1
|
Xie J, Zhu H, Zhao S, Ma Y, Shi P, Zhan X, Tian W, Wang Y. Identification and analysis of biomarkers associated with oxidative stress and ferroptosis in recurrent miscarriage. Medicine (Baltimore) 2024; 103:e38875. [PMID: 39029052 PMCID: PMC11398789 DOI: 10.1097/md.0000000000038875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
Recurrent miscarriage (RM) has a huge impact on women. Both oxidative stress and ferroptosis play an important role in the pathogenesis of RM. Hence, it was vital to screen the ferroptosis oxidation-related biomarkers for the diagnosis and treatment of RM. We introduced transcript data to screen out differentially expressed genes (DEGs) in RM. Ferroptosis oxidation-related differentially expressed genes were obtained by overlapping DEGs and oxidative stress related genes with correlations >0.9 with ferroptosis-related genes. Least Absolute Shrinkage and Selectionator operator regression and support vector machine based recursive feature elimination algorithm were implemented to screen feature genes. The biomarkers associated with ferroptosis oxidation were screened via receiver operating characteristic curve analysis. We finally analyzed the competing endogenous RNAs regulatory network and potential drugs of biomarkers. We identified 1047 DEGs in RM. Then, 9 ferroptosis oxidation-related differentially expressed genes were obtained via venn diagram. Subsequently, 8 feature genes (PTPN6, GJA1, HMOX1, CPT1A, CREB3L1, SNCA, EPAS1, and TGM2) were identified via machine learning. Moreover, 4 biomarkers associated with ferroptosis oxidation, including PTPN6, GJA1, CPT1A, and CREB3L1, were screened via receiver operating characteristic curve analysis. We constructed the '227 long noncoding RNAs-4 mRNAs-36 microRNAs' network, in which hsa-miR-635 was associated with CREB3L1 and PTPN6. There were 11 drugs with therapeutic potential on 3 biomarkers associated with ferroptosis oxidation. We also observed higher expression of CPT1A and CREB3L1 in RM group compared to the healthy control group by quantitative real-time reverse transcription polymerase chain reaction. Overall, we obtained 4 biomarkers (PTPN6, GJA1, CPT1A, and CREB3L1) associated with ferroptosis and oxidative stress, which laid a theoretical foundation for the diagnosis and treatment of RM.
Collapse
Affiliation(s)
- Jinxia Xie
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongli Zhu
- Xi'an Gynecology and Obstetrics Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Shaozhi Zhao
- Xi'an Gynecology and Obstetrics Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yongqin Ma
- Xi'an Gynecology and Obstetrics Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Panpan Shi
- Xi'an Gynecology and Obstetrics Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xuxin Zhan
- Xi'an Gynecology and Obstetrics Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Wenyan Tian
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
2
|
Lee S, Cho Y, Li Y, Li R, Brown D, McAuliffe P, Lee AV, Oesterreich S, Zervantonakis IK, Osmanbeyoglu HU. Cancer-cell derived S100A11 promotes macrophage recruitment in ER+ breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586041. [PMID: 38585952 PMCID: PMC10996512 DOI: 10.1101/2024.03.21.586041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Macrophages are pivotal in driving breast tumor development, progression, and resistance to treatment, particularly in estrogen receptor-positive (ER+) tumors, where they infiltrate the tumor microenvironment (TME) influenced by cancer cell-secreted factors. By analyzing single-cell RNA-sequencing data from 25 ER+ tumors, we elucidated interactions between cancer cells and macrophages, correlating macrophage density with epithelial cancer cell density. We identified that S100A11, a previously unexplored factor in macrophage-cancer crosstalk, predicts high macrophage density and poor outcomes in ER+ tumors. We found that recombinant S100A11 enhances macrophage infiltration and migration in a dose-dependent manner. Additionally, in 3D models, we showed that S100A11 expression levels in ER+ cancer cells predict macrophage infiltration patterns. Neutralizing S100A11 decreased macrophage recruitment, both in cancer cell lines and in a clinically relevant patient-derived organoid model, underscoring its role as a paracrine regulator of cancer-macrophage interactions in the protumorigenic TME. This study offers novel insights into the interplay between macrophages and cancer cells in ER+ breast tumors, highlighting S100A11 as a potential therapeutic target to modulate the macrophage-rich tumor microenvironment.
Collapse
Affiliation(s)
- Sanghoon Lee
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, 15206, U.S.A
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, 15213 U.S.A
| | - Youngbin Cho
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, 15213 U.S.A
- Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, U.S.A
| | - Yiting Li
- Women’s Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Magee-Womens Research Institute, Pittsburgh, PA, 15213, U.S.A
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, U.S.A
| | - Ruxuan Li
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, 15213 U.S.A
- Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, U.S.A
| | - Daniel Brown
- Women’s Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Magee-Womens Research Institute, Pittsburgh, PA, 15213, U.S.A
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, U.S.A
| | - Priscilla McAuliffe
- Women’s Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Magee-Womens Research Institute, Pittsburgh, PA, 15213, U.S.A
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, U.S.A
| | - Adrian V Lee
- Women’s Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Magee-Womens Research Institute, Pittsburgh, PA, 15213, U.S.A
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, U.S.A
| | - Steffi Oesterreich
- Women’s Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Magee-Womens Research Institute, Pittsburgh, PA, 15213, U.S.A
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, U.S.A
| | - Ioannis K. Zervantonakis
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, 15213 U.S.A
- Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, U.S.A
| | - Hatice Ulku Osmanbeyoglu
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, 15206, U.S.A
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, 15213 U.S.A
- Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, U.S.A
| |
Collapse
|
3
|
Xu K, Fu A, Li Z, Miao L, Lou Z, Jiang K, Lau C, Su T, Tong T, Bao J, Lyu A, Kwan HY. Elevated extracellular matrix protein 1 in circulating extracellular vesicles supports breast cancer progression under obesity conditions. Nat Commun 2024; 15:1685. [PMID: 38402239 PMCID: PMC10894219 DOI: 10.1038/s41467-024-45995-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024] Open
Abstract
The cargo content in small extracellular vesicles (sEVs) changes under pathological conditions. Our data shows that in obesity, extracellular matrix protein 1 (ECM1) protein levels are significantly increased in circulating sEVs, which is dependent on integrin-β2. Knockdown of integrin-β2 does not affect cellular ECM1 protein levels but significantly reduces ECM1 protein levels in the sEVs released by these cells. In breast cancer (BC), overexpressing ECM1 increases matrix metalloproteinase 3 (MMP3) and S100A/B protein levels. Interestingly, sEVs purified from high-fat diet-induced obesity mice (D-sEVs) deliver more ECM1 protein to BC cells compared to sEVs from control diet-fed mice. Consequently, BC cells secrete more ECM1 protein, which promotes cancer cell invasion and migration. D-sEVs treatment also significantly enhances ECM1-mediated BC metastasis and growth in mouse models, as evidenced by the elevated tumor levels of MMP3 and S100A/B. Our study reveals a mechanism and suggests sEV-based strategies for treating obesity-associated BC.
Collapse
Affiliation(s)
- Keyang Xu
- Centre for Cancer & Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Ai Fu
- Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhaoyi Li
- Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liangbin Miao
- Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhonghan Lou
- Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Keying Jiang
- Centre for Cancer & Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Condon Lau
- Department of Physics, City University of Hong Kong, Hong Kong, China
| | - Tao Su
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tiejun Tong
- Department of Mathematics, Hong Kong Baptist University, Hong Kong, China
| | - Jianfeng Bao
- Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Aiping Lyu
- Centre for Cancer & Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Systems Medicine and Health Sciences, Hong Kong Baptist University, Hong Kong, China.
| | - Hiu Yee Kwan
- Centre for Cancer & Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Systems Medicine and Health Sciences, Hong Kong Baptist University, Hong Kong, China.
- Institute of Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China.
| |
Collapse
|
4
|
Thankamony AP, Ramkomuth S, Ramesh ST, Murali R, Chakraborty P, Karthikeyan N, Varghese BA, Jaikumar VS, Jolly MK, Swarbrick A, Nair R. Phenotypic heterogeneity drives differential disease outcome in a mouse model of triple negative breast cancer. Front Oncol 2023; 13:1230647. [PMID: 37841442 PMCID: PMC10570535 DOI: 10.3389/fonc.2023.1230647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/24/2023] [Indexed: 10/17/2023] Open
Abstract
The triple negative breast cancer (TNBC) subtype is one of the most aggressive forms of breast cancer that has poor clinical outcome and is an unmet clinical challenge. Accumulating evidence suggests that intratumoral heterogeneity or the presence of phenotypically distinct cell populations within a tumor play a crucial role in chemoresistance, tumor progression and metastasis. An increased understanding of the molecular regulators of intratumoral heterogeneity is crucial to the development of effective therapeutic strategies in TNBC. To this end, we used an unbiased approach to identify a molecular mediator of intratumoral heterogeneity in breast cancer by isolating two tumor cell populations (T1 and T2) from the 4T1 TNBC model. Phenotypic characterization revealed that the cells are different in terms of their morphology, proliferation and self-renewal ability in vitro as well as primary tumor formation and metastatic potential in vivo. Bioinformatic analysis followed by Kaplan Meier survival analysis in TNBC patients identified Metastasis associated colon cancer 1 (Macc1) as one of the top candidate genes mediating the aggressive phenotype in the T1 tumor cells. The role of Macc1 in regulating the proliferative phenotype was validated and taken forward in a therapeutic context with Lovastatin, a small molecule transcriptional inhibitor of Macc1 to target the T1 cell population. This study increases our understanding of the molecular underpinnings of intratumoral heterogeneity in breast cancer that is critical to improve the treatment of women currently living with the highly aggressive TNBC subtype.
Collapse
Affiliation(s)
- Archana P. Thankamony
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Sonny Ramkomuth
- The Kinghorn Cancer Centre and Cancer Research Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Shikha T. Ramesh
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Reshma Murali
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| | - Priyanka Chakraborty
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | | | | | | | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Alexander Swarbrick
- The Kinghorn Cancer Centre and Cancer Research Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Radhika Nair
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
- Centre for Human Genetics, Bangalore, India
| |
Collapse
|
5
|
Mandarino A, Thiyagarajan S, Martins ACF, Gomes RDS, Vetter SW, Leclerc E. S100s and HMGB1 Crosstalk in Pancreatic Cancer Tumors. Biomolecules 2023; 13:1175. [PMID: 37627239 PMCID: PMC10452588 DOI: 10.3390/biom13081175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Pancreatic cancer remains a disease that is very difficult to treat. S100 proteins are small calcium binding proteins with diverse intra- and extracellular functions that modulate different aspects of tumorigenesis, including tumor growth and metastasis. High mobility group box 1 (HMGB1) protein is a multifaceted protein that also actively influences the development and progression of tumors. In this study, we investigate the possible correlations, at the transcript level, between S100s and HMGB1 in pancreatic cancer. For this purpose, we calculated Pearson's correlations between the transcript levels of 13 cancer-related S100 genes and HMGB1 in a cDNA array containing 19 pancreatic cancer tumor samples, and in 8 human pancreatic cancer cell lines. Statistically significant positive correlations were found in 5.5% (5 out of 91) and 37.4% (34 of 91) of the possible S100/S100 or S100/HMGB1 pairs in cells and tumors, respectively. Our data suggest that many S100 proteins crosstalk in pancreatic tumors either with other members of the S100 family, or with HMGB1. These newly observed interdependencies may be used to further the characterization of pancreatic tumors based on S100 and HMGB1 transcription profiles.
Collapse
Affiliation(s)
| | | | | | | | | | - Estelle Leclerc
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
6
|
Daily A, Ravishankar P, Wang W, Krone R, Harms S, Klimberg VS. Development and validation of a short-term breast health measure as a supplement to screening mammography. Biomark Res 2022; 10:76. [PMID: 36284356 PMCID: PMC9594920 DOI: 10.1186/s40364-022-00420-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022] Open
Abstract
Background There is a growing body of evidence to support tears as a non-traditional biological fluid in clinical laboratory testing. In addition to the simplicity of tear fluid processing, the ability to access key cancer biomarkers in high concentrations quickly and inexpensively is significantly enhanced. Tear fluid is a dynamic environment rich in both proteomic and genomic information, making it an ideal medium for exploring the potential for biological testing modalities. Methods All protocols involving human subjects were reviewed and approved by the University of Arkansas IRB committee (13-11-289) prior to sample collection. Study enrollment was open to women ages 18 and over from October 30, 2017-June 19, 2019 at The Breast Center, Fayetteville, AR and Bentonville, AR. Convenience sampling was used and samples were age/sex matched, with enrollment open to individuals at any point of the breast health continuum of care. Tear samples were collected using the Schirmer strip method from 847 women. Concentration of selected tear proteins were evaluated using standard sandwich ELISA techniques and the resulting data, combined with demographic and clinical covariates, was analyzed using logistic regression analysis to build a model for classification of samples. Results Logistic regression analysis produced three models, which were then evaluated on cases and controls at two diagnostic thresholds and resulted in sensitivity ranging from 52 to 90% and specificity from 31 to 79%. Sensitivity and specificity variation is dependent on the model being evaluated as well as the selected diagnostic threshold providing avenues for assay optimization. Conclusions and relevance The work presented here builds on previous studies focused on biomarker identification in tear samples. Here we show successful early classification of samples using two proteins and minimal clinical covariates. Supplementary Information The online version contains supplementary material available at 10.1186/s40364-022-00420-1.
Collapse
Affiliation(s)
| | | | | | | | - Steve Harms
- The Breast Center-Medical Associates of Northwest Arkansas, Fayetteville, AR USA
| | - V. Suzanne Klimberg
- grid.176731.50000 0001 1547 9964Department of Surgery, University of Texas Medical Branch, Galveston, TX USA ,grid.240145.60000 0001 2291 4776Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| |
Collapse
|
7
|
Xiao J, McGill JR, Nasir A, Lekan A, Johnson B, Wilkins DJ, Pearson GW, Tanner K, Goodarzi H, Glasgow E, Schlegel R, Agarwal S. Identifying drivers of breast cancer metastasis in progressively invasive subpopulations of zebrafish-xenografted MDA-MB-231. MOLECULAR BIOMEDICINE 2022; 3:16. [PMID: 35614362 PMCID: PMC9133282 DOI: 10.1186/s43556-022-00080-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/09/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer metastasis is the primary cause of the high mortality rate among human cancers. Efforts to identify therapeutic agents targeting cancer metastasis frequently fail to demonstrate efficacy in clinical trials despite strong preclinical evidence. Until recently, most preclinical studies used mouse models to evaluate anti-metastatic agents. Mouse models are time-consuming and expensive. In addition, an important drawback is that mouse models inadequately model the early stages of metastasis which plausibly leads to the poor correlation with clinical outcomes. Here, we report an in vivo model based on xenografted zebrafish embryos where we select for progressively invasive subpopulations of MDA-MB-231 breast cancer cells. A subpopulation analogous to circulating tumor cells found in human cancers was selected by injection of MDA-MB-231 cells into the yolk sacs of 2 days post-fertilized zebrafish embryos and selecting cells that migrated to the tail. The selected subpopulation derived from MDA-MB-231 cells were increasingly invasive in zebrafish. Isolation of these subpopulations and propagation in vitro revealed morphological changes consistent with activation of an epithelial-mesenchymal transition program. Differential gene analysis and knockdown of genes identified gene-candidates (DDIT4, MT1X, CTSD, and SERPINE1) as potential targets for anti-metastasis therapeutics. Furthermore, RNA-splicing analysis reinforced the importance of BIRC5 splice variants in breast cancer metastasis. This is the first report using zebrafish to isolate and expand progressively invasive populations of human cancer cells. The model has potential applications in understanding the metastatic process, identification and/or development of therapeutics that specifically target metastatic cells and formulating personalized treatment strategies for individual cancer patients.
Collapse
Affiliation(s)
- Jerry Xiao
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC, USA.,Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Joseph R McGill
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Apsra Nasir
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Alexander Lekan
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC, USA
| | - Bailey Johnson
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Devan J Wilkins
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC, USA.,Eastern Virginia Medical School, Norfolk, VA, USA
| | - Gray W Pearson
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Eric Glasgow
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Richard Schlegel
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC, USA
| | - Seema Agarwal
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC, USA.
| |
Collapse
|
8
|
Reis JC, Travado L, Seixas E, Sousa B, Antoni MH. Low social and family well-being is associated with greater RAGE ligand s100A8/A9 and interleukin-1 beta levels in metastatic breast cancer patients. Brain Behav Immun Health 2022; 21:100433. [PMID: 35243410 PMCID: PMC8885603 DOI: 10.1016/j.bbih.2022.100433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
Greater inflammatory signaling has been shown to promote breast cancer disease progression and poorer clinical outcomes. Lower social support and social well-being have been related to greater inflammatory signaling and poorer clinical outcomes in women with non-metastatic breast cancer, and this appears to be independent of depression. However, little is known about these associations in women with metastatic disease. s100A8/A9 and interleukin 1 beta (IL-1β) proteins are widely studied in breast cancer and are considered as biomarkers of cancer progression or as having a causal role in carcinogenesis and cancer progression and metastasis via inflammatory signaling. The aim of this study was to examine the associations between less social/family well-being (SWB) and S100A8/A9 and IL-1β levels in women diagnosed with metastatic breast cancer. Sixty women (Mean age 58.95 ± 1.49) with a diagnosis of metastatic breast cancer participated in the study. The Functional Assessment of Cancer Therapy (FACT) social and family well-being (SWB) subscale and the Hospital Anxiety Depression Scale (HADS) were administered to patients undergoing a first- or second-line endocrine or oral chemotherapy treatment and who were not experiencing brain metastasis or visceral crisis. Salivary s100A8/A9 and IL-1β levels were assessed at 5PM on two consecutive days and averaged. Multiple regression tested the independent contribution of SWB on s100 A8/A9 and IL-1b while controlling for depression. Lower levels of SWB were associated with greater S100A8/A9 (ß = -0.345, p = 0.007) and IL-1β (ß = -0.286, p = 0.027) levels and these associations remained significant after controlling for depression. This work provides new evidence for the role of decreased SWB and greater s100A8/A9 and IL-1b levels in patients diagnosed with metastatic breast cancer. Psychosocial interventions that promote social support and positive social interactions through interpersonal skills may help metastatic breast cancer patients to improve their SWB. This may have salutary effects on cancer-promoting processes, which could provide psychological and physical health benefits.
Collapse
Affiliation(s)
- Joaquim C Reis
- Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Luzia Travado
- Breast Unit, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
| | - Elsa Seixas
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Berta Sousa
- Breast Unit, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
| | - Michael H Antoni
- Department of Psychology, University of Miami, and Sylvester Comprehensive Cancer Center, Cancer Control Program, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
9
|
Chromatin complexes subunit BAP18 promotes triple-negative breast cancer progression through transcriptional activation of oncogene S100A9. Cell Death Dis 2022; 13:408. [PMID: 35484101 PMCID: PMC9050672 DOI: 10.1038/s41419-022-04785-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/01/2022] [Accepted: 03/21/2022] [Indexed: 12/02/2022]
Abstract
Triple-negative breast cancer (TNBC) is a highly lethal disease due to aggressive clinical phenotype and the lack of validated therapeutic targets. Our recent quantitative proteomic analysis of 90 cases of TNBC tissues and 72 cases of matched adjacent normal tissues revealed that the expression levels of BPTF-associated protein of 18 KDa (BAP18), a component of the MLL1 and NURF chromatin complexes, were upregulated in TNBC tissues relative to normal tissues. However, the biological function and the underlying mechanism of BAP18 in TNBC progression remain unexplored. Here, we report that BAP18 promoted TNBC cell proliferation, migration, and invasion in vitro and xenograft tumor growth and lung colonization in vivo. Mechanistic investigations revealed that S100 calcium-binding protein A9 (S100A9), a member of the S100 protein family that is frequently upregulated in breast tumors and acts as an oncogenic driver in breast cancer progression, was a downstream target gene of BAP18. BAP18 was recruited to histone H3 trimethylation at lysine 4 (H3K4me3)-marked promoter of S100A9 and enhanced its promoter activities. Notably, knockdown of BAP18 by short hairpin RNA in TNBC cells suppressed xenograft tumor growth in mice, the noted effect was partially reverted by re-expression of S100A9 in BAP18-depleted cells. Taken together, these results suggest that BAP18 promotes TNBC progression through, at least in part, transcriptional activation of oncogene S100A9, and represents a potential therapeutic target for TNBC.
Collapse
|
10
|
Daily A, Ravishankar P, Harms S, Klimberg VS. Using tears as a non-invasive source for early detection of breast cancer. PLoS One 2022; 17:e0267676. [PMID: 35471994 PMCID: PMC9041847 DOI: 10.1371/journal.pone.0267676] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/13/2022] [Indexed: 11/19/2022] Open
Abstract
The changing expression levels of ocular proteins in response to systemic disease has been well established in literature. In this study, we examined the ocular proteome to identify protein biomarkers with altered expression levels in women diagnosed with breast cancer. Tear samples were collected from 273 participants using Schirmer strip collection methods. Following protein elution, proteome wide trypsin digestion with Liquid chromatography/tandem mass spectrometry (LC-MS/MS) was used to identify potential protein biomarkers with altered expression levels in breast cancer patients. Selected biomarkers were further validated by enzyme linked immunosorbent assay (ELISA). A total of 102 individual tear samples (51 breast cancer, 51 control) were analyzed by LC-MS/MS which identified 301 proteins. Spectral intensities between the groups were compared and 14 significant proteins (p-value <0.05) were identified as potential biomarkers in breast cancer patients. Three biomarkers, S100A8 (p-value = 0.0069, 7.8-fold increase), S100A9 (p-value = 0.0048, 10.2-fold increase), and Galectin-3 binding protein (p-value = 0.01, 3.0-fold increase) with an increased expression in breast cancer patients were selected for validation using ELISA. Validation by ELISA was conducted using 171 individual tear samples (75 Breast Cancer and 96 Control). Similar to the observed LC-MS/MS results, S100A8 (p-value <0.0001) and S100A9 (p-value <0.0001) showed significantly higher expression in breast cancer patients. However, galectin-3 binding protein had increased expression in the control group. Our results provide further support for using tear proteins to detect non-ocular systemic diseases such as breast cancer. Our work provides crucial details to support the continued evaluation of tear samples in the screening and diagnosis of breast cancer and paves the way for future evaluation of the tear proteome for screening and diagnosis of systemic diseases.
Collapse
Affiliation(s)
- Anna Daily
- Namida Lab Inc, Fayetteville, Arkansas, United States of America
- * E-mail:
| | | | - Steve Harms
- Namida Lab Inc, Fayetteville, Arkansas, United States of America
- The Breast Center-Medical Associates of Northwest Arkansas, Fayetteville, Arkansas, United States of America
| | - V. Suzanne Klimberg
- Namida Lab Inc, Fayetteville, Arkansas, United States of America
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States of America
- Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
11
|
Zhang Q, Xia T, Qi C, Du J, Ye C. High expression of S100A2 predicts poor prognosis in patients with endometrial carcinoma. BMC Cancer 2022; 22:77. [PMID: 35042454 PMCID: PMC8764844 DOI: 10.1186/s12885-022-09180-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background S100A2, a member of the S100 protein family, is abnormally expressed and plays a vital role in multiple cancers. However, little is known about the clinical significance of S100A2 in endometrial carcinoma. Methods Clinicopathological data were obtained from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), Gene Expression Omnibus (GEO), and Clinical Proteomic Tumor Analysis Consortium (CPTAC). First, the expression and prognostic value of different S100 family members in endometrial carcinoma were evaluated. Subsequently, the Kaplan–Meier plotter and Cox regression analysis were used to assess the prognostic significance of S100A2, while the association between S100A2 expression and clinical characteristics in endometrial carcinoma was also analyzed using logistic regression. A receiver operating characteristic (ROC) curve and a nomogram were constructed. The putative underlying cellular mechanisms were explored using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and gene set enrichment analysis (GSEA). Results Our results revealed that S100A2 expression was significantly higher in endometrial carcinoma tissue than in non-cancerous tissue at both the mRNA and protein levels. Analysis of Kaplan–Meier plotter data revealed that patients with high S100A2 expression had shorter overall survival (OS) and disease specific survival (DSS) compared with those of patients with low S100A2 expression. Multivariate Cox analysis further confirmed that high S100A2 expression was an independent risk factor for OS in patients with endometrial carcinoma. Other clinicopathologic features found to be related to worse prognosis in endometrial carcinoma included age, clinical stage, histologic grade, and tumor invasion. Importantly, ROC analysis also confirmed that S100A2 has a high diagnostic value in endometrial carcinoma. KEGG enrichment analysis and GSEA revealed that the estrogen and IL-17 signaling pathways were significantly upregulated in the high S100A2 expression group, in which estrogen response, JAK-STAT3, K-Ras, and TNFα/NF-κB were differentially enriched. Conclusions S100A2 plays an important role in endometrial carcinoma progression and may represent an independent diagnostic and prognostic biomarker for endometrial carcinoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09180-5.
Collapse
|
12
|
Bharadwaj AG, Kempster E, Waisman DM. The ANXA2/S100A10 Complex—Regulation of the Oncogenic Plasminogen Receptor. Biomolecules 2021; 11:biom11121772. [PMID: 34944416 PMCID: PMC8698604 DOI: 10.3390/biom11121772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
The generation of the serine protease plasmin is initiated by the binding of its zymogenic precursor, plasminogen, to cell surface receptors. The proteolytic activity of plasmin, generated at the cell surface, plays a crucial role in several physiological processes, including fibrinolysis, angiogenesis, wound healing, and the invasion of cells through both the basement membrane and extracellular matrix. The seminal observation by Albert Fischer that cancer cells, but not normal cells in culture, produce large amounts of plasmin formed the basis of current-day observations that plasmin generation can be hijacked by cancer cells to allow tumor development, progression, and metastasis. Thus, the cell surface plasminogen-binding receptor proteins are critical to generating plasmin proteolytic activity at the cell surface. This review focuses on one of the twelve well-described plasminogen receptors, S100A10, which, when in complex with its regulatory partner, annexin A2 (ANXA2), forms the ANXA2/S100A10 heterotetrameric complex referred to as AIIt. We present the theme that AIIt is the quintessential cellular plasminogen receptor since it regulates the formation and the destruction of plasmin. We also introduce the term oncogenic plasminogen receptor to define those plasminogen receptors directly activated during cancer progression. We then discuss the research establishing AIIt as an oncogenic plasminogen receptor-regulated during EMT and activated by oncogenes such as SRC, RAS, HIF1α, and PML-RAR and epigenetically by DNA methylation. We further discuss the evidence derived from animal models supporting the role of S100A10 in tumor progression and oncogenesis. Lastly, we describe the potential of S100A10 as a biomarker for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Alamelu G. Bharadwaj
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (A.G.B.); (E.K.)
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | - Emma Kempster
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (A.G.B.); (E.K.)
| | - David M. Waisman
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (A.G.B.); (E.K.)
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
- Correspondence: ; Tel.: +1-(902)-494-1803; Fax: +1-(902)-494-1355
| |
Collapse
|
13
|
Proteomic Research on the Antitumor Properties of Medicinal Mushrooms. Molecules 2021; 26:molecules26216708. [PMID: 34771120 PMCID: PMC8588050 DOI: 10.3390/molecules26216708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022] Open
Abstract
Medicinal mushrooms are increasingly being recognized as an important therapeutic modality in complementary oncology. Until now, more than 800 mushroom species have been known to possess significant pharmacological properties, of which antitumor and immunomodulatory properties have been the most researched. Besides a number of medicinal mushroom preparations being used as dietary supplements and nutraceuticals, several isolates from mushrooms have been used as official antitumor drugs in clinical settings for several decades. Various proteomic approaches allow for the identification of a large number of differentially regulated proteins serendipitously, thereby providing an important platform for a discovery of new potential therapeutic targets and approaches as well as biomarkers of malignant disease. This review is focused on the current state of proteomic research into antitumor mechanisms of some of the most researched medicinal mushroom species, including Phellinus linteus, Ganoderma lucidum, Auricularia auricula, Agrocybe aegerita, Grifola frondosa, and Lentinus edodes, as whole body extracts or various isolates, as well as of complex extract mixtures.
Collapse
|
14
|
Mahmood RI, Abbass AK, Razali N, Al-Saffar AZ, Al-Obaidi JR. Protein profile of MCF-7 breast cancer cell line treated with lectin delivered by CaCO 3NPs revealed changes in molecular chaperones, cytoskeleton, and membrane-associated proteins. Int J Biol Macromol 2021; 184:636-647. [PMID: 34174302 DOI: 10.1016/j.ijbiomac.2021.06.144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 02/09/2023]
Abstract
The second most predominant cancer in the world and the first among women is breast cancer. We aimed to study the protein abundance profiles induced by lectin purified from the Agaricus bisporus mushroom (ABL) and conjugated with CaCO3NPs in the MCF-7 breast cancer cell line. Two-dimensional electrophoresis (2-DE) and orbitrap mass spectrometry techniques were used to reveal the protein abundance pattern induced by lectin. Flow cytometric analysis showed the accumulation of ABL-CaCO3NPs treated cells in the G1 phase than the positive control. Thirteen proteins were found different in their abundance in breast cancer cells after 24 h exposure to lectin conjugated with CaCO3NPs. Most of the identified proteins were showing a low abundance in ABL-CaCO3NPs treated cells in comparison to the positive and negative controls, including V-set and immunoglobulin domain, serum albumin, actin cytoplasmic 1, triosephosphate isomerase, tropomyosin alpha-4 chain, and endoplasmic reticulum chaperone BiP. Hornerin, tropomyosin alpha-1 chain, annexin A2, and protein disulfide-isomerase were up-regulated in comparison to the positive. Bioinformatic analyses revealed the regulation changes of these proteins mainly affected the pathways of 'Bcl-2-associated athanogene 2 signalling pathway', 'Unfolded protein response', 'Caveolar-mediated endocytosis signalling', 'Clathrin-mediated endocytosis signalling', 'Calcium signalling' and 'Sucrose degradation V', which are associated with breast cancer. We concluded that lectin altered the abundance in molecular chaperones/heat shock proteins, cytoskeletal, and metabolic proteins. Additionally, lectin induced a low abundance of MCF-7 cancer cell proteins in comparison to the positive and negative controls, including; V-set and immunoglobulin domain, serum albumin, actin cytoplasmic 1, triosephosphate isomerase, tropomyosin alpha-4 chain, and endoplasmic reticulum chaperone BiP.
Collapse
Affiliation(s)
- Rana I Mahmood
- Department of Biology, College of Science, Baghdad University, Baghdad, Iraq; Department of Biomedical Engineering, College of Engineering, Al-Nahrain University, Baghdad, Iraq
| | - Amal Kh Abbass
- Department of Biology, College of Science, Baghdad University, Baghdad, Iraq
| | - Nurhanani Razali
- Department of Hygienic Sciences, Kobe Pharmaceutical University, Motoyamakita-machi, Higashinada-ku, 658-8558, Kobe, Japan; Membranology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, Japan, 904-0495
| | - Ali Z Al-Saffar
- Department of Molecular and Medical Biotechnology, College of Biotechnology, Al-Nahrain University, Baghdad, Iraq
| | - Jameel R Al-Obaidi
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia.
| |
Collapse
|
15
|
Zhou X, Shi M, Cao J, Yuan T, Yu G, Chen Y, Fang W, Li H. S100 Calcium Binding Protein A10, A Novel Oncogene, Promotes the Proliferation, Invasion, and Migration of Hepatocellular Carcinoma. Front Genet 2021; 12:695036. [PMID: 34178044 PMCID: PMC8226228 DOI: 10.3389/fgene.2021.695036] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/17/2021] [Indexed: 01/03/2023] Open
Abstract
Hepatocarcinogenesis is a highly complicated process that is promoted by a series of oncogenes. Our study aims to identify novel oncogenes promoting hepatocellular carcinoma (HCC) by bioinformatic analysis and experimental validation. Here, we reported that S100 calcium binding protein A10 (S100A10) was screened out as a potential novel oncogene in HCC by integrated analysis of OEP000321 dataset and the Cancer Genome Atlas (TCGA)-Liver-Cancer data. Furthermore, S100A10 was highly expressed in HCC samples and observably associated with patients’ overall survival (OS). Overexpression of S100A10 in Hep3B and Huh-7 increased the cell proliferation, whereas downregulation of S100A10 in SK-Hep-1 and HepG2 cells reduced the cell viability to almost stop growing. In vivo tumor growth assays showed that S100A10-overexpressing Hep3B cells had a larger tumor size than control. Moreover, S100A10 overexpression promoted Hep3B cells migration and invasion, and S100A10 knockdown inhibited SK-Hep-1 cells migration and invasion, in vitro. In conclusion, it is demonstrated that S100A10 is a novel oncogene in HCC, indicating a possible novel therapeutic strategy of HCC.
Collapse
Affiliation(s)
- Xing Zhou
- Department of Interventional Oncology, Dahua Hospital, Shanghai, China
| | - Min Shi
- Department of Pathology, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital & Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Cao
- Department of Interventional Oncology, Dahua Hospital, Shanghai, China
| | - Tianwen Yuan
- Department of Interventional Oncology, Dahua Hospital, Shanghai, China
| | - Guanzhen Yu
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai, China
| | - Ying Chen
- Department of Gastroenterology, Naval Medical University, Shanghai, China
| | - Wenzheng Fang
- Department of Oncology, Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fujian, China
| | - Hongwei Li
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Lu H, Xie Y, Tran L, Lan J, Yang Y, Murugan NL, Wang R, Wang YJ, Semenza GL. Chemotherapy-induced S100A10 recruits KDM6A to facilitate OCT4-mediated breast cancer stemness. J Clin Invest 2021; 130:4607-4623. [PMID: 32427586 DOI: 10.1172/jci138577] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/14/2020] [Indexed: 12/20/2022] Open
Abstract
Breast cancer stem cells (BCSCs) play a critical role in cancer recurrence and metastasis. Chemotherapy induces BCSC specification through increased expression of pluripotency factors, but how their expression is regulated is not fully understood. Here, we delineate a pathway controlled by hypoxia-inducible factor 1 (HIF-1) that epigenetically activates pluripotency factor gene transcription in response to chemotherapy. Paclitaxel induces HIF-1-dependent expression of S100A10, which forms a complex with ANXA2 that interacts with histone chaperone SPT6 and histone demethylase KDM6A. S100A10, ANXA2, SPT6, and KDM6A are recruited to OCT4 binding sites and KDM6A erases H3K27me3 chromatin marks, facilitating transcription of genes encoding the pluripotency factors NANOG, SOX2, and KLF4, which along with OCT4 are responsible for BCSC specification. Silencing of S100A10, ANXA2, SPT6, or KDM6A expression blocks chemotherapy-induced enrichment of BCSCs, impairs tumor initiation, and increases time to tumor recurrence after chemotherapy is discontinued. Pharmacological inhibition of KDM6A also impairs chemotherapy-induced BCSC enrichment. These results suggest that targeting HIF-1/S100A10-dependent and KDM6A-mediated epigenetic activation of pluripotency factor gene expression in combination with chemotherapy may block BCSC enrichment and improve clinical outcome.
Collapse
Affiliation(s)
- Haiquan Lu
- Vascular Program, Institute for Cell Engineering.,Sidney Kimmel Comprehensive Cancer Center
| | | | - Linh Tran
- Vascular Program, Institute for Cell Engineering
| | - Jie Lan
- Vascular Program, Institute for Cell Engineering
| | - Yongkang Yang
- Vascular Program, Institute for Cell Engineering.,Sidney Kimmel Comprehensive Cancer Center
| | | | - Ru Wang
- Vascular Program, Institute for Cell Engineering
| | | | - Gregg L Semenza
- Vascular Program, Institute for Cell Engineering.,Sidney Kimmel Comprehensive Cancer Center.,Department of Genetic Medicine.,Department of Pediatrics.,Department of Medicine.,Department of Oncology.,Department of Radiation Oncology, and.,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Pratt SJP, Hernández-Ochoa E, Martin SS. Calcium signaling: breast cancer's approach to manipulation of cellular circuitry. Biophys Rev 2020; 12:1343-1359. [PMID: 33569087 PMCID: PMC7755621 DOI: 10.1007/s12551-020-00771-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Calcium is a versatile element that participates in cell signaling for a wide range of cell processes such as death, cell cycle, division, migration, invasion, metabolism, differentiation, autophagy, transcription, and others. Specificity of calcium in each of these processes is achieved through modulation of intracellular calcium concentrations by changing the characteristics (amplitude/frequency modulation) or location (spatial modulation) of the signal. Breast cancer utilizes calcium signaling as an advantage for survival and progression. This review integrates evidence showing that increases in expression of calcium channels, GPCRs, pumps, effectors, and enzymes, as well as resulting intracellular calcium signals, lead to high calcium and/or an elevated calcium- mobilizing capacity necessary for malignant functions such as migratory, invasive, proliferative, tumorigenic, or metastatic capacities.
Collapse
Affiliation(s)
- Stephen J P Pratt
- Program in Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD USA.,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD USA.,Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore Street, Bressler Research Building, Rm 10-020 D, Baltimore, MD 21201 USA
| | - Erick Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Stuart S Martin
- Program in Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD USA.,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD USA.,Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore Street, Bressler Research Building, Rm 10-020 D, Baltimore, MD 21201 USA
| |
Collapse
|
18
|
López C, Gibert-Ramos A, Bosch R, Korzynska A, García-Rojo M, Bueno G, García-Fontgivell JF, Martínez González S, Fontoura L, Gras Navarro A, Sauras Colón E, Casanova Ribes J, Roszkowiak L, Roso A, Berenguer M, Llobera M, Baucells J, Lejeune M. Differences in the Immune Response of the Nonmetastatic Axillary Lymph Nodes between Triple-Negative and Luminal A Breast Cancer Surrogate Subtypes. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:545-554. [PMID: 33309504 DOI: 10.1016/j.ajpath.2020.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/27/2020] [Accepted: 11/19/2020] [Indexed: 01/21/2023]
Abstract
Breast cancer (BC) comprises four immunohistochemical surrogate subtypes of which triple-negative breast cancer (TNBC) has the highest risk of mortality. Axillary lymph nodes (ALNs) are the regions where BC cells first establish before distant metastasis, and the presence of tumor cells in the ALN causes an immune tolerance profile that contrasts with that of the nonmetastatic ALN (ALN-). However, few studies have compared the immune components of the ALNs- in BC subtypes. The present study aimed to determine whether differences between immune populations in the primary tumor and ALNs- were associated with the luminal A or TNBC subtype. We evaluated a retrospective cohort of 144 patients using paraffin-embedded biopsies. The TNBC samples tended to have a higher histologic grade and proliferation index and had higher levels of immune markers compared with luminal A in primary tumors and ALNs-. Two methods for validating the multivariate analysis found that histologic grade, intratumoral S100 dendritic cells, and CD8 T lymphocytes and CD57 natural killer cells in the ALNs- were factors associated with TNBC, whereas CD83 dendritic cells in the ALNs- were associated with the luminal A subtype. In conclusion, we found that intratumoral regions and ALNs- of TNBC contained higher concentrations of markers related to immune tolerance than luminal A. This finding partially explains the worse prognosis of patients with TNBC.
Collapse
Affiliation(s)
- Carlos López
- Oncological Pathology and Bioinformatics Research Group, Department of Pathology, Hospital de Tortosa Verge de la Cinta, ICS, IISPV, Tortosa, Spain; Universitat Rovira i Virgili (URV) - Campus Terres de l'Ebre, Tortosa, Spain.
| | - Albert Gibert-Ramos
- Oncological Pathology and Bioinformatics Research Group, Department of Pathology, Hospital de Tortosa Verge de la Cinta, ICS, IISPV, Tortosa, Spain.
| | - Ramón Bosch
- Oncological Pathology and Bioinformatics Research Group, Department of Pathology, Hospital de Tortosa Verge de la Cinta, ICS, IISPV, Tortosa, Spain
| | - Anna Korzynska
- Laboratory of Processing and Analysis of Microscopic Images, Nalęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences (IBIB PAN), Warsaw, Poland
| | - Marcial García-Rojo
- Department of Pathology, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Gloria Bueno
- VISILAB, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | | | | | - Laia Fontoura
- Oncological Pathology and Bioinformatics Research Group, Department of Pathology, Hospital de Tortosa Verge de la Cinta, ICS, IISPV, Tortosa, Spain
| | - Andrea Gras Navarro
- Oncological Pathology and Bioinformatics Research Group, Department of Pathology, Hospital de Tortosa Verge de la Cinta, ICS, IISPV, Tortosa, Spain; Universitat Rovira i Virgili (URV) - Campus Terres de l'Ebre, Tortosa, Spain
| | - Esther Sauras Colón
- Oncological Pathology and Bioinformatics Research Group, Department of Pathology, Hospital de Tortosa Verge de la Cinta, ICS, IISPV, Tortosa, Spain
| | - Júlia Casanova Ribes
- Oncological Pathology and Bioinformatics Research Group, Department of Pathology, Hospital de Tortosa Verge de la Cinta, ICS, IISPV, Tortosa, Spain
| | - Lukasz Roszkowiak
- Laboratory of Processing and Analysis of Microscopic Images, Nalęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences (IBIB PAN), Warsaw, Poland
| | - Albert Roso
- Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Barcelona, Spain
| | - Marta Berenguer
- Knowledge Management Department, Hospital de Tortosa Verge de la Cinta, ICS, IISPV, Tortosa, Spain
| | - Montserrat Llobera
- Department of Oncology, Hospital de Tortosa Verge de la Cinta, ICS, IISPV, Tortosa, Spain
| | - Jordi Baucells
- Informatics Department, Hospital de Tortosa Verge de la Cinta, ICS, IISPV, Tortosa, Spain
| | - Marylène Lejeune
- Oncological Pathology and Bioinformatics Research Group, Department of Pathology, Hospital de Tortosa Verge de la Cinta, ICS, IISPV, Tortosa, Spain; Universitat Rovira i Virgili (URV) - Campus Terres de l'Ebre, Tortosa, Spain
| |
Collapse
|
19
|
Bharadwaj AG, Dahn ML, Liu RZ, Colp P, Thomas LN, Holloway RW, Marignani PA, Too CKL, Barnes PJ, Godbout R, Marcato P, Waisman DM. S100A10 Has a Critical Regulatory Function in Mammary Tumor Growth and Metastasis: Insights Using MMTV-PyMT Oncomice and Clinical Patient Sample Analysis. Cancers (Basel) 2020; 12:cancers12123673. [PMID: 33297495 PMCID: PMC7762402 DOI: 10.3390/cancers12123673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 01/05/2023] Open
Abstract
Simple Summary The key challenges that face patients during breast cancer therapy is the metastatic spread and aggressiveness of the disease. Thus, the goal of current breast cancer research is to discover new therapeutic and diagnostic targets that limit the aggressive spread of the cancer. In this study, we investigated the role of protein S100A10 (p11) in breast tumor growth, progression, and metastasis using mouse cancer models and patient tumor sample analysis. We have demonstrated in our previous studies that p11 is critical for the function of a proteolytic enzyme–plasmin, which aids in the digestion of the tissues surrounding the tumor and allows the escape of the cancer cells from the breast tissue to organs such as the lungs and bone. Here, we present evidence that genetic deletion of p11 results in smaller and less aggressive mammary tumors in mice. We also observed that the cancer spread to the lungs is dramatically reduced in the absence of p11 gene in mice. Subsequent analysis of breast cancer patient tissues showed a correlation between higher p11 expression and both poor survival and aggressive cancer. Abstract S100A10 (p11) is a plasminogen receptor that regulates cellular plasmin generation by cancer cells. In the current study, we used the MMTV-PyMT mouse breast cancer model, patient tumor microarray, and immunohistochemical (IHC) analysis to investigate the role of p11 in oncogenesis. The genetic deletion of p11 resulted in significantly decreased tumor onset, growth rate, and spontaneous pulmonary metastatic burden in the PyMT/p11-KO (knock-out) mice. This phenotype was accompanied by substantial reduction in Ki67 positivity, macrophage infiltration, decreased vascular density in the primary tumors, and decrease in invasive carcinoma and pulmonary metastasis. Surprisingly, IHC analysis of wild-type MMTV-PyMT mice failed to detect p11 expression in the tumors or metastatic tumor cells and loss of p11 did not decrease plasmin generation in the PyMT tumors and cells. Furthermore, tumor cells expressing p11 displayed dramatically reduced lung metastasis when injected into p11-depleted mice, further strengthening the stromal role of p11 in tumor growth and metastasis. Transcriptome analysis of the PyMT tumors from p11-KO mice showed marked reduction in genes such as Areg, Muc1, and S100a8 involved in breast cancer development, progression, and inflammation. The PyMT/p11-KO tumors displayed a remarkable increase in inflammatory cytokines such as interleukin (Il)-6, Il-10, and interferon (Ifn)-γ. Gene expression profiling and IHC of primary breast cancer samples showed that p11 mRNA and protein levels were significantly higher in tumor tissues compared to normal mammary tissue. P11 mRNA expression was significantly associated with poor patient prognosis and significantly elevated in high grade, triple negative (TN) tumors, and tumors with high proliferative index. This is the first study examining the crucial role of p11 in breast tumor development and metastasis, thus emphasizing its potential as a diagnostic and prognostic biomarker in breast cancer.
Collapse
Affiliation(s)
- Alamelu G. Bharadwaj
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.G.B.); (M.L.D.); (P.C.); (P.J.B.); (P.M.)
| | - Margaret L. Dahn
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.G.B.); (M.L.D.); (P.C.); (P.J.B.); (P.M.)
| | - Rong-Zong Liu
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2Z1, Canada; (R.-Z.L.); (R.G.)
| | - Patricia Colp
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.G.B.); (M.L.D.); (P.C.); (P.J.B.); (P.M.)
| | - Lynn N. Thomas
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (L.N.T.); (R.W.H.); (P.A.M.); (C.K.L.T.)
| | - Ryan W. Holloway
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (L.N.T.); (R.W.H.); (P.A.M.); (C.K.L.T.)
| | - Paola A. Marignani
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (L.N.T.); (R.W.H.); (P.A.M.); (C.K.L.T.)
| | - Catherine K. L. Too
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (L.N.T.); (R.W.H.); (P.A.M.); (C.K.L.T.)
| | - Penelope J. Barnes
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.G.B.); (M.L.D.); (P.C.); (P.J.B.); (P.M.)
| | - Roseline Godbout
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2Z1, Canada; (R.-Z.L.); (R.G.)
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.G.B.); (M.L.D.); (P.C.); (P.J.B.); (P.M.)
- Department of Microbiology and Immunology, Dalhousie University, NS B3H 4R2, Canada
| | - David M. Waisman
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.G.B.); (M.L.D.); (P.C.); (P.J.B.); (P.M.)
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (L.N.T.); (R.W.H.); (P.A.M.); (C.K.L.T.)
- Correspondence:
| |
Collapse
|
20
|
Huang A, Fan W, Liu J, Huang B, Cheng Q, Wang P, Duan Y, Ma T, Chen L, Wang Y, Yu M. Prognostic Role of S100A8 in Human Solid Cancers: A Systematic Review and Validation. Front Oncol 2020; 10:564248. [PMID: 33240811 PMCID: PMC7682514 DOI: 10.3389/fonc.2020.564248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022] Open
Abstract
Background S100A8 plays a key role in many cellular processes and is highly expressed in various solid cancers. However, the prognostic role of S100A8 has not been well defined. Therefore, we conducted a quantitative meta-analysis to investigate whether or not S100A8 could be used as a prognostic biomarker in solid tumors. Methods PubMed, Web of Science, Embase, and Cochrane library were searched to acquire relevant studies that evaluated the association between expression of S100A8 and prognosis of cancer patients. Pooled hazard ratios (HRs) with their corresponding 95% confidence intervals (CIs) were extracted to evaluate the association between S100A8 overexpression and Overall Survival (OS), Disease-Free Survival (DFS), Recurrence-Free Survival (RFS), and Progression-Free Survival (PFS). The expression of S100A8 was also validated by Flow cytometry, immunohistochemistry (IHC), and western blot. Results A total of 2,817 patients from 13 independent studies, ranging from 43 to 1,117 patients in size, were statistically analyzed. Our results indicated that a high level of S100A8 expression was significantly associated with poor OS, poor DFS, and poor PFS/RFS. In term of clinical pathological characteristics, a high expression level of S100A8 was significantly associated with differentiation grades, lymphatic metastasis, ER statue, and PR statue. The validation studies showed that the expression of S100A8 was at high levels in MDA-MB-231 (79.7%), MDA-MB-453 (89.2%), HTB-9 (70.2%), and T24 (53.3%) cells and it was higher in breast cancer tissue and bladder cancer tissue than their corresponding para-carcinoma tissue. Conclusions S100A8 overexpression was significantly associated with poor clinical prognosis in cancer patients. S100A8 is potential a prognostic biomarker in breast cancer and bladder cancer. More well-designed studies with adequate prognostic data are needed to confirm the prognostic role of S100A8 revealed in this study.
Collapse
Affiliation(s)
- An Huang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Carcinogenesis andTranslational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Wei Fan
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiacui Liu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ben Huang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qingyuan Cheng
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Wang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yiping Duan
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tiantian Ma
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liangyue Chen
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanping Wang
- Department of Obstetrics and Gynecology, Hubei Provincial Hospital of TCM, Wuhan, China
| | - Mingxia Yu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
21
|
Al-Ashkar N, Zetoune AB. S100A14 serum level and its correlation with prognostic factors in breast cancer. J Egypt Natl Canc Inst 2020; 32:37. [PMID: 32984913 DOI: 10.1186/s43046-020-00048-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Breast cancer is the most commonly occurring cancer in women worldwide. S100A14 is a novel important member of S100 proteins family. Its importance is due to its role in tumorigenesis and metastasis process. In this study, we aimed to determine serum levels of S100A14 protein in breast cancer patients and healthy individuals to know if it can be suggested as a new biomarker for breast cancer and to reveal whether it is correlated with cancer pathological features. METHODS This cross-sectional study was performed in two groups: study group contains 46 breast cancer patients (29 metastatic and 17 non-metastatic) and control group contains 22 healthy women. Enzyme-linked immunoabsorbent assay was performed to determine S100A14 protein levels in samples. Pathological data were obtained for each patient. The data were statistically analyzed using Kruskal-Wallis H, Mann-Whitney U, and Spearman correlation tests. RESULTS S100A14 serum levels were elevated in study group compared with control group (P < 0.05). S100A14 serum levels were significantly increased in distant breast cancer patients compared with regional breast cancer patients (P = 0.001). There was a strong positive correlation between serum S100A14 level and tumor grade (rs = 0.713, P < 0.001). CONCLUSION Our study indicated that S100A14 serum levels are elevated in breast cancer patients compared with control individuals. High S100A14 serum levels were correlated with poor tumor differentiation so it might have a prognostic significance for breast cancer tumors. The elevation of S100A14 levels in distant breast cancer patients suggests the ability of using serum S100A14 as a biomarker for detection of breast cancer metastasis.
Collapse
Affiliation(s)
- Noor Al-Ashkar
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syria.
| | | |
Collapse
|
22
|
Characterization and molecular evolution of claudin genes in the Pungitius sinensis. J Comp Physiol B 2020; 190:749-759. [PMID: 32778926 DOI: 10.1007/s00360-020-01301-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/20/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022]
Abstract
Claudins are a family of integrated membrane-bound proteins involving in paracellular tightness, barrier forming, ion permeability, and substrate selection at tight junctions of chordate epithelial and endothelial cells. Here, 39 putative claudin genes were identified in the Pungitius sinensis based on the high throughput RNA-seq. Conservative motif distribution in each group suggested functional relevance. Divergence of duplicated genes implied the species' adaptation to the environment. In addition, selective pressure analyses identified one site, which may accelerate functional divergence in this protein family. Pesticides cause environmental pollution and have a serious impact on aquatic organisms when entering the water. The expression pattern of most claudin genes was affected by organophosphorus pesticide, indicating that they may be involved in the immune regulation of organisms and the detoxification of xenobiotics. Protein-protein network analyses also exhibited 439 interactions, which implied the functional diversity. It will provide some references for the functional study on claudin genes.
Collapse
|
23
|
Muciño-Olmos EA, Vázquez-Jiménez A, Avila-Ponce de León U, Matadamas-Guzman M, Maldonado V, López-Santaella T, Hernández-Hernández A, Resendis-Antonio O. Unveiling functional heterogeneity in breast cancer multicellular tumor spheroids through single-cell RNA-seq. Sci Rep 2020; 10:12728. [PMID: 32728097 PMCID: PMC7391783 DOI: 10.1038/s41598-020-69026-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/01/2020] [Indexed: 12/31/2022] Open
Abstract
Heterogeneity is an intrinsic characteristic of cancer. Even in isogenic tumors, cell populations exhibit differential cellular programs that overall supply malignancy and decrease treatment efficiency. In this study, we investigated the functional relationship among cell subtypes and how this interdependency can promote tumor development in a cancer cell line. To do so, we performed single-cell RNA-seq of MCF7 Multicellular Tumor Spheroids as a tumor model. Analysis of single-cell transcriptomes at two-time points of the spheroid growth, allowed us to dissect their functional relationship. As a result, three major robust cellular clusters, with a non-redundant complementary composition, were found. Meanwhile, one cluster promotes proliferation, others mainly activate mechanisms to invade other tissues and serve as a reservoir population conserved over time. Our results provide evidence to see cancer as a systemic unit that has cell populations with task stratification with the ultimate goal of preserving the hallmarks in tumors.
Collapse
Affiliation(s)
- Erick Andrés Muciño-Olmos
- PhD Program in Biomedical Sciences, UNAM, Mexico City, Mexico.,Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, 14610, Mexico City, Mexico
| | - Aarón Vázquez-Jiménez
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, 14610, Mexico City, Mexico
| | - Ugo Avila-Ponce de León
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, 14610, Mexico City, Mexico.,PhD Program in Biological Sciences, UNAM, Mexico City, Mexico
| | - Meztli Matadamas-Guzman
- PhD Program in Biomedical Sciences, UNAM, Mexico City, Mexico.,Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, 14610, Mexico City, Mexico
| | - Vilma Maldonado
- Epigenetic Laboratory, Instituto Nacional de Medicina, Genómica, Periférico Sur 4809, Arenal Tepepan, 14610, Mexico City, Mexico
| | - Tayde López-Santaella
- Biología de Células Individuales (BIOCELIN), Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Abrahan Hernández-Hernández
- Biología de Células Individuales (BIOCELIN), Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, Mexico.
| | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, 14610, Mexico City, Mexico. .,Coordinación de La Investigación Científica -Red de Apoyo a La Investigación, UNAM, Mexico City, Mexico.
| |
Collapse
|
24
|
Wang L, Yan W, Li X, Liu Z, Tian T, Chen T, Zou L, Cui Z. S100A10 silencing suppresses proliferation, migration and invasion of ovarian cancer cells and enhances sensitivity to carboplatin. J Ovarian Res 2019; 12:113. [PMID: 31739800 PMCID: PMC6859630 DOI: 10.1186/s13048-019-0592-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background Ovarian cancer is the leading cause of gynecological cancer-related mortality. The novel oncogene S100A10 has been reported to be involved in cancer cell proliferation, invasion and metastasis. The role of S100A10 in ovarian cancer has not been well studied and the effect of S100A10 on chemotherapy remains unclear. The aims of the present study were to investigate the functional role of S100A10 in the progression and carboplatin sensitivity of ovarian cancer. Methods We examined the expression levels in tissues of S100A10 in 138 cases of ovarian cancer by IHC. To determine the functional roles of downregulated S100A10 in ovarian cancer, cell proliferation, colony formation, cell migration and invasion assays were performed. Chemoresistance was analyzed by apoptosis assay. A xenograft tumor model was established to confirm the role of S100A10 in carboplatin resistance in vivo. Using Western blot assays, we also explored the possible mechanisms of S100A10 in ovarian cancer. Results The results showed that increased expression of S100A10 was positively associated with carboplatin resistance (P < 0.001), tumor grade (P = 0.048) and a poorer prognosis (P = 0.0053). Functional analyses demonstrated that S100A10 suppression significantly suppressed ovarian cancer cell proliferation, colony formation, cell migration and invasion, remarkably increased carboplatin-induced apoptosis in SKOV3 and A2780 cells and inhibited tumor growth in vivo. Downregulation of S100A10 expression could inhibit cell proliferation and enhance ovarian cancer cell sensitivity to carboplatin, possibly involving the regulation of cleaved-Caspase3 and cleaved-PARP. Conclusions Together, the results of the present study reveal that S100A10 expression can be used as a predictive marker for the prognosis of ovarian cancer and chemosensitivity to carboplatin.
Collapse
Affiliation(s)
- Lingzhi Wang
- Department of Obstetrics and Gynecology, the Affiliated Hospital of Qingdao University, Qingdao, 266061, People's Republic of China
| | - Wei Yan
- Medical Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, 330029, People's Republic of China
| | - Xukun Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beiing, 100021, People's Republic of China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beiing, 100021, People's Republic of China
| | - Tian Tian
- Department of Obstetrics and Gynecology, the Affiliated Hospital of Qingdao University, Qingdao, 266061, People's Republic of China
| | - Tanxiu Chen
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, Jiangxi, 330029, People's Republic of China. .,Department of Science and Education, Jiangxi Cancer Hospital, Nanchang, Jiangxi, 330029, People's Republic of China.
| | - Liang Zou
- Department of anesthesiology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China.
| | - Zhumei Cui
- Department of Obstetrics and Gynecology, the Affiliated Hospital of Qingdao University, Qingdao, 266061, People's Republic of China.
| |
Collapse
|
25
|
Pampalakis G, Zingkou E, Sidiropoulos KG, Diamandis EP, Zoumpourlis V, Yousef GM, Sotiropoulou G. Biochemical pathways mediated by KLK6 protease in breast cancer. Mol Oncol 2019; 13:2329-2343. [PMID: 30980596 PMCID: PMC6822253 DOI: 10.1002/1878-0261.12493] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/20/2019] [Accepted: 04/12/2019] [Indexed: 12/25/2022] Open
Abstract
Kallikrein-related peptidase 6 (KLK6) is a serine protease normally expressed in mammary tissue and aberrantly regulated in breast cancer. At physiological levels, KLK6 functions as a suppressor of breast cancer, while its aberrant overexpression (> 50-fold higher than normal) is characteristic of a subset of breast cancers and has been linked to accelerated growth of primary breast tumors in severe combined immunodeficiency mice (Pampalakis et al. Cancer Res 2009, 69, 3779). Here, we investigated the molecular mechanisms underlying the concentration-dependent functions of KLK6 by comparing MDA-MB-231 stable transfectants expressing increasing levels of KLK6 in in vitro and in vivo tumorigenicity assays (soft agar, xenograft growth, tail vein metastasis). Quantitative proteomics was applied to identify proteins that are altered upon re-expression of KLK6 in MDA-MB-231 at normal or constitutive levels. Overexpression of KLK6 is associated with increased metastatic ability of breast cancer cells into lungs, increased expression of certain S100 proteins (S100A4, S100A11) and keratins (KRT), and downregulation of the apoptosis-related proteases CASP7 and CASP8, and RABs. On the other hand, KLK6 re-expression at physiological levels leads to inhibition of lung metastases associated with suppression of S100 proteins (S100A4, S100A10, S100A13, S100A16) and induced CASP7 and CASP8 expression. As this is the first report that KLK6 expression is associated with S100 proteins, caspases, RABs, and KRTs, we validated this finding in clinical datasets. By integrating proteomics and microarray data from breast cancer patients, we generated two composite scores, KLK6 + S100B-S100A7 and KLK6 + S100B-S100A14-S100A16, to predict long-term survival of breast cancer patients. We present previously unknown pathways implicating KLK6 in breast cancer. The findings promise to aid our understanding of the functional roles of KLK6 in breast cancer and may yield new biomarkers for the cancer types in which KLK6 is known to be aberrantly upregulated.
Collapse
Affiliation(s)
- Georgios Pampalakis
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Eleni Zingkou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Konstantinos Gus Sidiropoulos
- The Keenan Research Center in the Li Ka Shing Knowledge Institute, Department of Laboratory Medicine, St. Michael's Hospital, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | | | | | - George M Yousef
- The Keenan Research Center in the Li Ka Shing Knowledge Institute, Department of Laboratory Medicine, St. Michael's Hospital, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | - Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| |
Collapse
|
26
|
Shenoy PA, Kuo A, Leparc G, Hildebrandt T, Rust W, Nicholson JR, Corradini L, Vetter I, Smith MT. Transcriptomic characterisation of the optimised rat model of Walker 256 breast cancer cell-induced bone pain. Clin Exp Pharmacol Physiol 2019; 46:1201-1215. [PMID: 31429474 DOI: 10.1111/1440-1681.13165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/21/2019] [Accepted: 08/13/2019] [Indexed: 12/16/2022]
Abstract
In patients with breast cancer, metastases of cancer cells to the axial skeleton may cause excruciating pain, particularly in the advanced stages. The current drug treatments available to alleviate this debilitating pain condition often lack efficacy and/or produce undesirable side effects. Preclinical animal models of cancer-induced bone pain are key to studying the mechanisms that cause this pain and for the success of drug discovery programs. In a previous study conducted in our laboratory, we validated and characterised the rat model of Walker 256 cell-induced bone pain, which displayed several key resemblances to the human pain condition. However, gene level changes that occur in the pathophysiology of cancer-induced bone pain in this preclinical model are unknown. Hence, in this study, we performed the transcriptomic characterisation of the Walker 256 cell line cultured in vitro to predict the molecular genetic profile of this cell line. We also performed transcriptomic characterisation of the Walker 256 cell-induced bone pain model in rats using the lumbar spinal cord and lumbar dorsal root ganglia tissues. Here we show that the Walker 256 cell line resembles the basal-B molecular subtype of human breast cancer cell lines. We also identify several genes that may underpin the progression of pain hypersensitivities in this condition, however, this needs further confirmatory studies. These transcriptomic insights have the potential to direct future studies aimed at identifying various mechanisms underpinning pain hypersensitivities in this model that may also assist in discovery of novel pain therapeutics for breast cancer-induced bone pain.
Collapse
Affiliation(s)
- Priyank A Shenoy
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Andy Kuo
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - German Leparc
- Target Discovery Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Tobias Hildebrandt
- Target Discovery Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Werner Rust
- Target Discovery Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Janet R Nicholson
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Laura Corradini
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.,Faculty of Health and Behavioural Sciences, School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Maree T Smith
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
27
|
Abstract
Genes in the S100 family are abnormally expressed in a variety of tumor cells and are associated with clinical pathology, but their prognostic value in melanoma patients has not yet been fully elucidated. In this study, we extracted and profiled S100 family mRNA expression data and corresponding clinical data from the Gene Expression Omnibus database to analyze how expression of these genes correlates with clinical pathology. Compared with normal skin, S100A1, S100A13, and S100B were expressed at significantly higher levels in melanoma samples. S100A2, S100A7, S100A8, S100A9, S100A10, S100A11, and S100P were all highly expressed in primary melanoma samples but were expressed at low levels in metastatic melanoma, and all of these genes were strongly correlated with each other (P<0.001). We found the expression of these S100 family genes to be significantly correlated with both lymphatic and distant melanoma metastasis, as well as with American Joint Committee on Cancer grade but not with Clark’s grade, age, or sex. This suggests that expression of these genes may be related to the degree of tumor invasion. Although further validation through basic and clinical trials is needed, our results suggest that the S100 family genes have the potential to play an important role in the diagnosis of melanoma. S100 expression may be related to tumor invasion and may facilitate the early diagnosis of melanoma, allowing for a more accurate prognosis. Targeted S100 therapies are also potentially viable strategies in the context of melanoma.
Collapse
|
28
|
Hu L, Kong F, Pan Y. Prognostic and clinicopathological significance of S100A14 expression in cancer patients: A meta-analysis. Medicine (Baltimore) 2019; 98:e16356. [PMID: 31305429 PMCID: PMC6641819 DOI: 10.1097/md.0000000000016356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The prognostic significance of S100A14 for survival of cancer patients remains controversial. Therefore, we conducted this meta-analysis to explore the association between S100A14 expression and cancer prognosis. METHOD Eligible studies were identified by searching the online databases Pubmed and EMBASE up to August 2018. Odds ratios (ORs) with 95% confidence intervals (CIs) severed as the summarized statistics for clinicopathological assessments and hazard ratios (HRs) with 95% CIs were calculated to clarify the correlation between S100A14 expression and prognosis of different cancers. RESULTS A total of 11 studies with 1651 cancer patients were enrolled. The results indicated that S100A14 expression was not significantly associated with overall survival (OS) in total various cancers (HR = 1.54, 95% CI:0.89-2.67, P = .121). Further subgroup analysis stratified by tumor type showed that elevated S100A14 expression was associated with poor OS in breast cancer (HR = 3.66, 95% CI: 1.75-7.62, P < .001) and in ovarian cancer patients (HR = 3.78, 95%CI: 1.63-8.73, P = .002). Interestingly, high S100A14 expression was correlated with poor tumor differentiation (OR = 2.51, 95% CI: 1.52-4.13, P < .001). However, there were no significant correlations between S100A14 expression and other clinicopathologic characteristics. Begg funnel plot and Egger test showed that no publication bias was detected. CONCLUSIONS Our meta-analysis suggests that S100A14 overexpression might be a predictive biomarker for poor prognosis in patients with breast cancer and ovarian cancer. Large-scale studies are required to confirm these results.
Collapse
Affiliation(s)
- Lixia Hu
- Department of Oncology, The Second People's Hospital of Hefei
| | - Fanliang Kong
- Department of Oncology, The Second People's Hospital of Hefei
| | - Yueyin Pan
- Department of Oncology, Anhui Province Hospital, Hefei, Anhui, China
| |
Collapse
|
29
|
Ghaderi F, Mehdipour F, Hosseini A, Talei A, Ghaderi A. Establishment and Characterization of a New Triple Negative Breast Cancer Cell Line from an Iranian Breast Cancer Tissue. Asian Pac J Cancer Prev 2019; 20:1683-1689. [PMID: 31244288 PMCID: PMC7021626 DOI: 10.31557/apjcp.2019.20.6.1683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 05/24/2019] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is the most common malignancy and the leading cause of cancer-related death among women worldwide. The underlying mechanisms for breast cancer development, especially in young women, are not completely understood. Although there are several experimental models to understand the biology of breast cancer such as immortalized cell lines, many of these cell lines have been in culture for decades and most of them have been derived from Caucasians or African-Americans. So, it is required to establish a new cell line derived from primary tumors and Asian women. In this study Pari-Institute for Cancer Research (Pari-ICR) was derived from the primary breast tumor of a 36-years old patient with invasive ductal carcinoma. We characterized the cell line by examining morphology, expression of different markers, and functional profile. Immunocytochemistry showed that this cell line does not express estrogen and progesterone receptors as well as human epidermal growth factor receptor 2 (HER2). Pari-ICR cell line expresses high levels of Vimentin, Ezrin, and S100 but does not express EpCAM, Cytokeratin19, Pan-cytokeratin, Nestin, and Desmin. Its doubling time of Pari-ICR was about 22h and was able to grow as colonies in soft agar. It displayed a higher ability of migration and invasion in comparison with MCF-7 cell line. This breast cancer cell line can serve as a model for understanding the molecular mechanisms of breast carcinogenesis. Moreover, it can be used as an appropriate resource to find novel biomarkers or assess new drugs.
Collapse
Affiliation(s)
- Farzaneh Ghaderi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fereshteh Mehdipour
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Hosseini
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolrasoul Talei
- Department of Surgery, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
30
|
Basnet S, Sharma S, Costea DE, Sapkota D. Expression profile and functional role of S100A14 in human cancer. Oncotarget 2019; 10:2996-3012. [PMID: 31105881 PMCID: PMC6508202 DOI: 10.18632/oncotarget.26861] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 03/23/2019] [Indexed: 12/17/2022] Open
Abstract
S100A14 is one of the new members of the multi-functional S100 protein family. Expression of S100A14 is highly heterogeneous among normal human tissues, suggesting that the regulation of S100A14 expression and its function may be tissue- and context-specific. Compared to the normal counterparts, S100A14 mRNA and protein levels have been found to be deregulated in several cancer types, indicating a functional link between S100A14 and malignancies. Accordingly, S100A14 is functionally linked with a number of key signaling molecules such as p53, p21, MMP1, MMP9, MMP13, RAGE, NF-kB, JunB, actin and HER2. Of interest, S100A14 seems to have seemingly opposite functions in malignancies arising from the gastrointestional tract (tissues rich in epithelial components) compared to cancers in the other parts of the body (tissues rich in mesenchymal components). The underlying mechanism for these observations are currently unclear and may be related to the relative abundance and differences in the type of interaction partners (effector protein) in different cancer types and tissues. In addition, several studies indicate that the expression pattern of S100A14 has a potential to be clinically useful as prognostic biomarker in several cancer types. This review attempts to provide a comprehensive summary on the expression pattern and functional roles/related molecular pathways in different cancer types. Additionally, the prognostic potential of S100A14 in the management of human malignancies will be discussed.
Collapse
Affiliation(s)
- Suyog Basnet
- Department of BioSciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Sunita Sharma
- Department of Clinical Dentistry, Centre for Clinical Dental Research, University of Bergen, Bergen, Norway
| | - Daniela Elena Costea
- Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway.,Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Dipak Sapkota
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
31
|
Ma J, Xu S, Wang X, Zhang J, Wang Y, Liu M, Jin L, Wu M, Qian D, Li X, Zhen Q, Guo H, Gao J, Yang S, Zhang X. Noninvasive analysis of skin proteins in healthy Chinese subjects using an Orbitrap Fusion Tribrid mass spectrometer. Skin Res Technol 2019; 25:424-433. [PMID: 30657212 DOI: 10.1111/srt.12668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/29/2018] [Accepted: 12/08/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Jie Ma
- Institute of Dermatology and Department of DermatologyThe First Affiliated Hospital, Anhui Medical University Hefei China
- The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education Hefei China
| | - Shuangjun Xu
- Institute of Dermatology and Department of DermatologyThe First Affiliated Hospital, Anhui Medical University Hefei China
- The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education Hefei China
| | - Xiaomeng Wang
- Institute of Dermatology and Department of DermatologyThe First Affiliated Hospital, Anhui Medical University Hefei China
- The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education Hefei China
| | - Jing Zhang
- Institute of Dermatology and Department of DermatologyThe First Affiliated Hospital, Anhui Medical University Hefei China
- The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education Hefei China
| | - Yaochi Wang
- Institute of Dermatology and Department of DermatologyThe First Affiliated Hospital, Anhui Medical University Hefei China
- The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education Hefei China
| | - Mengting Liu
- Institute of Dermatology and Department of DermatologyThe First Affiliated Hospital, Anhui Medical University Hefei China
- The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education Hefei China
| | - Ling Jin
- Institute of Dermatology and Department of DermatologyThe First Affiliated Hospital, Anhui Medical University Hefei China
- The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education Hefei China
| | - Mingshun Wu
- Institute of Dermatology and Department of DermatologyThe First Affiliated Hospital, Anhui Medical University Hefei China
- The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education Hefei China
| | - Danfeng Qian
- Institute of Dermatology and Department of DermatologyThe First Affiliated Hospital, Anhui Medical University Hefei China
- The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education Hefei China
| | - Xueying Li
- Institute of Dermatology and Department of DermatologyThe First Affiliated Hospital, Anhui Medical University Hefei China
- The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education Hefei China
| | - Qi Zhen
- Institute of Dermatology and Department of DermatologyThe First Affiliated Hospital, Anhui Medical University Hefei China
- The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education Hefei China
| | - Huimin Guo
- Center for Biological TechnologyAnhui Agricultural University Hefei China
| | - Jinping Gao
- Institute of Dermatology and Department of DermatologyThe First Affiliated Hospital, Anhui Medical University Hefei China
- The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education Hefei China
| | - Sen Yang
- Institute of Dermatology and Department of DermatologyThe First Affiliated Hospital, Anhui Medical University Hefei China
- The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education Hefei China
| | - Xuejun Zhang
- Institute of Dermatology and Department of DermatologyThe First Affiliated Hospital, Anhui Medical University Hefei China
- The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education Hefei China
| |
Collapse
|
32
|
S100A10 and Cancer Hallmarks: Structure, Functions, and its Emerging Role in Ovarian Cancer. Int J Mol Sci 2018; 19:ijms19124122. [PMID: 30572596 PMCID: PMC6321037 DOI: 10.3390/ijms19124122] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/04/2018] [Accepted: 12/17/2018] [Indexed: 12/25/2022] Open
Abstract
S100A10, which is also known as p11, is located in the plasma membrane and forms a heterotetramer with annexin A2. The heterotetramer, comprising of two subunits of annexin A2 and S100A10, activates the plasminogen activation pathway, which is involved in cellular repair of normal tissues. Increased expression of annexin A2 and S100A10 in cancer cells leads to increased levels of plasmin—which promotes the degradation of the extracellular matrix—increased angiogenesis, and the invasion of the surrounding organs. Although many studies have investigated the functional role of annexin A2 in cancer cells, including ovarian cancer, S100A10 has been less studied. We recently demonstrated that high stromal annexin A2 and high cytoplasmic S100A10 expression is associated with a 3.4-fold increased risk of progression and 7.9-fold risk of death in ovarian cancer patients. Other studies have linked S100A10 with multidrug resistance in ovarian cancer; however, no functional studies to date have been performed in ovarian cancer cells. This article reviews the current understanding of S100A10 function in cancer with a particular focus on ovarian cancer.
Collapse
|
33
|
Fu SJ, Shen SL, Li SQ, Hua YP, Hu WJ, Guo B, Peng BG. Hornerin promotes tumor progression and is associated with poor prognosis in hepatocellular carcinoma. BMC Cancer 2018; 18:815. [PMID: 30103712 PMCID: PMC6090597 DOI: 10.1186/s12885-018-4719-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 08/02/2018] [Indexed: 01/24/2023] Open
Abstract
Background The function of hornerin (HRNR), a member of the S100 protein family, is poorly clarified in the development of human tumors. The role of HRNR in hepatocellular carcinoma (HCC) progression is investigated in the study. Methods The expression levels of HRNR were assessed in tumor samples from a cohort of 271 HCC patients. The effect of HRNR on proliferation, colony formation and invasion of tumor cells was examined. We further determined the role of HRNR in tumor growth in vivo by using xenograft HCC tumor models. The possible mechanism of the HRNR promotion of HCC progression was explored. Results We found that HRNR was overexpressed in HCC tissues. The high expression of HRNR in HCCs was significantly associated with vascular invasion, poor tumor differentiation, and advanced TNM stage. The disease-free survival (DFS) and overall survival (OS) of HCC patients with high HRNR expression were poorer than those in the low HRNR expression group. HRNR expression was an independent risk factor linked to both poor DFS (HR = 2.209, 95% CI = 1.627–2.998,P < 0.001) and OS (HR = 2.459,95% CI = 1.736–3.484, P < 0.001). In addition, the knockdown of HRNR by shRNAs significantly inhibited the proliferation, colony formation, migration and invasion of HCC tumor cells. HRNR silencing led to the decreased phosphorylation of AKT signaling. Notably, tumor growth was markedly inhibited by HRNR silencing in a xenograft model of HCC. Conclusions HRNR promotes tumor progression and is correlated with a poor HCC prognosis. HRNR may contribute to HCC progression via the regulation of the AKT pathway.
Collapse
Affiliation(s)
- Shun-Jun Fu
- Department of Liver Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Shun-Li Shen
- Department of Liver Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shao-Qiang Li
- Department of Liver Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yun-Peng Hua
- Department of Liver Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen-Jie Hu
- Department of Liver Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - BeiChu Guo
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, 29425, USA.
| | - Bao-Gang Peng
- Department of Liver Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
34
|
Cancemi P, Buttacavoli M, Di Cara G, Albanese NN, Bivona S, Pucci-Minafra I, Feo S. A multiomics analysis of S100 protein family in breast cancer. Oncotarget 2018; 9:29064-29081. [PMID: 30018736 PMCID: PMC6044374 DOI: 10.18632/oncotarget.25561] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/19/2018] [Indexed: 12/11/2022] Open
Abstract
The S100 gene family is the largest subfamily of calcium binding proteins of EF-hand type, expressed in tissue and cell-specific manner, acting both as intracellular regulators and extracellular mediators. There is a growing interest in the S100 proteins and their relationships with different cancers because of their involvement in a variety of biological events closely related to tumorigenesis and cancer progression. However, the collective role and the possible coordination of this group of proteins, as well as the functional implications of their expression in breast cancer (BC) is still poorly known. We previously reported a large-scale proteomic investigation performed on BC patients for the screening of multiple forms of S100 proteins. Present study was aimed to assess the functional correlation between protein and gene expression patterns and the prognostic values of the S100 family members in BC. By using data mining, we showed that S100 members were collectively deregulated in BC, and their elevated expression levels were correlated with shorter survival and more aggressive phenotypes of BC (basal like, HER2 enriched, ER-negative and high grading). Moreover a multi-omics functional network analysis highlighted the regulatory effects of S100 members on several cellular pathways associated with cancer and cancer progression, expecially immune response and inflammation. Interestingly, for the first time, a pathway analysis was successfully applied on different omics data (transcriptomics and proteomics) revealing a good convergence between pathways affected by S100 in BC. Our data confirm S100 members as a promising panel of biomarkers for BC prognosis.
Collapse
Affiliation(s)
- Patrizia Cancemi
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.,Center of Experimental Oncobiology (C.OB.S.), La Maddalena Hospital III Level Oncological Dept., Palermo, Italy.,Advanced Technologies Network Center (ATeN), University of Palermo, Palermo, Italy
| | - Miriam Buttacavoli
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Gianluca Di Cara
- Center of Experimental Oncobiology (C.OB.S.), La Maddalena Hospital III Level Oncological Dept., Palermo, Italy
| | - Nadia Ninfa Albanese
- Center of Experimental Oncobiology (C.OB.S.), La Maddalena Hospital III Level Oncological Dept., Palermo, Italy
| | - Serena Bivona
- Advanced Technologies Network Center (ATeN), University of Palermo, Palermo, Italy
| | - Ida Pucci-Minafra
- Center of Experimental Oncobiology (C.OB.S.), La Maddalena Hospital III Level Oncological Dept., Palermo, Italy
| | - Salvatore Feo
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.,Advanced Technologies Network Center (ATeN), University of Palermo, Palermo, Italy.,Institute of Biomedicine and Molecular Immunology, CNR, Palermo, Italy
| |
Collapse
|
35
|
Garza KY, Feider CL, Klein DR, Rosenberg JA, Brodbelt JS, Eberlin LS. Desorption Electrospray Ionization Mass Spectrometry Imaging of Proteins Directly from Biological Tissue Sections. Anal Chem 2018; 90:7785-7789. [PMID: 29800516 DOI: 10.1021/acs.analchem.8b00967] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Analysis of large biomolecules including proteins has proven challenging using ambient ionization mass spectrometry imaging techniques. Here, we have successfully optimized desorption electrospray ionization mass spectrometry (DESI-MS) to detect intact proteins directly from tissue sections and further integrated DESI-MS to a high field asymmetric waveform ion mobility (FAIMS) device for protein imaging. Optimized DESI-FAIMS-MS parameters were used to image mouse kidney, mouse brain, and human ovarian and breast tissue samples, allowing detection of 11, 16, 14, and 16 proteoforms, respectively. Identification of protein species detected by DESI-MS was performed on-tissue by top-down ultraviolet photodissociation (UVPD) and collision induced dissociation (CID) as well as using tissue extracts by bottom-up CID and top-down UVPD. Our results demonstrate that DESI-MS imaging is suitable for the analysis of the distribution of proteins within biological tissue sections.
Collapse
Affiliation(s)
- Kyana Y Garza
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Clara L Feider
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Dustin R Klein
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Jake A Rosenberg
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Jennifer S Brodbelt
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Livia S Eberlin
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
36
|
Tajbakhsh A, Pasdar A, Rezaee M, Fazeli M, Soleimanpour S, Hassanian SM, FarshchiyanYazdi Z, Younesi Rad T, Ferns GA, Avan A. The current status and perspectives regarding the clinical implication of intracellular calcium in breast cancer. J Cell Physiol 2018; 233:5623-5641. [PMID: 29150934 DOI: 10.1002/jcp.26277] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022]
Abstract
Calcium ions (Ca2+ ) act as second messengers in intracellular signaling. Ca2+ pumps, channels, sensors, and calcium binding proteins, regulate the concentrations of intracellular Ca2+ as a key regulator of important cellular processes such as gene expression, proliferation, differentiation, DNA repair, apoptosis, metastasis, and hormone secretion. Intracellular Ca2+ also influences the functions of several organelles, that include: the endoplasmic reticulum, mitochondria, the Golgi, and cell membrane both in normal and breast cancer cells. In breast cancer, the disruption of intracellular: Ca2+ homeostasis may cause tumor progression by affecting key factors/pathways including phospholipase C (PLC), inositol 1,4,5-trisphosphate (IP3), calmodulin (CaM), nuclear factor of activated T-cells (NFAT), calpain, calmodulin-dependent protein kinase II (CaMKII), mitogen-activated protein kinase (MAPK), epithelial-mesenchymal transition (EMT), vascular endothelial growth factor (VEGF), poly (ADP-Ribose) polymerase-1 (PARP1), estrogen, and estrogen receptor. Because the foregoing molecules play crucial roles in breast cancer, the factors/pathways influencing intracellular Ca2+ concentrations are putative targets for cancer treatment, using drugs such as Mephebrindole, Tilapia piscidin 4, Nifetepimine, Paricalcitol, and Prednisolone. We have explored the factors/pathways which are related to breast cancer and Ca2+ homeostasis and signaling in this review, and also discussed their potential as biomarkers for breast cancer staging, prognosis, and therapy.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Pasdar
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Division of Applied Medicine, Medical School, University of Aberdeen, Foresterhill, Aberdeen, UK.,Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Rezaee
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Fazeli
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra FarshchiyanYazdi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Laboratory Sciences, Faculty of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tayebe Younesi Rad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Laboratory Sciences, Faculty of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Falmer, Brighton, Sussex, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
37
|
Prognostic Roles of mRNA Expression of S100 in Non-Small-Cell Lung Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9815806. [PMID: 29607329 PMCID: PMC5828052 DOI: 10.1155/2018/9815806] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022]
Abstract
The S100 protein family is involved in cancer cell invasion and metastasis, but its prognostic value in non-small-cell lung cancer (NSCLC) has not been elucidated. In the present study we investigated the prognostic role of mRNA expression of each individual S100 in NSCLC patients through the Kaplan-Meier plotter (KM plotter) database. Expression of 14 members of the S100 family correlated with overall survival (OS) for all NSCLC patients; 18 members were associated with OS in adenocarcinoma, but none were associated with OS in squamous cell carcinoma. In particular, high mRNA expression level of S100B was associated with better OS in NSCLC patients. The prognostic value of S100 according to smoking status, pathological grades, clinical stages, and chemotherapeutic treatment of NSCLC was further assessed. Although the results should be further verified in clinical trials our findings provide new insights into the prognostic roles of S100 proteins in NSCLC and might promote development of S100-targeted inhibitors for the treatment of NSCLC.
Collapse
|
38
|
Li YH, Liu HT, Xu J, Xing AY, Zhang J, Wang YW, Yin G, Gao P. The value of detection of S100A8 and ASAH1 in predicting the chemotherapy response for breast cancer patients. Hum Pathol 2018; 74:156-163. [PMID: 29320752 DOI: 10.1016/j.humpath.2018.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/28/2017] [Accepted: 01/02/2018] [Indexed: 12/14/2022]
Abstract
Chemotherapy plays an important role in the treatment of breast cancer. However, chemoresistance remains the main obstacle for effective treatment, leading to poor prognosis. This study aims to investigate the value of detection of S100A8 and ASAH1 in predicting the chemotherapy response. Miller and Payne grades were used to assess the chemotherapy response in breast cancers. The expression of S100A8 and ASAH1, as well as ER, PR, HER2 and Ki-67 were assessed by immunohistochemical staining in 120 cases of non-special type invasive ductal carcinoma (IDC-NOS). S100A8 expression was higher in chemosensitive breast cancers than chemoresistant ones. Moreover, S100A8 expression was significantly correlated with the molecular subtypes and histological grade, but not with patients' age, tumor size and lymph nodes status. However, there was no significant difference in ASAH1 expression between chemoresistant and chemosensitive group. We also found that higher ASAH1 expression was correlated with positive lymph nodes status, but not with age, tumor size, molecular subtypes and histological grade. S100A8 was valuable in predicting chemotherapy response in breast cancers. The expression of ASAH1 was associated significantly with lymph nodes metastasis, indicating that ASAH1 may serve as a biomarker to predict patients' lymph nodes status in breast cancers.
Collapse
Affiliation(s)
- Yu-Hong Li
- Department of Pathology, The People's Hospital of Liaocheng, Liaocheng, P.R. China; Department of Surgery, Qilu Hospital, Shandong University, Jinan, P.R. China
| | - Hai-Ting Liu
- Department of Pathology, QiLu Hospital, Shandong University, Jinan, P.R. China
| | - Jing Xu
- Department of Pathology, The People's Hospital of Liaocheng, Liaocheng, P.R. China; Department of Pathology, Qingdao Central Hospital, Qingdao, P.R. China
| | - Ai-Yan Xing
- Department of Pathology, QiLu Hospital, Shandong University, Jinan, P.R. China
| | - Jie Zhang
- Department of Surgery, Qilu Hospital, Shandong University, Jinan, P.R. China
| | - Ya-Wen Wang
- Department of Pathology, QiLu Hospital, Shandong University, Jinan, P.R. China
| | - Gang Yin
- Department of Surgery, Qilu Hospital, Shandong University, Jinan, P.R. China.
| | - Peng Gao
- Department of Pathology, QiLu Hospital, Shandong University, Jinan, P.R. China.
| |
Collapse
|
39
|
Sun X, Wang T, Zhang C, Ning K, Guan ZR, Chen SX, Hong TT, Hua D. S100A16 is a prognostic marker for colorectal cancer. J Surg Oncol 2017; 117:275-283. [PMID: 28876468 DOI: 10.1002/jso.24822] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/07/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND S100 is a superfamily of calcium-binding proteins that regulate multiple biological processes and are involved in many diseases. S100A16 has recently been identified to be involved in several cancers such as bladder cancer, lung cancer, and oral squamous cell carcinoma. However, the role of S100A16 expression in the colorectal cancer (CRC) has not been investigated. METHODS S100A16 protein expression was detected by immunohistochemistry in 296 cases of CRC. Kaplan-Meier survival analysis and Cox regression analysis were performed to evaluate the prognostic significance of S100A16. RESULT The results showed that the overall survival (OS) of patients with low membrane S100A16 expression was significantly shorter than patients with high expression (P < 0.05). Chi-square analysis showed that S100A16 expression had a positive correlation with tumor grade (P = 0.02). Multivariate analysis identified membrane S100A16 expression as an independent prognostic marker for OS in CRC patients. (P < 0.05). Univariate analysis showed no significant association between cytoplasmic/nuclear S100A16 expression and OS. CONCLUSION Membrane S100A16 is associated with the prognosis of CRC patients, indicating that S100A16 may be a potential prognostic biomarker and therapeutic target for CRC.
Collapse
Affiliation(s)
- Xu Sun
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu, China
| | - Teng Wang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Chun Zhang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu, China
| | - Kuan Ning
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhang-Rui Guan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Shu-Xian Chen
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu, China
| | - Ting-Ting Hong
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Dong Hua
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
40
|
Zhu M, Wang H, Cui J, Li W, An G, Pan Y, Zhang Q, Xing R, Lu Y. Calcium-binding protein S100A14 induces differentiation and suppresses metastasis in gastric cancer. Cell Death Dis 2017; 8:e2938. [PMID: 28726786 PMCID: PMC5550849 DOI: 10.1038/cddis.2017.297] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 02/05/2023]
Abstract
S100A14 is a calcium-binding protein involved in cell proliferation and differentiation as well as the metastasis of human tumors. In this study, we characterized the regulation of S100A14 expression between biological signatures and clinical pathological features in gastric cancer (GC). Our data demonstrated that S100A14 induced the differentiation of GC by upregulating the expression of E-cadherin and PGII. Moreover, S100A14 expression negatively correlated with cell migration and invasion in in vitro and in vivo experimental models. Interestingly, S100A14 blocked the store-operated Ca2+ influx by suppressing Orai1 and STIM1 expression, leading to FAK expression activation, focal adhesion assembly and MMP downregulation. Taken together, our results indicate that S100A14 may have a role in the induction of differentiation and inhibition of cell metastasis in GC.
Collapse
Affiliation(s)
- Min Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Hongyi Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jiantao Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Wenmei Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Guo An
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yuanming Pan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Qingying Zhang
- Department of Preventive Medicine, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
- Department of Preventive Medicine, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Jinping District, Guangdong 515041, China. Tel: +86 754 88900445; Fax: +86 754 88557562; E-mail:
| | - Rui Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing 100142, China. Tel: +86 10 88196731; Fax: +86 10 88122437; E-mail: or
| | - Youyong Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing 100142, China. Tel: +86 10 88196731; Fax: +86 10 88122437; E-mail: or
| |
Collapse
|
41
|
Huang A, Cao S, Tang L. The tumor microenvironment and inflammatory breast cancer. J Cancer 2017; 8:1884-1891. [PMID: 28819386 PMCID: PMC5556652 DOI: 10.7150/jca.17595] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 04/01/2017] [Indexed: 01/25/2023] Open
Abstract
Inflammatory breast cancer (IBC) is a rare and very aggressive subtype of breast cancer with clinical manifestations similar to acute inflammation. The prognosis of IBC is still poor even though combination therapy with surgery, chemotherapy, and target therapy, mainly due to a lack of fully understanding of the cellular and molecular mechanisms of IBC pathogenesis and progression. In the present article, we have comprehensively reviewed the connection of the pathogenesis of IBC and inflammation, immune reaction and cancer, particularly focused on the role and mechanism of tumor microenvironment related to IBC formation, tumor cell proliferation, migration, invasion and metastasis as well as the clinical manifestations of IBC. As the diverse cells including inflammatory cells, immune cells, and tumor cells and the soluble molecules produced by these cells in the microenvironment play an essential role in IBC development and progression. Therefore, anti-inflammatory therapy and immunotherapy with available agents warrant further investigation in the treatment of IBC.
Collapse
Affiliation(s)
- Aji Huang
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shousong Cao
- Laboratory of Cancer Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Lili Tang
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
42
|
Parsana P, Amend SR, Hernandez J, Pienta KJ, Battle A. Identifying global expression patterns and key regulators in epithelial to mesenchymal transition through multi-study integration. BMC Cancer 2017. [PMID: 28651527 PMCID: PMC5485747 DOI: 10.1186/s12885-017-3413-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Epithelial to mesenchymal transition (EMT) is the process by which stationary epithelial cells transdifferentiate to mesenchymal cells with increased motility. EMT is integral in early stages of development and wound healing. Studies have shown that EMT could be a critical early event in tumor metastasis that is involved in acquisition of migratory and invasive properties in multiple carcinomas. Methods In this study, we used 15 published gene expression microarray datasets from Gene Expression Omnibus (GEO) that represent 12 cell lines from 6 cancer types across 95 observations (45 unique samples and 50 replicates) with different modes of induction of EMT or the reverse transition, mesenchymal to epithelial transition (MET). We integrated multiple gene expression datasets while considering study differences, batch effects, and noise in gene expression measurements. A universal differential EMT gene list was obtained by normalizing and correcting the data using four approaches, computing differential expression from each, and identifying a consensus ranking. We confirmed our discovery of novel EMT genes at mRNA and protein levels in an in vitro EMT model of prostate cancer – PC3 epi, EMT and Taxol resistant cell lines. We validate our discovery of C1orf116 as a novel EMT regulator by siRNA knockdown of C1orf116 in PC3 epithelial cells. Results Among differentially expressed genes, we found known epithelial and mesenchymal marker genes such as CDH1 and ZEB1. Additionally, we discovered genes known in a subset of carcinomas that were unknown in prostate cancer. This included epithelial specific LSR and S100A14 and mesenchymal specific DPYSL3. Furthermore, we also discovered novel EMT genes including a poorly-characterized gene C1orf116. We show that decreased expression of C1orf116 is associated with poor prognosis in lung and prostate cancer patients. We demonstrate that knockdown of C1orf116 expression induced expression of mesenchymal genes in epithelial prostate cancer cell line PC3-epi cells, suggesting it as a candidate driver of the epithelial phenotype. Conclusions This comprehensive approach of statistical analysis and functional validation identified global expression patterns in EMT and candidate regulatory genes, thereby both extending current knowledge and identifying novel drivers of EMT. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3413-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Princy Parsana
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sarah R Amend
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - James Hernandez
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Kenneth J Pienta
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Alexis Battle
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
43
|
Eisenblaetter M, Flores-Borja F, Lee JJ, Wefers C, Smith H, Hueting R, Cooper MS, Blower PJ, Patel D, Rodriguez-Justo M, Milewicz H, Vogl T, Roth J, Tutt A, Schaeffter T, Ng T. Visualization of Tumor-Immune Interaction - Target-Specific Imaging of S100A8/A9 Reveals Pre-Metastatic Niche Establishment. Theranostics 2017; 7:2392-2401. [PMID: 28744322 PMCID: PMC5525744 DOI: 10.7150/thno.17138] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 02/20/2017] [Indexed: 11/17/2022] Open
Abstract
Background Systemic cancer spread is preceded by the establishment of a permissive microenvironment in the target tissue of metastasis - the premetastatic niche. As crucial players in establishment of the pre-metastatic niche, myeloid derived suppressor cells (MDSC) release S100A8/A9, an exosomal protein that contributes to metastasis, angiogenesis, and immune suppression. We report the application of antibody-based single-photon emission computed tomography (SPECT) for detection of S100A8/A9 in vivo as an imaging marker for pre-metastatic tissue priming. Methods A syngeneic model system for invasive breast cancer with (4T1.2) or without (67NR) the tendency to form lung metastasis was established in BALB/c mice. A SPECT-probe has been generated and tested for visualization of S100A9 release. Tumor-associated changes in numbers and fuction of immune cells in pre-metastatic tissue were evaluated by flow cytometry and confocal microscopy. Results S100A8/A9 imaging reflected MDSC abundance and the establishment of an immunosuppressive environment in pre-metastatic lung tissue (activity 4T1.2 vs. healthy control: 0.95 vs. 0.45 %ID; p<0.001). The S100A8/A9 imaging signal in the pre-metastatic lung correlated with the subsequent metastatic tumor burden in the same organ (r2=0.788; p<0.0001). CCL2 blockade and the consecutive inhibition of premetastatic niche establishment was clearly depicted by S100A9-SPECT (lung activity untreated vs. treated: 2 vs, 1.4 %ID). Conclusion We report S100A8/A9 as a potent imaging biomarker for tumor-mediated immune remodeling with potential applications in basic research and clinical oncology.
Collapse
Affiliation(s)
- Michel Eisenblaetter
- Richard Dimbleby Department of Cancer Research, Randall Division & Division of Cancer Studies, King's College London, London SE1 1UL, UK
- Division of Imaging Sciences & Biomedical Engineering, King's College London, London SE1 7EH, UK
- Department of Clinical Radiology, University Hospital Muenster, 48149 Muenster, Germany
| | - Fabian Flores-Borja
- Richard Dimbleby Department of Cancer Research, Randall Division & Division of Cancer Studies, King's College London, London SE1 1UL, UK
- Breast Cancer Now Research Unit, Department of Research Oncology, Guy's Hospital, King's College London, London SE1 9RT, UK
| | - Jae Jin Lee
- Richard Dimbleby Department of Cancer Research, Randall Division & Division of Cancer Studies, King's College London, London SE1 1UL, UK
- Breast Cancer Now Research Unit, Department of Research Oncology, Guy's Hospital, King's College London, London SE1 9RT, UK
| | - Christina Wefers
- Richard Dimbleby Department of Cancer Research, Randall Division & Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | - Hannah Smith
- Richard Dimbleby Department of Cancer Research, Randall Division & Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | - Rebekka Hueting
- Division of Imaging Sciences & Biomedical Engineering, King's College London, London SE1 7EH, UK
| | - Margaret S Cooper
- Division of Imaging Sciences & Biomedical Engineering, King's College London, London SE1 7EH, UK
| | - Philip J Blower
- Division of Imaging Sciences & Biomedical Engineering, King's College London, London SE1 7EH, UK
| | - Dominic Patel
- Department of Histopathology, University College London, London WC1
| | | | - Hanna Milewicz
- UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6DD, UK
| | - Thomas Vogl
- Institute of Immunology, University Hospital Muenster, 48149 Muenster, Germany
| | - Johannes Roth
- Institute of Immunology, University Hospital Muenster, 48149 Muenster, Germany
| | - Andrew Tutt
- Breast Cancer Now Research Unit, Department of Research Oncology, Guy's Hospital, King's College London, London SE1 9RT, UK
| | - Tobias Schaeffter
- Division of Imaging Sciences & Biomedical Engineering, King's College London, London SE1 7EH, UK
| | - Tony Ng
- Richard Dimbleby Department of Cancer Research, Randall Division & Division of Cancer Studies, King's College London, London SE1 1UL, UK
- Breast Cancer Now Research Unit, Department of Research Oncology, Guy's Hospital, King's College London, London SE1 9RT, UK
- UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6DD, UK
| |
Collapse
|
44
|
Zhang S, Wang Z, Liu W, Lei R, Shan J, Li L, Wang X. Distinct prognostic values of S100 mRNA expression in breast cancer. Sci Rep 2017; 7:39786. [PMID: 28051137 PMCID: PMC5209742 DOI: 10.1038/srep39786] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/28/2016] [Indexed: 12/22/2022] Open
Abstract
S100 family genes encode low molecular weight, acidic-Ca2+ binding proteins implicating in a wide spectrum of biological processes. S100 family contains at least 20 members, most of which are frequently dysregulated in human malignancies including breast cancer. However, the prognostic roles of each individual S100, especially the mRNA level, in breast cancer patients remain elusive. In the current study, we used "The Kaplan-Meier plotter" (KM plotter) database to investigate the prognostic values of S100 mRNA expression in breast cancer. Our results indicated that high mRNA expression of S100A8, S100A9, S100A11 and S100P were found to be significantly correlated to worse outcome, while S100A1 and S100A6 were associated with better prognosis in all breast cancer patients. We further assessed the prognostic value of S100 in different intrinsic subtypes and clinicopathological features of breast cancer. The associated results will elucidate the role of S100 in breast cancer and may further lead the research to explore the S100-targeting reagents for treating breast cancer patients.
Collapse
Affiliation(s)
- Shizhen Zhang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou, Zhejiang 310009, China.,Cancer Institute (Key Laboratory of Cancer Prevention &Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Zhen Wang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou, Zhejiang 310009, China.,Cancer Institute (Key Laboratory of Cancer Prevention &Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Weiwei Liu
- Department of Laboratory Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Rui Lei
- Department of Plastic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, No. 79, Qingchun Road, Hangzhou, Zhejiang 310009, China
| | - Jinlan Shan
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou, Zhejiang 310009, China.,Cancer Institute (Key Laboratory of Cancer Prevention &Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Ling Li
- Division of Hematopoietic Stem Cell and Leukemia Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Xiaochen Wang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou, Zhejiang 310009, China.,Cancer Institute (Key Laboratory of Cancer Prevention &Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
45
|
Zhao H, Guo E, Hu T, Sun Q, Wu J, Lin X, Luo D, Sun C, Wang C, Zhou B, Li N, Xia M, Lu H, Meng L, Xu X, Hu J, Ma D, Chen G, Zhu T. KCNN4 and S100A14 act as predictors of recurrence in optimally debulked patients with serous ovarian cancer. Oncotarget 2016; 7:43924-43938. [PMID: 27270322 PMCID: PMC5190068 DOI: 10.18632/oncotarget.9721] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 05/08/2016] [Indexed: 12/14/2022] Open
Abstract
Approximately 50-75% of patients with serous ovarian carcinoma (SOC) experience recurrence within 18 months after first-line treatment. Current clinical indicators are inadequate for predicting the risk of recurrence. In this study, we used 7 publicly available microarray datasets to identify gene signatures related to recurrence in optimally debulked SOC patients, and validated their expressions in an independent clinic cohort of 127 patients using immunohistochemistry (IHC). We identified a two-gene signature including KCNN4 and S100A14 which was related to recurrence in optimally debulked SOC patients. Their mRNA expression levels were positively correlated and regulated by DNA copy number alterations (CNA) (KCNN4: p=1.918e-05) and DNA promotermethylation (KCNN4: p=0.0179; S100A14: p=2.787e-13). Recurrence prediction models built in the TCGA dataset based on KCNN4 and S100A14 individually and in combination showed good prediction performance in the other 6 datasets (AUC:0.5442-0.9524). The independent cohort supported the expression difference between SOC recurrences. Also, a KCNN4 and S100A14-centered protein interaction subnetwork was built from the STRING database, and the shortest regulation path between them, called the KCNN4-UBA52-KLF4-S100A14 axis, was identified. This discovery might facilitate individualized treatment of SOC.
Collapse
Affiliation(s)
- Haiyue Zhao
- Cancer Biology Research Center (Key Laboratory of the Ministry Of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ensong Guo
- Cancer Biology Research Center (Key Laboratory of the Ministry Of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ting Hu
- Cancer Biology Research Center (Key Laboratory of the Ministry Of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Sun
- Cancer Biology Research Center (Key Laboratory of the Ministry Of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jianli Wu
- Cancer Biology Research Center (Key Laboratory of the Ministry Of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xingguang Lin
- Cancer Biology Research Center (Key Laboratory of the Ministry Of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Danfeng Luo
- Cancer Biology Research Center (Key Laboratory of the Ministry Of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chaoyang Sun
- Cancer Biology Research Center (Key Laboratory of the Ministry Of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Changyu Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry Of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bo Zhou
- Cancer Biology Research Center (Key Laboratory of the Ministry Of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Na Li
- Cancer Biology Research Center (Key Laboratory of the Ministry Of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meng Xia
- Cancer Biology Research Center (Key Laboratory of the Ministry Of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hao Lu
- Cancer Biology Research Center (Key Laboratory of the Ministry Of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Meng
- Cancer Biology Research Center (Key Laboratory of the Ministry Of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoyan Xu
- Cancer Biology Research Center (Key Laboratory of the Ministry Of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Junbo Hu
- Cancer Biology Research Center (Key Laboratory of the Ministry Of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ding Ma
- Cancer Biology Research Center (Key Laboratory of the Ministry Of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gang Chen
- Cancer Biology Research Center (Key Laboratory of the Ministry Of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tao Zhu
- Cancer Biology Research Center (Key Laboratory of the Ministry Of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
46
|
Waldemarson S, Kurbasic E, Krogh M, Cifani P, Berggård T, Borg Å, James P. Proteomic analysis of breast tumors confirms the mRNA intrinsic molecular subtypes using different classifiers: a large-scale analysis of fresh frozen tissue samples. Breast Cancer Res 2016; 18:69. [PMID: 27357824 PMCID: PMC4928264 DOI: 10.1186/s13058-016-0732-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/19/2016] [Indexed: 12/11/2022] Open
Abstract
Background Breast cancer is a complex and heterogeneous disease that is usually characterized by histological parameters such as tumor size, cellular arrangements/rearrangments, necrosis, nuclear grade and the mitotic index, leading to a set of around twenty subtypes. Together with clinical markers such as hormone receptor status, this classification has considerable prognostic value but there is a large variation in patient response to therapy. Gene expression profiling has provided molecular profiles characteristic of distinct subtypes of breast cancer that reflect the divergent cellular origins and degree of progression. Methods Here we present a large-scale proteomic and transcriptomic profiling study of 477 sporadic and hereditary breast cancer tumors with matching mRNA expression analysis. Unsupervised hierarchal clustering was performed and selected proteins from large-scale tandem mass spectrometry (MS/MS) analysis were transferred into a highly multiplexed targeted selected reaction monitoring assay to classify tumors using a hierarchal cluster and support vector machine with leave one out cross-validation. Results The subgroups formed upon unsupervised clustering agree very well with groups found at transcriptional level; however, the classifiers (genes or their respective protein products) differ almost entirely between the two datasets. In-depth analysis shows clear differences in pathways unique to each type, which may lie behind their different clinical outcomes. Targeted mass spectrometry analysis and supervised clustering correlate very well with subgroups determined by RNA classification and show convincing agreement with clinical parameters. Conclusions This work demonstrates the merits of protein expression profiling for breast cancer stratification. These findings have important implications for the use of genomics and expression analysis for the prediction of protein expression, such as receptor status and drug target expression. The highly multiplexed MS assay is easily implemented in standard clinical chemistry practice, allowing rapid and cheap characterization of tumor tissue suitable for directing the choice of treatment. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0732-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sofia Waldemarson
- Department of Immunotechnology, Lund University, Medicon Village, 223 81, Lund, Sweden
| | - Emila Kurbasic
- Department of Immunotechnology, Lund University, Medicon Village, 223 81, Lund, Sweden
| | - Morten Krogh
- Amber Biosciences AB, Skrivarevägen 9, 226 57, Lund, Sweden
| | - Paolo Cifani
- Department of Immunotechnology, Lund University, Medicon Village, 223 81, Lund, Sweden
| | | | - Åke Borg
- Department of Oncology, Lund University, Medicon Village, 223 81, Lund, Sweden
| | - Peter James
- Department of Immunotechnology, Lund University, Medicon Village, 223 81, Lund, Sweden. .,Turku Centre for Biotechnology, Åbo Akademi University, University of Turku Biocity, Tykistokatu 6, 20520, Turku, Finland.
| |
Collapse
|
47
|
Lee MS, Hsu WT, Deng YF, Lin CW, Weng EY, Chang HP, Wu SF, Li C. SOX2 suppresses the mobility of urothelial carcinoma by promoting the expression of S100A14. Biochem Biophys Rep 2016; 7:230-239. [PMID: 28955911 PMCID: PMC5613348 DOI: 10.1016/j.bbrep.2016.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/27/2016] [Accepted: 06/21/2016] [Indexed: 11/25/2022] Open
Abstract
Sex-determining region Y (SRY)-box protein 2 (SOX2) plays a critical role in stem cell maintenance and carcinogenesis. In addition to its function as a minor-groove DNA binding transcription factor, our previous study showed that SOX2 also acts as a RNA binding protein. In current study, we first showed that SOX2 displayed high affinity toward the mRNA encoding S100A14 in BFTC905 and that depletion of SOX2 resulted in a decrease of S100A14 mRNA and protein level. To characterize the RNA binding sequence recognized by SOX2, oligomer-directed RNase H digestion was coupled to the cross-linking before immunoprecipitation assay to demonstrate that SOX2 preferentially binds to the 3′-UTR of the S100A14 mRNA. Using EGFP-S100A14 3′-UTR reporters and mobility shift assay, we identified that the binding sequence on the 3′-UTR of the S100A14 mRNA exhibits a stem-loop structure. Together, our data indicates that SOX2 enhances S100A14 expression by binding to the 3′-UTR of the S100A14 mRNA. Functionally, depletion of SOX2 increases growth and mobility of BFTC905. Knock-down of S100A14 in BFTC905 also leads to an increase in the number of the cells in the S phase and higher mobility, suggesting that SOX2 suppresses cell growth and mobility through promoting the expression of S100A14. Together, our experimental evidence indicates that SOX2 is capable of exerting its cellular functions by functioning as an RNA binding protein in post-transcriptional regulation. SOX2 binds to the S100A14 mRNA and promotes the expression of S100A14. The SOX2 binding site on the S100A14 mRNA 3′UTR consists of an stem-loop structure. Suppression of SOX2 expression promotes growth and mobility of BFTC905. S100A14 functions to retard cell cycle progression and mobility.
Collapse
Affiliation(s)
- Moon-Sing Lee
- Department of Radiation Oncology, Buddhist Dalin Tzu Chi Hospital, Chiayi, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wan-Ting Hsu
- Department of Life Science, National Chung Cheng University, Chiayi, Taiwan
| | - Yi-Fang Deng
- Department of Life Science, National Chung Cheng University, Chiayi, Taiwan
| | - Ching-Wei Lin
- Department of Life Science, National Chung Cheng University, Chiayi, Taiwan
| | - Erh-Ying Weng
- Department of Life Science, National Chung Cheng University, Chiayi, Taiwan
| | - Hsin-Ping Chang
- Department of Life Science, National Chung Cheng University, Chiayi, Taiwan
| | - Shu-Fen Wu
- Department of Life Science, National Chung Cheng University, Chiayi, Taiwan
| | - Chin Li
- Department of Life Science, National Chung Cheng University, Chiayi, Taiwan
| |
Collapse
|
48
|
Choi J, Kim DI, Kim J, Kim BH, Kim A. Hornerin Is Involved in Breast Cancer Progression. J Breast Cancer 2016; 19:142-7. [PMID: 27382389 PMCID: PMC4929254 DOI: 10.4048/jbc.2016.19.2.142] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/23/2016] [Indexed: 11/30/2022] Open
Abstract
Purpose The S100 gene family, which comprises over 20 members, including S100A1, S100A2, S100A8, S100A9, profilaggrin, and hornerin encodes low molecular weight calcium-binding proteins with physiological and pathological roles in keratinization. Recent studies have suggested a link between S100 proteins and human cancer progression. The purpose of the present study was to determine the expression levels of hornerin, S100A8, and S100A9 and evaluate their roles in the progression of invasive ductal carcinoma (IDC). Methods Seventy cases of ductal carcinoma in situ (DCIS), IDC, and metastatic carcinoma in lymph nodes (MCN) were included. Tissue microarrays were constructed from lesions of DCIS, IDC, and MCN from the same patients. Expression of hornerin, S100A8, and S100A9 was analyzed using immunohistochemistry. Results The expression of hornerin was associated with the estrogen receptor-negative (p=0.003) and the human epidermal growth factor receptor 2-positive (p=0.002) groups. The expression of S100A8 was associated with a higher pT stage (p=0.017). A significant (p<0.001) correlation between the expression of S100A9 and S100A8 was also found. The mean percentages of hornerin-positive tumor cells in DCIS, IDC, and MCN were 1.0%±3.3% (mean±standard deviation), 12.0%±24.0%, and 75.3%± 27.6%, respectively. The expression of hornerin significantly (p<0.001) increased with the progression of carcinoma. The mean levels of S100A8 and S100A9 in DCIS, IDC, and MCN were not significantly (p>0.050) different. The expression of hornerin increased in a stepwise manner (DCIS<IDC<MCN). Conclusion Our data suggest that hornerin is involved in breast cancer progression and malignant transformation from preinvasive lesions.
Collapse
Affiliation(s)
- Jinhyuk Choi
- Department of Pathology, Korea University Guro Hospital, Seoul, Korea
| | - Dong-Il Kim
- Green Cross Reference Laboratory, Yongin, Korea
| | - Jinkyoung Kim
- Department of Pathology, Korea University Guro Hospital, Seoul, Korea
| | - Baek-Hui Kim
- Department of Pathology, Korea University Guro Hospital, Seoul, Korea
| | - Aeree Kim
- Department of Pathology, Korea University Guro Hospital, Seoul, Korea
| |
Collapse
|
49
|
S100A4 promotes endometrial cancer progress through epithelial-mesenchymal transition regulation. Oncol Rep 2016; 35:3419-26. [PMID: 27109209 DOI: 10.3892/or.2016.4760] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/22/2016] [Indexed: 11/05/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a major cause of endometrial cancer (EC) to initiate invasion and metastasis. S100A4, a calcium-binding protein, is implicated in multistage of tumorigenesis and tumor progression. The correlation between S100A4 and EMT in EC is still unclear. This study was aimed to clarify the role of S100A4 in EC and the relationship between S100A4 expression and EMT markers. S100A4, E-cadherin, and vimentin were detected in tissues of EC patients (n=50) by immunohistochemistry. The impact of S100A4 on EC cell proliferation, migration and invasion was investigated via RNA interference, and the correlation between S100A4 and EMT markers were also explored. The results showed that S100A4 was significantly increased in epithelial cells of EC compared with the normal endometrium (P<0.05), also S100A4 level was positively related to age (P=0.021), histological grade (P<0.001), and lymph node metastasis (P<0.001). Additionally, silencing of S100A4 remarkably attenuated EC cell migration and invasion. Significant morphological change accompanied with the downregulation of EMT markers, E-cadherin and vimentin were also observed. Aberrant S100A4 expression may predict EC progression and play an important role in regulating EC cell invasion through EMT regulation. Hence, S100A4 is a promising therapeutic target.
Collapse
|
50
|
Gonzalez-Perez A. Circuits of cancer drivers revealed by convergent misregulation of transcription factor targets across tumor types. Genome Med 2016; 8:6. [PMID: 26792175 PMCID: PMC4719577 DOI: 10.1186/s13073-015-0260-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/29/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Large tumor genome sequencing projects have now uncovered a few hundred genes involved in the onset of tumorigenesis, or drivers, in some two dozen malignancies. One of the main challenges emerging from this catalog of drivers is how to make sense of their heterogeneity in most cancer types. This is key not only to understand how carcinogenesis appears and develops in these malignancies to be able to early diagnose them, but also to open up the possibility to employ therapeutic strategies targeting a driver protein to counteract the alteration of another connected driver. METHODS Here, I focus on driver transcription factors and their connection to tumorigensis in several tumor types through the alteration of the expression of their targets. First, I explore their involvement in tumorigenesis as mutational drivers in 28 different tumor types. Then, I collect a list of downstream targets of the all driver transcription factors (TFs), and identify which of them exhibit a differential expression upon alterations of driver transcription factors. RESULTS I identify the subset of targets of each TF most likely mediating the tumorigenic effect of their driver alterations in each tumor type, and explore their overlap. Furthermore, I am able to identify other driver genes that cause tumorigenesis through the alteration of very similar sets of targets. CONCLUSIONS I thus uncover these circuits of connected drivers which cause tumorigenesis through the perturbation of overlapping cellular pathways in a pan-cancer manner across 15 malignancies. The systematic detection of these circuits may be key to propose novel therapeutic strategies indirectly targeting driver alterations in tumors.
Collapse
Affiliation(s)
- Abel Gonzalez-Perez
- Research Program on Biomedical Informatics, IMIM Hospital del Mar Medical Research Institute and Universitat Pompeu Fabra, Doctor Aiguader 88, 08003, Barcelona, Spain.
| |
Collapse
|