AREEO), Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Raeisi H, Azimirad M, Abdemohamadi E, Pezzani R, Zali MR, Yadegar A. Pleiotropic effects of Mentha longifolia L. extract on the regulation of genes involved in inflammation and apoptosis induced by Clostridioides difficile ribotype 001. Front Microbiol 2023; 14:1273094. [PMID: 37965560 PMCID: PMC10641701 DOI: 10.3389/fmicb.2023.1273094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction The dramatic increase in multidrug-resistance of Clostridioides difficile isolates has led to the search for new complementary medicines against C. difficile infection (CDI). In this study, we aimed to examine the inhibitory effects of hydroethanolic extract of Mentha longifolia L. (ETOH-ML) on the growth of C. difficile RT001 and its toxigenic cell-free supernatant (Tox-S)-induced inflammation and apoptosis. Methods The active phytochemical components of ETOH-ML were detected using GC and HPLC. The antimicrobial properties of the extract were examined against C. difficile RT001. Furthermore, cell viability and cytotoxicity of Caco-2 and Vero cells treated with various concentrations of ETOH-ML, Tox-S of C. difficile RT001, and their combination were assessed. Anti-inflammatory and anti-apoptotic activities of ETOH-ML were explored in Tox-S stimulated Caco-2 cells using RT-qPCR. Results Based on our results, rosmarinic acid was the main phytochemical component of ETOH-ML. The extract showed significant antimicrobial activity against C. difficile RT001 by agar dilution and broth microdilution methods. Moreover, ETOH-ML at concentrations of <25 μg/ml had no significant effect on cell viability compared to untreated cells. Treatment cells with the extract (10 or 25 μg/ml) significantly increased the cell viability and reduced the percentage of cell rounding in Caco-2 and Vero cells treated by Tox-S, respectively (P < 0.0001). Co-treatment of Tox-S stimulated Caco-2 cells with ETOH-ML showed significant anti-inflammatory and anti-apoptotic activities by downregulating the gene expression level of IL-8, IL-1β, TNF-α, iNOS, TGF-β, NF-κB, Bax, and caspase-3, while upregulating the expression level of Bcl-2. Discussion Our results demonstrated for the first time the antimicrobial, anti-inflammatory, and anti-apoptotic effects of M. longifolia extract on C. difficile RT001 and its Tox-S. However, further research is needed to evaluate the potential application of M. longifolia extract on CDI treatment in clinical setting.
Collapse
Affiliation(s)
- Hamideh Raeisi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Abdemohamadi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Raffaele Pezzani
- Phytotherapy Lab, Department of Medicine (DIMED), University of Padova, Padua, Italy
- Accademia Italiana di Fitoterapia, Brescia, Italy
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Anti-inflammatory and relaxation effects of Ulmus pumilla L. on EGF-inflamed bronchial epithelial and asthmatic bronchial smooth muscle cells. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00328-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Sirasanagandla SR, Al-Huseini I, Sakr H, Moqadass M, Das S, Juliana N, Abu IF. Natural Products in Mitigation of Bisphenol A Toxicity: Future Therapeutic Use. Molecules 2022; 27:molecules27175384. [PMID: 36080155 PMCID: PMC9457803 DOI: 10.3390/molecules27175384] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Bisphenol A (BPA) is a ubiquitous environmental toxin with deleterious endocrine-disrupting effects. It is widely used in producing epoxy resins, polycarbonate plastics, and polyvinyl chloride plastics. Human beings are regularly exposed to BPA through inhalation, ingestion, and topical absorption routes. The prevalence of BPA exposure has considerably increased over the past decades. Previous research studies have found a plethora of evidence of BPA’s harmful effects. Interestingly, even at a lower concentration, this industrial product was found to be harmful at cellular and tissue levels, affecting various body functions. A noble and possible treatment could be made plausible by using natural products (NPs). In this review, we highlight existing experimental evidence of NPs against BPA exposure-induced adverse effects, which involve the body’s reproductive, neurological, hepatic, renal, cardiovascular, and endocrine systems. The review also focuses on the targeted signaling pathways of NPs involved in BPA-induced toxicity. Although potential molecular mechanisms underlying BPA-induced toxicity have been investigated, there is currently no specific targeted treatment for BPA-induced toxicity. Hence, natural products could be considered for future therapeutic use against adverse and harmful effects of BPA exposure.
Collapse
Affiliation(s)
- Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Isehaq Al-Huseini
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Hussein Sakr
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Marzie Moqadass
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
- Correspondence: or
| | - Norsham Juliana
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Izuddin Fahmy Abu
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kuala Lumpur 50250, Malaysia
| |
Collapse
|
5
|
Malek MA, Dasiman R, Khan NAMN, Mohamed-Akhlak S, Mahmud MH. The protective effects of Procyanidin C-1 on bisphenol a-induced testicular dysfunction in aged mice. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Abstract
To the best of our knowledge, no study has systematically reviewed and analyzed the research trends of wild-simulated ginseng (WSG) used for food or medicinal purposes in many countries. WSG, a non-timber forest product, has been traditionally produced using agroforestry practices, and it has been consumed in various ways for a long time. WSG has a great demand in the market due to its medicinal effects, particularly in improving forest livelihoods and human health. Due to the significance of WSG, we conducted this research to explore the global research trends on WSG using systematic review methodology and keyword analysis. We used two international academic databases, the Web of Science and SCOPUS, to extract 115 peer-reviewed articles published from 1982 to 2020. The research subjects, target countries, and keywords were analyzed. Our results indicate four categories of WSG research subjects, namely growth conditions, components, effects on humans/animals, and the environment of WSG, and the case studies were mainly from the Republic of Korea, China, and the USA. Through topic modelling, research keywords were classified into five groups, namely medicinal effects, metabolite analysis, genetic diversity, cultivation conditions, and bioactive compounds. We observed that the research focus on WSG changed from the biological properties and cultivation conditions of WSG to the precise identification and characterization of bioactive metabolites of WSG. This change indicates an increased academic interest in the value-added utilization of WSG.
Collapse
|
7
|
Bahelka I, Stupka R, Čítek J, Šprysl M. The impact of bisphenols on reproductive system and on offspring in pigs - A review 2011-2020. CHEMOSPHERE 2021; 263:128203. [PMID: 33297166 DOI: 10.1016/j.chemosphere.2020.128203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 06/12/2023]
Abstract
This study summarizes the knowledge about effects of bisphenol A (BPA) and its analogues on reproduction of pigs and some parameters of their offspring during period 2011-2020. Bisphenols are known as one of the most harmful environmental toxicants with endocrine-disrupting properties. One study in the reference period related to male reproductive system. Treatment with an antagonist of G-protein coupled estrogen receptor (GPER) - G15, and bisphenol A and its analogues, tetrabromobisphenol A (TBBPA) and tetrachromobisphenol A (TCBPA) diversely disrupted protein molecules controlling the biogenesis and function of microRNA in Leydig cells. Nine studies examined the effect of BPA, bisphenol S (BPS) or fluorene-9-bisphenol (BHPF) on female reproductive system. From the possible protective effect's point of view seems to be perspective the administration of melatonin in BPA-exposed oocytes. Finally, two studies were found to evaluate the maternal exposure to BPA on offspring's meat quality, muscle metabolism and oxidative stress. Administration of methyl donor improved antioxidant enzymes activity and reduced oxidative stress in piglets.
Collapse
Affiliation(s)
- Ivan Bahelka
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic.
| | - Roman Stupka
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic
| | - Jaroslav Čítek
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic
| | - Michal Šprysl
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic
| |
Collapse
|
8
|
Sun Y, Huang WM, Tang PC, Zhang X, Zhang XY, Yu BC, Fan YY, Ge XQ, Zhang XL. Neuroprotective effects of natural cordycepin on LPS-induced Parkinson’s disease through suppressing TLR4/NF-κB/NLRP3-mediated pyroptosis. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
9
|
Amjad S, Rahman MS, Pang MG. Role of Antioxidants in Alleviating Bisphenol A Toxicity. Biomolecules 2020; 10:biom10081105. [PMID: 32722388 PMCID: PMC7465987 DOI: 10.3390/biom10081105] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Bisphenol A (BPA) is an oestrogenic endocrine disruptor widely used in the production of certain plastics, e.g., polycarbonate, hard and clear plastics, and epoxy resins that act as protective coating for food and beverage cans. Human exposure to this chemical is thought to be ubiquitous. BPA alters endocrine function, thereby causing many diseases in human and animals. In the last few decades, studies exploring the mechanism of BPA activity revealed a direct link between BPA-induced oxidative stress and disease pathogenesis. Antioxidants, reducing agents that prevent cellular oxidation reactions, can protect BPA toxicity. Although the important role of antioxidants in minimizing BPA stress has been demonstrated in many studies, a clear consensus on the associated mechanisms is needed, as well as the directives on their efficacy and safety. Herein, considering the distinct biochemical properties of BPA and antioxidants, we provide a framework for understanding how antioxidants alleviate BPA-associated stress. We summarize the current knowledge on the biological function of enzymatic and non-enzymatic antioxidants, and discuss their practical potential as BPA-detoxifying agents.
Collapse
|
10
|
Jambor T, Kovacikova E, Greifova H, Kovacik A, Libova L, Lukac N. Assessment of the effective impact of bisphenols on mitochondrial activity and steroidogenesis in a dose-dependency in mice TM3 Leydig cells. Physiol Res 2019; 68:689-693. [DOI: 10.33549/physiolres.934200] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The increasing worldwide production of bisphenols has been associated to several human diseases, such as chronic respiratory and kidney diseases, diabetes, breast cancer, prostate cancer, behavioral troubles and reproductive disorders in both sexes. The aim of the present in vitro study was to evaluate the potential impact bisphenols A, B, S and F on the cell viability and testosterone release in TM3 Leydig cell line. Mice Leydig cells were cultured in the presence of different concentrations of bisphenols (0.04-50 µg.ml-1) during 24 h exposure. Quantification of the cell viability was assessed using the metabolic activity assay, while the level of testosterone in cell culture media was determined by enzyme-linked immunosorbent assay. Within the panel of substances under investigations, the higher experimental concentrations (10; 25 and 50 µg.ml-1) significantly (P<0.001) decreased Leydig cells viability, while the same doses of BPA and BPB also reduced testosterone production significantly (P<0.001). Taken together, the results of our study reported herein is a consistent whit the conclusion that higher experimental doses of bisphenols have a cytotoxic effect and could have a dose-dependent impact on testosterone production.
Collapse
Affiliation(s)
- T. Jambor
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
11
|
CMIT/MIT induce apoptosis and inflammation in alveolar epithelial cells through p38/JNK/ERK1/2 signaling pathway. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-019-0005-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Anti-inflammatory effect of Chunkoongkeigi-tang on IL-1β-induced inflamed A549 by the inhibition of COX-2 expression. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-019-0011-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|