1
|
da Silva LM, de Souza RC, Santos TAC, Palmieri MJ, Vieira LFA. Eco(geno)toxicity of an acaricidal formulation containing chlorpyrifos, cypermethrin, and fenthion on different plant models and Artemia salina L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58928-58945. [PMID: 39317902 DOI: 10.1007/s11356-024-35019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
The mixture of pesticides is widely employed in cattle farming to combat ectoparasite resistance, such as ticks. The commercial formulation COLOSSO FC30, which contains three active ingredients (Cypermethrin, Chlorpyrifos, and Fenthion), stands out due to its efficiency. However, animals exposed to this product may become vectors of potentially toxic molecules, possibly causing contamination in aquatic and terrestrial ecosystems. In light of this, this study evaluated the eco(geno)toxic potential of the commercial formulation COLOSSO FC30, using plants (Allium cepa L., Lactuca sativa L., Raphanus sativus L., Pennisetum glaucum L., and Triticum aestivum L.) and Artemia salina L. as model organisms. In the phytotoxicity test, the species were ranked in order of sensitivity to the commercial formulation as follows: P. glaucum > L. sativa > T. aestivum > R. sativus. The most sensitive parameters were root length (RL) and shoot length (SL) of seedlings. In the cytogenotoxicity test with A. cepa, cell division was decreased at concentrations from 0.351 mL L-1 in the meristematic region and root F1. Chromosomal aberrations and micronucleus were observed at all concentrations. In the test with A. salina, the IC50 after 24 h of exposure was 0.01207 mL L-1 of the commercial formulation. The results highlight the need for further research and regulations to understand and minimize the potential environmental impacts of COLOSSO FC30.
Collapse
Affiliation(s)
| | | | | | - Marcel José Palmieri
- Departament of Ecology, Federal University of Lavras, Lavras, MG, 37200-000, Brazil
| | | |
Collapse
|
2
|
Salazar Mercado SA, Correa RDC. Examining the interaction between pesticides and bioindicator plants: an in-depth analysis of their cytotoxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51114-51125. [PMID: 39120815 DOI: 10.1007/s11356-024-34521-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Agrochemicals are substances used to prevent, destroy, or mitigate any pest. Their indiscriminate use can cause serious problems in ecosystems, contaminating surface and groundwater and affecting surrounding biota. However, in the environment, various natural processes such as biological degradation and photodegradation can mitigate their persistence and, consequently, their ecotoxicological impact. In this regard, this study aimed to obtain relevant data on the cytotoxic effects produced by pesticides on bioindicator plants. As observed in the literature review, cellular inhibition, nuclear anomalies, and micronucleus index are some of the different impacts commonly known from pesticides. These chemical substances can cause cytogenetic alterations in a plant bioassay. Plant bioindicators such as Allium cepa L, Vicia faba L, Pisum sativum L, Lactuca sativa L, and Lens culinaris Med are very important and effective experimental models for identifying the cytogenotoxicity of pesticides. These have been available for many years. However, they are still used today for their effectiveness in detecting and monitoring chemical substances such as agrochemicals.
Collapse
Affiliation(s)
- Seir Antonio Salazar Mercado
- Laboratorio de Ciencias Básicas, Departamento de Biología, Universidad Francisco de Paula Santander, San José de Cúcuta, Colombia.
| | - Rubén Darío Carreño Correa
- Departamento de Ciencias Agrícolas y Pecuarias, Universidad Francisco De Paula Santander, Santander, San José de Cúcuta, Colombia
| |
Collapse
|
3
|
Ayhan BS, Kalefetoğlu Macar T, Macar O, Yalçın E, Çavuşoğlu K, Özkan B. A comprehensive analysis of royal jelly protection against cypermethrin-induced toxicity in the model organism Allium cepa L., employing spectral shift and molecular docking approaches. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:105997. [PMID: 39084771 DOI: 10.1016/j.pestbp.2024.105997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024]
Abstract
In this study, the toxicity of the pesticide cypermethrin and the protective properties of royal jelly against this toxicity were investigated using Allium cepa L., a model organism. Toxicity was evaluated using 6 mg/L cypermethrin, while royal jelly (250 mg/L and 500 mg/L) was used in combination with cypermethrin to test the protective effect. To comprehend toxicity and protective impact, growth, genotoxicity, biochemical, comet assay and anatomical parameters were employed. Royal jelly had no harmful effects when applied alone. On the other hand, following exposure to cypermethrin, there was a reduction in weight increase, root elongation, rooting percentage, mitotic index (MI), and chlorophyll a and b. Cypermethrin elevated the frequencies of micronucleus (MN) and chromosomal aberrations (CAs), levels of proline and malondialdehyde (MDA), and the activity rates of the enzymes catalase (CAT) and superoxide dismutase (SOD). A spectral change in the DNA spectrum indicated that the interaction of cypermethrin with DNA was one of the reasons for its genotoxicity, and molecular docking investigations suggested that tubulins, histones, and topoisomerases might also interact with this pesticide. Cypermethrin also triggered some critical meristematic cell damage in the root tissue. At the same time, DNA tail results obtained from the comet assay revealed that cypermethrin caused DNA fragmentation. When royal jelly was applied together with cypermethrin, all negatively affected parameters due to the toxicity of cypermethrin were substantially restored. However, even at the maximum studied dose of 500 mg/L of royal jelly, this restoration did not reach the levels of the control group. Thus, the toxicity of cypermethrin and the protective function of royal jelly against this toxicity in A. cepa, the model organism studied, were determined by using many different approaches. Royal jelly is a reliable, well-known and easily accessible protective functional food candidate against the harmful effects of hazardous substances such as pesticides.
Collapse
Affiliation(s)
| | - Tuğçe Kalefetoğlu Macar
- Giresun University, Şebinkarahisar School of Applied Sciences, Department of Food Technology, 28400 Giresun, Türkiye.
| | - Oksal Macar
- Giresun University, Şebinkarahisar School of Applied Sciences, Department of Food Technology, 28400 Giresun, Türkiye
| | - Emine Yalçın
- Giresun University, Şebinkarahisar School of Applied Sciences, Department of Food Technology, 28400 Giresun, Türkiye
| | - Kültiğin Çavuşoğlu
- Giresun University, Şebinkarahisar School of Applied Sciences, Department of Food Technology, 28400 Giresun, Türkiye
| | - Burak Özkan
- Giresun University, Faculty of Science and Art, Department of Biology, 28049 Giresun, Türkiye
| |
Collapse
|
4
|
Das R, Ray S. Allium cepa tests: Exploring bleomycin induced cyto-genotoxicity and altered cell cycle kinetics in root tips meristematic cells. Mutat Res 2024; 828:111851. [PMID: 38382175 DOI: 10.1016/j.mrfmmm.2024.111851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/21/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024]
Abstract
Bleomycin, commonly employed in treating Hodgkin's lymphoma and testicular cancer, is associated with significant pulmonary toxicity. While various studies have assessed the toxic impact of chemotherapeutic agents on aquatic and terrestrial environments, limited data exist on bleomycin's effects, especially concerning higher plants. To address this gap, we utilized the Allium cepa assays, renowned for evaluating chemical and biochemical agents' toxic effects, to investigate bleomycin's impact on the terrestrial ecosystem. Our study aimed to assess bleomycin's cyto-genotoxic effects on A. cepa root tip cells at minimal concentrations (10-40 μg mL-1) and varied exposure durations (2, 4, 6, and 24 h). Analysis of nuclear and mitotic abnormalities in bleomycin-treated A. cepa root tip cells, alongside an acridine orange-ethidium bromide double staining assay, illuminated its influence on cell viability. Additionally, agarose gel electrophoresis determined the drug's potential for DNA degradation, unveiling the underlying mechanisms of cyto-genotoxicity. Results also demonstrated a decline in the mitotic index with increased bleomycin concentrations and exposure time, elevated frequencies of various cyto-genotoxic abnormalities, including sticky chromosomes, chromatid breaks, laggards, bridges, polar deviations, nuclear lesions, and hyperchromasia. The study indicated the potential risks of bleomycin even at low concentrations and brief exposures, highlighting its severe adverse effects on genetic material of plant, potentially contributing to cell death. Consequently, this investigation unveils bleomycin's cyto-genotoxic effects on higher plant system, underscoring its threat to terrestrial ecosystems, particularly upon chronic and unmonitored exposure.
Collapse
Affiliation(s)
- Ria Das
- Molecular Biology and Genetics Unit, Department of Zoology, The University of Burdwan, Golapbag, Purba Bardhaman 713104, West Bengal, India
| | - Sanjib Ray
- Molecular Biology and Genetics Unit, Department of Zoology, The University of Burdwan, Golapbag, Purba Bardhaman 713104, West Bengal, India.
| |
Collapse
|
5
|
Barman M, Ray S. Cytogenotoxic effects of 3-epicaryoptin in Allium cepa L. root apical meristem cells. PROTOPLASMA 2023; 260:1163-1177. [PMID: 36735079 DOI: 10.1007/s00709-023-01838-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/23/2023] [Indexed: 06/07/2023]
Abstract
Diterpenoid 3-epicaryoptin (C26H36O9) is abundant in the leaves of Clerodendrum inerme, a traditionally used medicinal plant, and has insect antifeedant activities. Here, we aim to explore the cytogenotoxic effects of compound 3-epicaryoptin in Allium cepa root apical meristem cells. 3-epicaryoptin (concentrations of 100, 150, and 200 µg mL-1) and the standard compound colchicine (200 µg mL-1) were applied to A. cepa roots for 2, 4, and 4 + 16 h (4-h treatment followed by 16-h recovery). Cytogenotoxicity was analyzed by studying the root growth retardation (RGR), mitotic index (MI), and chromosomal aberrations. The result showed statistically significant (p < 0.01), concentration-dependent RGR effects of 3-epicaryoptin treatment compared with the negative control. A study of cell frequency in different phases of cell division observed a significant (p < 0.001) increase in the metaphase cell percentage (66.2 ± 0.58%, 150 µg mL-1), which subsequently caused an increase in the frequency of MI (12.29 ± 0.34%, 150 µg mL-1) at 4 h of 3-epicaryoptin treatment and that was comparable with the colchicine action. The cytological study revealed that the 3-epicaryoptin treatment could induce different types of chromosomal abnormalities, such as colchicine-like metaphase, vagrant chromosomes, sticky chromosomes, anaphase bridge, lagging chromosomes, multipolar anaphase-telophase, and an increased frequency of micronuclei and polyploid cells. These findings indicate that 3-epicaryoptin is cytogenotoxic, and thus, C. inerme should be used with caution in traditional medicine.
Collapse
Affiliation(s)
- Manabendu Barman
- Molecular Biology and Genetics Unit, Department of Zoology, The University of Burdwan, Purba Bardhaman-713104, Golapbag, West Bengal, India
| | - Sanjib Ray
- Molecular Biology and Genetics Unit, Department of Zoology, The University of Burdwan, Purba Bardhaman-713104, Golapbag, West Bengal, India.
| |
Collapse
|
6
|
Macar O, Kalefetoğlu Macar T, Çavuşoğlu K, Yalçın E, Acar A. Assessing the combined toxic effects of metaldehyde mollucide. Sci Rep 2023; 13:4888. [PMID: 36966255 PMCID: PMC10039924 DOI: 10.1038/s41598-023-32183-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 03/23/2023] [Indexed: 03/27/2023] Open
Abstract
The excessive use of metaldehyde in agriculture to combat mollusks endangers both the environment and non-target organisms. The aim of this study is to investigate the toxicity caused by metaldehyde in Allium cepa with the help of physiological, cytogenetic, biochemical and anatomical parameters. Also, DNA fragmentation caused by metaldehyde in root tip cells was measured by the "Comet Assay" method. The control group was germinated with tap water and the application groups were germinated with 20 mg/L metaldehyde, 40 mg/L metaldehyde, 100 mg/L metaldehyde and 200 mg/L metaldehyde for 72 h. The results of the physiological parameters showed that metaldehyde had a growth-limiting effect in A. cepa, depending on the application dose. According to root elongation levels, the EC50 (effective concentration) value for metaldehyde was 60.6 mg/L in A. cepa. As the treatment dose increased, the incidence of micronucleus and chromosomal aberrations gradually increased while mitotic index decreased. Metaldehyde exposure induced damages such as sticky chromosome, fragment, unequal distribution of chromatin, reverse polarization, bridge, and multipolar anaphase. In addition, metaldehyde caused cell damage in epidermis and cortex, thickening of the cortex cell wall and flattened cell nucleus in root meristem. Increasing doses of metaldehyde application also increased malondialdehyde levels, superoxide dismutase and catalase activities. As a result, it has been determined that the toxicity of metaldehyde in plants is versatile and the A. cepa test material is a suitable biological indicator to determine this toxicity.
Collapse
Affiliation(s)
- Oksal Macar
- Department of Food Technology, Şebinkarahisar School of Applied Sciences, Giresun University, Giresun, Turkey.
| | - Tuğçe Kalefetoğlu Macar
- Department of Food Technology, Şebinkarahisar School of Applied Sciences, Giresun University, Giresun, Turkey
| | - Kültiğin Çavuşoğlu
- Faculty of Science and Art, Department of Biology, Giresun University, Giresun, Turkey
| | - Emine Yalçın
- Faculty of Science and Art, Department of Biology, Giresun University, Giresun, Turkey
| | - Ali Acar
- Department of Medical Services and Techniques, Vocational School of Health Services, Giresun University, Giresun, Turkey
| |
Collapse
|
7
|
Menzyanova NG, Shishatskaya EI, Pyatina SA, Volova TG. Cytogenotoxic activity of herbicidal and fungicidal pesticides on Triticum aestivum root meristem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87602-87612. [PMID: 35818017 DOI: 10.1007/s11356-022-21936-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Phytotoxicity, cytotoxicity and genotoxicity of pesticides with various mechanisms of targeted activity were studied in a hydroponic culture of 2-day-old seedlings of Triticum aestivum. All studied pesticides (with the exception of metribuzin) exhibited dose-dependent phytotoxicity (inhibited the growth of the main root and reduced the yield of root biomass). All studied pesticides did not affect mitotic index in the root apex meristem but did affect the duration of some phases of mitosis. Herbicides increased, while fungicides, on the contrary, decreased the duration of the cytokinesis phase. All pesticides (1 μg/mL) exhibited genotoxic activity: in the root apex meristem the number of cells with mitotic abnormalities was significantly higher than in the control variant (7-14 times). The genotoxic activity of metribuzin and tebuconazole was 2 times lower than for tribenuron-methyl, fenoxaprop-P-ethyl, epoxiconazole and azoxystrobin. The genotoxicity of the studied pesticides was combined: depending on the class of the pesticide, clastogenic or aneugenous effects dominated.
Collapse
Affiliation(s)
| | - Ekaterina Igorevna Shishatskaya
- Siberian Federal University, 79 Svobodnyi av., Krasnoyarsk, 660041, Russia.
- Institute of Biophysics SB RAS, Federal Research Center 'Krasnoyarsk Science Center SB RAS', 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia.
| | | | - Tatiana Grigorievna Volova
- Siberian Federal University, 79 Svobodnyi av., Krasnoyarsk, 660041, Russia
- Institute of Biophysics SB RAS, Federal Research Center 'Krasnoyarsk Science Center SB RAS', 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| |
Collapse
|
8
|
Park W, Lim W, Song G. Exposure to fipronil induces cell cycle arrest, DNA damage, and apoptosis in porcine trophectoderm and endometrial epithelium, leading to implantation defects during early pregnancy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118234. [PMID: 34582916 DOI: 10.1016/j.envpol.2021.118234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/13/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Fipronil, a phenyl-pyrazole insecticide, has a wide range of uses, from agriculture to veterinary medicine. Due to its large-scale applications, the risk of environmental and occupational exposure and bioaccumulation raises concerns. Moreover, relatively little is known about the intracellular mechanisms of fipronil in trophoblasts and the endometrium involved in implantation. Here, we demonstrated that fipronil reduced the viability of porcine trophectoderm and luminal epithelial cells. Fipronil induced cell cycle arrest at the sub-G1 phase and apoptotic cell death through DNA fragmentation and inhibition of DNA replication. These reactions were accompanied by homeostatic changes, including mitochondrial depolarization and cytosolic calcium depletion. In addition, we found that exposure to fipronil compromised the migration and implantation ability of pTr and pLE cells. Moreover, alterations in PI3K-AKT and MAPK-ERK1/2 signal transduction were observed in fipronil-treated pTr and pLE cells. Finally, the antiproliferative and apoptotic effects of fipronil were also demonstrated in 3D cell culture conditions. In summary, our results suggest that fipronil impairs implantation potentials in fetal trophectoderm and maternal endometrial cells during early pregnancy.
Collapse
Affiliation(s)
- Wonhyoung Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
9
|
Park W, Park S, Lim W, Song G. Bifenthrin reduces pregnancy potential via induction of oxidative stress in porcine trophectoderm and uterine luminal epithelial cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147143. [PMID: 33901951 DOI: 10.1016/j.scitotenv.2021.147143] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/24/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Exposure to pesticides has become a serious concern for the environment and human health. Bifenthrin, a synthetic pyrethroid pesticide, is one of the most frequently used pesticides worldwide. Despite the toxic potential of bifenthrin, no studies have elucidated the cytotoxic response of bifenthrin in maternal and fetal cells that are involved in the implantation process. In this study, the cytotoxic effect of bifenthrin was investigated using porcine trophectoderm (pTr) and uterine luminal epithelial (pLE) cells. The results showed that bifenthrin suppressed cell proliferation and viability in pTr and pLE cells. In particular, bifenthrin induced cell cycle arrest, resulting in apoptosis in both cell lines. We found that bifenthrin damaged the mitochondria and induced the production of reactive oxygen species, causing endoplasmic reticulum stress and calcium dysregulation in pTr and pLE cells. Finally, bifenthrin altered the MAPK/PI3K signaling pathway and pregnancy-related gene expression. Collectively, our results suggest that bifenthrin reduces the implantation potential of embryos and may help elucidate the mechanisms underlying toxin-derived cytotoxicity in maternal and fetal cells.
Collapse
Affiliation(s)
- Wonhyoung Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sunwoo Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
10
|
Kalefetoğlu Macar T. Investigation of cytotoxicity and genotoxicity of abamectin pesticide in Allium cepa L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:2391-2399. [PMID: 32888152 DOI: 10.1007/s11356-020-10708-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
The present study was conducted to investigate the cytotoxicity and genotoxicity induced by abamectin pesticide in Allium cepa L. bulbs. Following 72-h exposure to different doses (0.025 ml/L, 0.050 ml/L, and 0.100 ml/L) of abamectin, growth level, micronuclei abundance, mitotic index, chromosomal aberrations, malondialdehyde content, meristematic cell damages, and total activities of superoxide dismutase and catalase were explored. The results revealed that all concentrations of abamectin were capable of inducing significant and dose-dependent changes in all parameters. Increasing doses of abamectin caused remarkable decreases in germination ratio, weight gain, and root elongation. Due to abamectin-induced genotoxicity, the mitotic index declined, while chromosomal abnormalities listed as micronucleus, fragment, sticky chromosome, unequal distribution of chromatin, bridge, vacuole nucleus, nucleus damage, and multipolar anaphase. Depending on the oxidative stress caused by abamectin administration, the total activities of superoxide dismutase and catalase enzymes increased significantly along with the malondialdehyde content. Indistinct transmission tissue, epidermis cell deformation and flattened cell nucleus were the meristematic cell damages in pesticide-applied groups. Findings of the present study revealed that abamectin is a risky pesticide with a variety of cytotoxic and genotoxic effects in non-targeted organisms. A. cepa is a promising material for biomonitoring the toxicity of abamectin.
Collapse
Affiliation(s)
- Tuğçe Kalefetoğlu Macar
- Şebinkarahisar School of Applied Sciences, Department of Food Technology, Giresun University, 28400, Giresun, Turkey.
| |
Collapse
|