1
|
Stehle D, Barresi M, Schulz J, Feil R. Heterogeneity of cGMP signalling in tumour cells and the tumour microenvironment: Challenges and chances for cancer pharmacology and therapeutics. Pharmacol Ther 2023; 242:108337. [PMID: 36623589 DOI: 10.1016/j.pharmthera.2023.108337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/08/2023]
Abstract
The second messenger cyclic guanosine monophosphate (cGMP) is an important regulator of human (patho-)physiology and has emerged as an attractive drug target. Currently, cGMP-elevating drugs are mainly used to treat cardiovascular diseases, but there is also increasing interest in exploring their potential for cancer prevention and therapy. In this review article, we summarise recent findings in cancer-related cGMP research, with a focus on melanoma, breast cancer, colorectal cancer, prostate cancer, glioma, and ovarian cancer. These studies indicate tremendous heterogeneity of cGMP signalling in tumour tissue. It appears that different tumour and stroma cells, and perhaps different sexes, express different cGMP generators, effectors, and degraders. Therefore, the same cGMP-elevating drug can lead to different outcomes in different tumour settings, ranging from inhibition to promotion of tumourigenesis or therapy resistance. These findings, together with recent evidence that increased cGMP signalling is associated with worse prognosis in several human cancers, challenge the traditional view that cGMP elevation generally has an anti-cancer effect. As cGMP pathways appear to be more stable in the stroma than in tumour cells, we suggest that cGMP-modulating drugs should preferentially target the tumour microenvironment. Indeed, there is evidence that phosphodiesterase 5 inhibitors like sildenafil enhance anti-tumour immunity by acting on immune cells. Moreover, many in vivo results obtained with cGMP-modulating drugs could be explained by effects on the tumour vasculature rather than on the tumour cells themselves. We therefore propose a model that incorporates the NO/cGMP signalling pathway in tumour vessels as a key target for cancer therapy. Deciphering the multifaceted roles of cGMP in cancer is not only a challenge for basic research, but also provides a chance to predict potential adverse effects of cGMP-modulating drugs in cancer patients and to develop novel anti-tumour therapies by precision targeting of the relevant cells and molecular pathways.
Collapse
Affiliation(s)
- Daniel Stehle
- Interfakultäres Institut für Biochemie (IFIB), Universität Tübingen, Tübingen, Germany
| | - Mariagiovanna Barresi
- Interfakultäres Institut für Biochemie (IFIB), Universität Tübingen, Tübingen, Germany
| | - Jennifer Schulz
- Interfakultäres Institut für Biochemie (IFIB), Universität Tübingen, Tübingen, Germany
| | - Robert Feil
- Interfakultäres Institut für Biochemie (IFIB), Universität Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Samidurai A, Xi L, Das A, Kukreja RC. Beyond Erectile Dysfunction: cGMP-Specific Phosphodiesterase 5 Inhibitors for Other Clinical Disorders. Annu Rev Pharmacol Toxicol 2023; 63:585-615. [PMID: 36206989 DOI: 10.1146/annurev-pharmtox-040122-034745] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cyclic guanosine monophosphate (cGMP), an important intracellular second messenger, mediates cellular functional responses in all vital organs. Phosphodiesterase 5 (PDE5) is one of the 11 members of the cyclic nucleotide phosphodiesterase (PDE) family that specifically targets cGMP generated by nitric oxide-driven activation of the soluble guanylyl cyclase. PDE5 inhibitors, including sildenafil and tadalafil, are widely used for the treatment of erectile dysfunction, pulmonary arterial hypertension, and certain urological disorders. Preclinical studies have shown promising effects of PDE5 inhibitors in the treatment of myocardial infarction, cardiac hypertrophy, heart failure, cancer and anticancer-drug-associated cardiotoxicity, diabetes, Duchenne muscular dystrophy, Alzheimer's disease, and other aging-related conditions. Many clinical trials with PDE5 inhibitors have focused on the potential cardiovascular, anticancer, and neurological benefits. In this review, we provide an overview of the current state of knowledge on PDE5 inhibitors and their potential therapeutic indications for various clinical disorders beyond erectile dysfunction.
Collapse
Affiliation(s)
- Arun Samidurai
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA;
| | - Lei Xi
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA;
| | - Anindita Das
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA;
| | - Rakesh C Kukreja
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA;
| |
Collapse
|
3
|
Barrón-Gallardo CA, Garcia-Chagollán M, Morán-Mendoza AJ, Delgadillo-Cristerna R, Martínez-Silva MG, Villaseñor-García MM, Aguilar-Lemarroy A, Jave-Suárez LF. A gene expression signature in HER2+ breast cancer patients related to neoadjuvant chemotherapy resistance, overall survival, and disease-free survival. Front Genet 2022; 13:991706. [PMID: 36338974 PMCID: PMC9634254 DOI: 10.3389/fgene.2022.991706] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022] Open
Abstract
Breast cancer ranks first in terms of mortality and incidence rates worldwide among women. The HER2+ molecular subtype is one of the most aggressive subtypes; its treatment includes neoadjuvant chemotherapy and the use of a HER2 antibody. Some patients develop resistance despite positive results obtained using this therapeutic strategy. Objective. To identify prognostic markers for treatment and survival in HER2+ patients. Methods. Patients treated with neoadjuvant chemotherapy were assigned to sensitive and resistant groups based on their treatment response. Differentially expressed genes (DEGs) were identified using RNA-seq analysis. KEGG pathway, gene ontology, and interactome analyses were performed for all DEGs. An enrichment analysis Gene set enrichment analysis was performed. All DEGs were analyzed for overall (OS) and disease-free survival (DFS). Results. A total of 94 DEGs were related to treatment resistance. Survival analysis showed that 12 genes (ATF6B, DHRS13, DIRAS1, ERAL1, GRIN2B, L1CAM, IRX3, PRTFDC1, PBX2, S100B, SLC9A3R2, and TNXB) were good predictors of disease-free survival, and eight genes (GNG4, IL22RA2, MICA, S100B, SERPINF2, HLA-A, DIRAS1, and TNXB) were good predictors of overall survival (OS). Conclusion: We highlighted a molecular expression signature that can differentiate the treatment response, overall survival, and DFS of patients with HER2+ breast cancer.
Collapse
Affiliation(s)
- Carlos A. Barrón-Gallardo
- Programa de Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Mariel Garcia-Chagollán
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Andres J. Morán-Mendoza
- Hospital de Ginecología, Centro Médico Nacional de Occidente, Instituto Mexicano Del Seguro Social (IMSS), Guadalajara, Mexico
| | - Raul Delgadillo-Cristerna
- Departamento de Radiología e Imagen, Centro Médico Nacional de Occidente, Instituto Mexicano Del Seguro Social (IMSS), Guadalajara, Mexico
| | - María G. Martínez-Silva
- Departamento de Anatomía Patológica, Centro Médico Nacional de Occidente, Instituto Mexicano Del Seguro Social (IMSS), Guadalajara, Mexico
| | - María M. Villaseñor-García
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano Del Seguro Social (IMSS), Guadalajara, Mexico
| | - Adriana Aguilar-Lemarroy
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano Del Seguro Social (IMSS), Guadalajara, Mexico
- *Correspondence: Adriana Aguilar-Lemarroy, ; Luis F. Jave-Suárez,
| | - Luis F. Jave-Suárez
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano Del Seguro Social (IMSS), Guadalajara, Mexico
- *Correspondence: Adriana Aguilar-Lemarroy, ; Luis F. Jave-Suárez,
| |
Collapse
|
4
|
Laporta J, Dado-Senn B, Skibiel AL. Late gestation hyperthermia: epigenetic programming of daughter's mammary development and function. Domest Anim Endocrinol 2022; 78:106681. [PMID: 34600221 DOI: 10.1016/j.domaniend.2021.106681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/30/2022]
Abstract
Exposure to stressors during early developmental windows, such as prenatally (i.e., in utero), can have life-long implications for an animal's health and productivity. The mammary gland starts developing in utero and, like other developing tissues and organs, may undergo fetal programming. Previous research has implicated factors, such as prenatal exposure to endocrine disruptors or alterations in maternal diet (e.g., maternal over or undernutrition), that can influence the developmental trajectory of the offspring mammary gland in postnatal life. However, the direct links between prenatal insults and future productive outcomes are less documented in livestock species. Research on in utero hyperthermia effects on early-life mammary development is scarce. This review will provide an overview of key developmental milestones taking place in the bovine mammary gland during the pre- and postnatal stages. We will showcase how intrauterine hyperthermia, experienced by the developing fetus during the last trimester of gestation, derails postnatal mammary gland development and impairs its synthetic capacity later in life. We will provide insights into the underlying histological, cellular, and molecular mechanisms taking place at key postnatal developmental life stages, including birth, weaning and the first lactation, that might explain permanent detriments in productivity long after the initial exposure to hyperthermia. Collectively, our studies indicate that prenatal hyperthermia jeopardizes the normal developmental trajectory of the mammary gland from fetal development to lactation. Further, in utero hyperthermia epigenetically programs the udder, and possibly other organs critical to lactation, yielding a less resilient and less productive cow for multiple lactations.
Collapse
Affiliation(s)
- J Laporta
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, USA.
| | - B Dado-Senn
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, USA
| | - A L Skibiel
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Idaho, USA
| |
Collapse
|
5
|
Li W, Yin X, Yan Y, Liu C, Li G. STEAP4 knockdown inhibits the proliferation of prostate cancer cells by activating the cGMP-PKG pathway under lipopolysaccharide-induced inflammatory microenvironment. Int Immunopharmacol 2021; 101:108311. [PMID: 34768126 DOI: 10.1016/j.intimp.2021.108311] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 12/30/2022]
Abstract
Six-transmembrane epithelial antigen of prostate 4 (STEAP4) is involved in the development of human cancers. However, the role of STEAP4 in prostate cancer remains largely unknown. The purpose of this research is to explore the role and action mechanism of STEAP4 in prostate cancer development under lipopolysaccharide (LPS)-induced inflammatory microenvironment. STEAP4 expression was analyzed by Gene Expression Profiling Interactive Analysis (GEPIA), UALCAN and Cancer Cell Line Encyclopedia (CCLE), and its prognostic value was analyzed by LinkedOmics. STEAP4-correlated genes were analyzed by LinkedOmics and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. STEAP4 level was detected by Western blotting or qRT-PCR. Proliferation was investigated by CCK-8 and EdU staining. Inflammatory cytokine levels were detected by ELISA. The cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) pathway was detected by ELISA and Western blotting. STEAP4 level was increased in prostate cancer tissues, and high expression of STEAP4 was associated with the poor overall survival. LPS promoted cell viability and STEAP4 expression. STEAP4 knockdown attenuated LPS-induced inflammation in prostate cancer cells. STEAP4 downregulation mitigated LPS-induced tumorigenesis by decreasing cell proliferation. STEAP4 silencing reversed LPS-induced inactivation of the cGMP-PKG pathway. Inhibition of the cGMP-PKG pathway using inhibitor KT5823 relieved STEAP4 silencing-mediated suppression of cell proliferation and inflammation in LPS-stimulated cells. In conclusion, STEAP4 silencing inhibits LPS-induced proliferation of prostate cancer cells by activating the cGMP-PKG pathway.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Reproductive Medicine, Maternal and Child Care Center of Qinhuangdao, Qinhuangdao 066000, China
| | - Xiurong Yin
- Department of Reproductive Medicine, Maternal and Child Care Center of Qinhuangdao, Qinhuangdao 066000, China
| | - Yani Yan
- Department of Reproductive Medicine, Maternal and Child Care Center of Qinhuangdao, Qinhuangdao 066000, China
| | - Cong Liu
- Department of Reproductive Medicine, Maternal and Child Care Center of Qinhuangdao, Qinhuangdao 066000, China
| | - Gang Li
- Department of Surgical Anesthesiology, Maternal and Child Care Center of Qinhuangdao, Qinhuangdao 066000, China.
| |
Collapse
|
6
|
Liu J, Wang P, Zhang P, Zhang X, Du H, Liu Q, Huang B, Qian C, Zhang S, Zhu W, Yang X, Xiao Y, Liu Z, Luo D. An integrative bioinformatics analysis identified miR-375 as a candidate key regulator of malignant breast cancer. J Appl Genet 2019; 60:335-346. [PMID: 31372832 DOI: 10.1007/s13353-019-00507-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/30/2019] [Accepted: 07/09/2019] [Indexed: 12/27/2022]
Abstract
MicroRNAs (miRNAs) are key regulators that play important biological roles in carcinogenesis and are promising biomarkers for cancer diagnosis and therapy. hsa-miR-375-3p (miR-375) has been suggested to serve as a tumor suppressor or oncogene in various tumor types; however, its specific expression and potential regulatory role in malignant breast cancer remain unclear. In this study, the results from noncoding RNA microarray analysis indicated that the miR-375 expression level is significantly decreased in malignant basal-like breast cancer compared with luminal-like breast cancer. A total of 1895 co-downregulated and 1645 co-upregulated genes were identified in miR-375 mimic-transfected basal-like breast cancer cell lines. Predicted miR-375 targets were obtained from the online databases TargetScan and DIANA-microT-CDS. Combined KEGG enrichment analysis for coregulated genes and predicted miR-375 targets provided information and revealed differences in potential dynamic signaling pathways regulated by miR-375 and also indicated specific regulatory pathways, such as RNA transport and processing, in basal-like breast cancer. Additionally, gene expression microarray analysis accompanied by UALCAN analysis was performed to screen upregulated genes in the basal-like subtype. Four potential key genes, including LDHB, CPNE8, QKI, and EIF5A2, were identified as candidate target genes of miR-375. Therefore, the present study demonstrated that miR-375 may be a potential key regulator and provide a promising direction for diagnostic and therapeutic developments for malignant breast cancer.
Collapse
Affiliation(s)
- Jiaxuan Liu
- Queen Mary School, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Ping Wang
- Queen Mary School, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Ping Zhang
- Department of Pathology, The Affiliated Infectious Diseases Hospital, Nanchang University, Nanchang, 330002, Jiangxi, China
| | - Xinyu Zhang
- Queen Mary School, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Hang Du
- Queen Mary School, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Qiang Liu
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Bo Huang
- Department of Pathology, The Affiliated Infectious Diseases Hospital, Nanchang University, Nanchang, 330002, Jiangxi, China
| | - Caiyun Qian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shuhua Zhang
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, Nanchang, 330006, Jiangxi, China
| | - Weifeng Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xiaohong Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yingqun Xiao
- Department of Pathology, The Affiliated Infectious Diseases Hospital, Nanchang University, Nanchang, 330002, Jiangxi, China.
| | - Zhuoqi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Daya Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, Jiangxi, China.
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
7
|
Moghbeli M. Genetic and molecular biology of breast cancer among Iranian patients. J Transl Med 2019; 17:218. [PMID: 31286981 PMCID: PMC6615213 DOI: 10.1186/s12967-019-1968-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023] Open
Abstract
Abstract Background, Breast cancer (BC) is one of the leading causes of cancer related deaths in Iran. This high ratio of mortality had a rising trend during the recent years which is probably associated with late diagnosis. Main body Therefore it is critical to define a unique panel of genetic markers for the early detection among our population. In present review we summarized all of the reported significant genetic markers among Iranian BC patients for the first time, which are categorized based on their cellular functions. Conclusions This review paves the way of introducing a unique ethnic specific panel of diagnostic markers among Iranian BC patients. Indeed, this review can also clarify the genetic and molecular bases of BC progression among Iranians.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Differential expression of alternative transcripts of soluble guanylyl cyclase, GYCY1a3 and GUCY1b3 genes, in the malignant and benign breast tumors. Nitric Oxide 2019; 83:65-71. [PMID: 30597209 DOI: 10.1016/j.niox.2018.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 12/11/2022]
Abstract
Extensive alterations in splicing is one of the molecular indicator for human cancers. Soluble guanylyl cyclase (sGC), an obligatory heterodimer, is composed of α1 and β1 subunits. Each subunit is encoded by a separate gene, GUCY1a3 and GUCY1b3, correspondingly. sGC activity has been regulated by an alternative splicing and it has an important effect on the breast cancer. sGC alternative splicing has been evaluated in the 55 malignant, 25 benign and 30 normal breast tissues using qRT-PCR and RT-PCR. The differences between groups were analyzed by Mann-Whitney U. The expression of six different splice forms have been detected, three for α1 and three for β1 sGC. Expressions of Tr1, Tr2 β1 sGC and Tr7, Tr6 α1 sGC mRNA in the malignant breast tumors were significantly lower than those of benign and normal breast tissues. However, the expression of Tr3 α1 sGC mRNA was significantly higher than that of benign and normal tissues. Present data have provided some evidences for an alteration in the expression of α1 and β1 sGC alternative splicing forms which may contribute to the loss of sGC functions in the breast cancer. The observed information might be discussed by the cGMP status.
Collapse
|
9
|
Wu C, Zhao Y, Liu Y, Yang X, Yan M, Min Y, Pan Z, Qiu S, Xia S, Yu J, Yang P, Wan B, Shao Q. Identifying miRNA-mRNA regulation network of major depressive disorder in ovarian cancer patients. Oncol Lett 2018; 16:5375-5382. [PMID: 30214617 PMCID: PMC6126176 DOI: 10.3892/ol.2018.9243] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/26/2018] [Indexed: 12/13/2022] Open
Abstract
Major depression disorder (MDD) has become increasingly common in patients with ovarian cancer, which complicates the treatment course. The microRNA (miRNA)-mRNA regulation network may help elucidate the potential mechanism of MDD in ovarian cancer. The differentially expressed microRNAs (DEmiRs) and mRNAs (DEmRNAs) were therefore identified from the GSE61741, GSE58105 and GSE9116 ovarian cancer datasets using GEO2R. The target genes of the DEmiRs were then obtained using the TargetScan, microRNAorg, microT-CDS, miRDB and miRTarBase prediction tools. The DAVID program was used to identify the KEGG pathways of target genes, and the core genes of major depressive disorder (MDD) were identified using the Kaplan-Meier Plotter for ovarian cancer. A total of 5 DEmiRs (miR-23b-3p, miR-33b-3p, miR-1265, miR-933 and miR-629-5p) were obtained from GSE61741 and GSE58105. The target genes of these DEmiRs were enriched in pathways that were considered high risk for developing MDD in ovarian cancer. A total of 11 risk genes were selected from these pathways as the core genes in the miRNA-mRNA network of MDD in ovarian cancer, and eventually identified the following 12 miRNA-mRNAs pairs: miR-629-5p-FGF1, miR-629-5p-AKT3, miR-629-5p-MAGI2, miR-933-BDNF, miR-933-MEF2A, miR-23b-3p-TJP1, miR-23b-3p-JMJD1, miR-23b-3p-APAF1, miR-23b-3p-CAB39, miR-1265-CDKN1B, miR-33b-3p-CDKN1B, and miR-33b-3p-F2R. These results may provide novel insights into the mechanisms of developing MDD in ovarian cancer patients.
Collapse
Affiliation(s)
- Chengjiang Wu
- Department of Respiratory Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 210002, P.R. China.,Department of Immunology, Key Laboratory for Laboratory Medicine of Jiangsu, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yangjing Zhao
- Department of Immunology, Key Laboratory for Laboratory Medicine of Jiangsu, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yuefang Liu
- Department of Immunology, Key Laboratory for Laboratory Medicine of Jiangsu, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013, P.R. China.,Department of Medical Genetics and Prenatal Diagnostics, Huaian Maternity and Child Health Care Hospital Affiliated to Yangzhou University, Huaian, Jiangsu 223002, P.R. China
| | - Xinxin Yang
- Department of Immunology, Key Laboratory for Laboratory Medicine of Jiangsu, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013, P.R. China
| | - Meina Yan
- Department of Immunology, Key Laboratory for Laboratory Medicine of Jiangsu, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yujiao Min
- Department of Immunology, Key Laboratory for Laboratory Medicine of Jiangsu, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013, P.R. China
| | - Zihui Pan
- Department of Immunology, Key Laboratory for Laboratory Medicine of Jiangsu, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013, P.R. China
| | - Shali Qiu
- Department of Immunology, Key Laboratory for Laboratory Medicine of Jiangsu, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013, P.R. China
| | - Sheng Xia
- Department of Immunology, Key Laboratory for Laboratory Medicine of Jiangsu, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jun Yu
- Department of Gynecology and Obstetrics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Peifang Yang
- Department of Gynecology and Obstetrics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Bing Wan
- Department of Respiratory Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 210002, P.R. China
| | - Qixiang Shao
- Department of Immunology, Key Laboratory for Laboratory Medicine of Jiangsu, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
10
|
Wang Y, Appiah-Kubi K, Lan T, Wu M, Pang J, Qian H, Tao Y, Jiang L, Wu Y, Chen Y. PKG II inhibits PDGF-BB triggered biological activities by phosphorylating PDGFRβ in gastric cancer cells. Cell Biol Int 2018; 42:1358-1369. [PMID: 29935031 DOI: 10.1002/cbin.11020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022]
Abstract
Previous studies revealed that type II cGMP-dependent protein kinase G (PKG II) could inhibit the activation of epidermal growth factor receptor (EGFR) which is a widely investigated RTK. PDGFR belongs to family of receptor tyrosine kinases (RTKs) too. However, the effect of PKG II on PDGFR activation is not clear yet. This study investigated potential regulatory effect of PKG II on activation of PDGFRβ and the downstream signaling transductions in gastric cancer. The results from CCK8 assay and Transwell assay indicated that PDGF-BB induced cell proliferation and migration. Activated PKG II reversed the above variations caused by PDGF-BB. Immunoprecipitation and Western blotting results showed that PKG II combined with PDGFRβ and phosphorylated this receptor, and thereby inhibited PDGF-BB induced activation of PDGFRβ, and MAPK/ERK and PI3K/Akt mediated signal transduction pathways. Based on the prediction by phosphorylation site software, Ser643 and Ser712 were mutated to alanine respectively which prevented phosphorylation at these sites. Mutation at Ser712 abolished the inhibitory function of PKG II on PDGFRβ activation but mutation of Ser643 had no such an effect, indicating that Ser712 was PKG II-specific phosphorylating site of PDGFRβ. In conclusion, PKG II inhibited PDGFRβ activation in gastric cancer via phosphorylating Ser712 of this RTK.
Collapse
Affiliation(s)
- Ying Wang
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Kwaku Appiah-Kubi
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
- Department of Applied Biology, University for Development Studies, Navrongo, Ghana
| | - Ting Lan
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Min Wu
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Ji Pang
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Hai Qian
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Yan Tao
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Lu Jiang
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Yan Wu
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Yongchang Chen
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
11
|
Wu Y, Yuan M, Su W, Zhu M, Yao X, Wang Y, Qian H, Jiang L, Tao Y, Wu M, Pang J, Chen Y. The constitutively active PKG II mutant effectively inhibits gastric cancer development via a blockade of EGF/EGFR-associated signalling cascades. Ther Adv Med Oncol 2018; 10:1758834017751635. [PMID: 29434677 PMCID: PMC5802699 DOI: 10.1177/1758834017751635] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/06/2017] [Indexed: 12/30/2022] Open
Abstract
Type II cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG II) is a membrane-anchored enzyme expressed mainly in the intestinal mucosa and the brain, and is associated with various physiological or pathological processes. Upregulation of PKG II is known to induce apoptosis and inhibit proliferation and metastasis of cancer cells. The inhibitory effect of PKG II has been shown to be dependent on the inhibition of the activation of epidermal growth factor receptor (EGFR) and blockade of EGFR downstream signal transduction in vitro. However, it remains unclear whether similar phenomena/mechanisms exist in vivo and whether these effects are independent of cGMP or cGMP analogues. In the present work, nude mice with transplanted orthotopic tumours were infected with adenovirus encoding cDNA of constitutively active PKG II mutant (Ad-a-PKG II) and the effect of constitutively active PKG II (a-PKG II) on tumour development was detected. The results showed that a-PKG II effectively ameliorated gastric tumour development through delaying the growth, inducing the apoptosis, and inhibiting the metastasis and angiogenesis. The effect was related to blockade of EGFR activation and abrogation of the downstream signalling cascades. These findings provide novel insight which will benefit the development of new cancer therapies.
Collapse
Affiliation(s)
- Yan Wu
- Department of Physiology, School of Medicine, Jiangsu University. 301 Xuefu Road; and The Central Laboratory, the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Miaomiao Yuan
- Department of Physiology, Jiangsu University, Zhenjiang, China
| | - Wenbin Su
- Department of Physiology, Jiangsu University, Zhenjiang, China
| | - Miaolin Zhu
- Department of Pathology, Jiangsu Cancer Hospital, Nanjing, China
| | - Xiaoyuan Yao
- Department of Basic Medicine, Changchun Medical College, Changchun, China
| | - Ying Wang
- Department of Physiology, Jiangsu University, Zhenjiang, China
| | - Hai Qian
- Department of Physiology, Jiangsu University, Zhenjiang, China
| | - Lu Jiang
- Department of Physiology, Jiangsu University, Zhenjiang, China
| | - Yan Tao
- Department of Physiology, Jiangsu University, Zhenjiang, China
| | - Min Wu
- Department of Physiology, Jiangsu University, Zhenjiang, China
| | - Ji Pang
- Department of Physiology, Jiangsu University, Zhenjiang, China
| | - Yongchang Chen
- Department of Physiology, School of Medicine, Jiangsu University. 301 Xuefu Road; Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
12
|
Wu M, Wu Y, Qian H, Tao Y, Pang J, Wang Y, Chen Y. Type II cGMP‑dependent protein kinase inhibits the migration, invasion and proliferation of several types of human cancer cells. Mol Med Rep 2017; 16:5729-5737. [PMID: 28849123 DOI: 10.3892/mmr.2017.7290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 06/28/2017] [Indexed: 11/05/2022] Open
Abstract
Previous studies have indicated that type II cyclic guanosine monophosphate (cGMP)‑dependent protein kinase (PKG II) could inhibit the proliferation and migration of gastric cancer cells. However, the effects of PKG II on the biological functions of other types of cancer cells remain to be elucidated. Therefore, the aim of the present study was to investigate the effects of PKG II on cancer cells derived from various types of human tissues, including A549 lung, HepG2 hepatic, OS‑RC‑2 renal, SW480 colon cancer cells and U251 glioma cells. Cancer cells were infected with adenoviral constructs coding PKG II (Ad‑PKG II) to up‑regulate PKG II expression, and treated with 8‑(4‑chlorophenylthio) (8‑pCPT)‑cGMP to activate the kinase. A Cell Counting kit 8 assay was used to detect cell proliferation. Cell migration was measured using a Transwell assay, whereas a terminal deoxynucleotidyl transferase 2'‑deoxyuridine, 5'‑triphosphate nick‑end labeling assay was used to detect cell apoptosis. A pull‑down assay was used to investigate the activation of Ras‑related C3 botulinum toxin substrate (Rac) 1 and western blotting was used to detect the expression of proteins of interest. The present results demonstrated that EGF (100 ng/ml, 24 h) promoted the proliferation and migration of cancer cells, and it suppressed their apoptosis. In addition, treatment with EGF enhanced the activation of Rac1, and up‑regulated the protein expression of proliferating cell nuclear antigen, matrix metalloproteinase (MMP)2, MMP7 and B‑cell lymphoma (Bcl)‑2, whereas it down‑regulated the expression of Bcl‑2‑associated X protein. Transfection of cancer cells with Ad‑PKG II, and PKG II activation with 8‑pCPT‑cGMP, was identified to counteract the effects triggered by EGF. The present results suggested that PKG II may exert inhibitory effects on the proliferation and migration of various types of cancer cells.
Collapse
Affiliation(s)
- Min Wu
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yan Wu
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Hai Qian
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yan Tao
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Ji Pang
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Ying Wang
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yongchang Chen
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
13
|
Catalano S, Campana A, Giordano C, Győrffy B, Tarallo R, Rinaldi A, Bruno G, Ferraro A, Romeo F, Lanzino M, Naro F, Bonofiglio D, Andò S, Barone I. Expression and Function of Phosphodiesterase Type 5 in Human Breast Cancer Cell Lines and Tissues: Implications for Targeted Therapy. Clin Cancer Res 2015; 22:2271-82. [PMID: 26667489 DOI: 10.1158/1078-0432.ccr-15-1900] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/07/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE By catalyzing cGMP hydrolysis, phosphodiesterase (PDE) 5 is a critical regulator of its concentration and effects in different (patho)physiologic processes, including cancers. As PDE5 is a known druggable target, we investigated the clinical significance of its expression in breast cancer and the underlying mechanisms by which it may contribute to tumor progression. EXPERIMENTAL DESIGN PDE5 expression was evaluated in seven breast cancer cell lines by RT-PCR and immunoblotting. To examine the impact of PDE5 on cancer phenotype, MCF-7 cells expressing lower levels of the enzyme were engineered to stably overexpress PDE5. Proliferation was evaluated by MTT assays, motility and invasion by wound-healing/transmigration/invasion assays, transcriptome-profiling by RNA-sequencing, and Rho GTPase signaling activation by GST-pulldown assays and immunoblotting. Clinical relevance was investigated by IHC on tissues and retrospective studies from METABRIC cohort. RESULTS PDE5 is differentially expressed in each molecular subtype of both breast cancer cell lines and tissues, with higher levels representing a startling feature of HER2-positive and triple-negative breast cancers. A positive correlation was established between elevated PDE5 levels and cancers of high histologic grade. Higher PDE5 expression correlated with shorter patient survival in retrospective analyses. On molecular level, stable PDE5 overexpression in Luminal-A-like MCF-7 cells resulted in enhanced motility and invasion through Rho GTPase signaling activation. Treatment of PDE5-stable clones with selective ROCK or PDE5 inhibitors completely restored the less motile and weak invasive behavior of control vector cells. CONCLUSIONS PDE5 expression enhances breast cancer cell invasive potential, highlighting this enzyme as a novel prognostic candidate and an attractive target for future therapy in breast cancers. Clin Cancer Res; 22(9); 2271-82. ©2015 AACR.
Collapse
Affiliation(s)
- Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| | - Antonella Campana
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| | | | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi (SA), Italy
| | - Antonio Rinaldi
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi (SA), Italy
| | - Giuseppina Bruno
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi (SA), Italy
| | - Aurora Ferraro
- Division of Anatomic Pathology, Annunziata Hospital, Cosenza (CS), Italy
| | - Francesco Romeo
- Division of Anatomic Pathology, Annunziata Hospital, Cosenza (CS), Italy
| | - Marilena Lanzino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| | - Fabio Naro
- Department of Anatomical, Histological, Forensic, and Orthopedic Sciences, Sapienza University, Rome, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy. Centro Sanitario, University of Calabria, Rende (CS), Italy.
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy.
| |
Collapse
|
14
|
Polymorphism of rs7688672 and rs10033237 in cGKII/PRKG2 and gout susceptibility of Han population in northern China. Gene 2015; 562:50-4. [PMID: 25688884 DOI: 10.1016/j.gene.2015.02.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/29/2015] [Accepted: 02/13/2015] [Indexed: 11/22/2022]
Abstract
Gout is a genetic or acquired metabolic disease caused by increase of uric acid synthesis resulted from purine metabolic abnormalities. Whether cGMP-dependent protein kinase 2 (cGKII/PRKG2) is correlated with gout remains controversial. The objective of the present study was to investigate whether there is a correlation between polymorphism of cGKII/PRKG2 and gout susceptibility of Han population in northern China. Four hundred and five male patients with gout in the case group and 429 controls in the control group were collected from the Department of Endocrinology and Metabolic Disease, the Fourth Affiliated Hospital of Harbin Medical University. A case-control study method was used to study the correlation between cGKII/PRKG2 polymorphism rs7688672 and rs10033237 and gout susceptibility. The genotype frequencies of rs7688672 and rs10033237 polymorphisms of cGKII/PRKG2 in the case group and the control group both were in accordance with Hardy-Weinberg equilibrium. There were significant differences of rs10033237 in the allele frequencies and genotype distributions (P<0.05) between the two groups, while no association was found between rs7688672 and gout. Combined mutation sites AA(*) from rs7688672 and rs10033237 were negatively correlated with gout susceptibility, whereas haplotype GG(*) was positively correlated with gout susceptibility. In conclusion, patients with rs10033237 polymorphism of cGKII/PRKG2 gene are more likely to suffer from gout. With regard to haplotypes of rs10033237 and rs7688672, both AA(*) and GG(*) are related to gout. AA(*) is a gout susceptible gene, whereas GG(*) is a protective gene.
Collapse
|
15
|
Abstract
OBJECTIVE cAMP and cGMP signaling is important both for normal and cancer cells. This signaling is controlled by adenylyl and guanylyl cyclases and cyclic nucleotide phosphodiesterases. One of the direct targets for cGMP is protein kinase G (PKG). The main aim of this work was to investigate cGMP and PKG signaling in pancreatic adenocarcinoma (PDAC) cells. METHODS The PKG activity, cGMP, and calcium level were measured with the CycLex Cyclic GMP dependent protein kinase (cGK) Assay Kit, the DetectX Cyclic GMP Colorimetric EIA Kit, and the Fluo-4 NW Calcium Assay Kit, respectively. The Proteome Profiler Array was done using Human Phospho-Kinase Array and Human Phospho-MAPK Array Kits. RESULTS This study shows for the first time that functional PKG1 is expressed in PDAC cells. It demonstrates that the specific PKG1 inhibitor, DT3, induces cytotoxicity through necrosis and reduces proliferation and migration of PDAC cells. Moreover, ERK1/2 and p38 can be considered as potential targets for PKG1 in PDAC cells. In addition, the study shows that phosphodiesterases and nitric oxide-guanylyl cyclases regulate the cGMP level in PDAC cells, affecting the proliferation of the cells. CONCLUSIONS The cGMP and PKG signaling may be a target for developing new therapeutic approaches for PDAC.
Collapse
|
16
|
Abstract
The virus-derived protein Apoptin has the ability to induce p53-independent apoptosis in a variety of human cancer cells while leaving normal cells unharmed. It thus represents a potential anti-cancer therapeutic agent of the future but a proper understanding of Apoptin-induced signalling events is necessary prior to clinical application. The tumor-specific nuclear translocation and phosphorylation of Apoptin by a cellular kinase such as protein kinase C seem to be required for its function but otherwise the mode of tumor selectivity remains unknown. Apoptin has been shown to interact with several cellular proteins including Akt and the anaphase-promoting complex that regulate its activity and promote caspase-dependent apoptosis. This chapter summarizes the available data on tumor-specific pathways sensed by Apoptin and the mechanism of Apoptin-induced cell death.
Collapse
Affiliation(s)
- Jessica Bullenkamp
- Kings College London, Guy's Hospital, Floor 2 Room 2.66S, Hodgkin Building, London, UK
| | | |
Collapse
|
17
|
Maimaitiyiming H, Li Y, Cui W, Tong X, Norman H, Qi X, Wang S. Increasing cGMP-dependent protein kinase I activity attenuates cisplatin-induced kidney injury through protection of mitochondria function. Am J Physiol Renal Physiol 2013; 305:F881-90. [PMID: 23825069 DOI: 10.1152/ajprenal.00192.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cisplatin is widely used to treat malignancies. However, its major limitation is the development of dose-dependent nephrotoxicity. The precise mechanisms of cisplatin-induced kidney damage remain unclear, and the renoprotective agents during cisplatin treatment are still lacking. Here, we demonstrated that the expression and activity of cGMP-dependent protein kinase-I (PKG-I) were reduced in cisplatin-treated renal tubular cells in vitro as well as in the kidney tissues from cisplatin-treated mice in vivo. Increasing PKG activity by both pharmacological and genetic approaches attenuated cisplatin-induced kidney cell apoptosis in vitro. This was accompanied by decreased Bax/Bcl2 ratio, caspase 3 activity, and cytochrome c release. Cisplatin-induced mitochondria membrane potential loss in the tubular cells was also prevented by increased PKG activity. All of these data suggest a protective effect of PKG on mitochondria function in renal tubular cells. Importantly, increasing PKG activity pharmacologically or genetically diminished cisplatin-induced tubular damage and preserved renal function during cisplatin treatment in vivo. Mitochondria structural and functional damage in the kidney from cisplatin-treated mice was inhibited by increased PKG activity. In addition, increasing PKG activity enhanced ciaplatin-induced cell death in several cancer cell lines. Taken together, these results suggest that increasing PKG activity may be a novel option for renoprotection during cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Hasiyeti Maimaitiyiming
- Graduate Center for Nutritional Sciences, Univ. of Kentucky, Wethington Bldg. Rm. 583, 900 S. Limestone St., Lexington, KY 40536.
| | | | | | | | | | | | | |
Collapse
|