1
|
Fortarezza F, Pezzuto F, Marzullo A, Cavone D, Romano DE, d'Amati A, Serio G, Vimercati L. Molecular Pathways in Peritoneal Mesothelioma: A Minireview of New Insights. Front Oncol 2022; 12:823839. [PMID: 35223506 PMCID: PMC8866824 DOI: 10.3389/fonc.2022.823839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/17/2022] [Indexed: 12/24/2022] Open
Abstract
Mesothelioma is a rare malignant neoplasm with poor survival. It mainly affects the pleura (90%) but can arise in all serous cavities: peritoneum (5-10%), pericardium and tunica vaginalis testis (<1%). The onset of pleural mesothelioma is strictly related to asbestos exposure with a long latency time. The causal link with asbestos has also been suggested for peritoneal mesothelioma, while the importance of exposure in the onset of pericardial and tunica vaginalis testis mesotheliomas is not well known. Mesothelioma remains an aggressive and fatal disease with a five-year mortality rate higher than 95%. However, new therapeutic approaches based on molecular-targeted and immunomodulatory therapies are being explored but have conflicting results. In this context, the identification of critical targets appears mandatory. Awareness of the molecular and physiological changes leading to the neoplastic degeneration of mesothelial cells and the identification of gene mutations, epigenetic alterations, gene expression profiles and altered pathways could be helpful for selecting targetable mechanisms and molecules. In this review, we aimed to report recent research in the last 20 years focusing on the molecular pathways and prognostic factors in peritoneal mesothelioma and their possible diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Francesco Fortarezza
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Pathology Unit, University of Padova, Padova, Italy
| | - Federica Pezzuto
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Pathology Unit, University of Padova, Padova, Italy
| | - Andrea Marzullo
- Department of Emergency and Organ Transplantation, Pathology Unit, University of Bari, Bari, Italy
| | - Domenica Cavone
- Department of Interdisciplinary Medicine, Occupational Health Unit, University of Bari, Bari, Italy
| | - Daniele Egidio Romano
- Department of Emergency and Organ Transplantation, Pathology Unit, University of Bari, Bari, Italy
| | - Antonio d'Amati
- Department of Emergency and Organ Transplantation, Pathology Unit, University of Bari, Bari, Italy
| | - Gabriella Serio
- Department of Emergency and Organ Transplantation, Pathology Unit, University of Bari, Bari, Italy
| | - Luigi Vimercati
- Department of Interdisciplinary Medicine, Occupational Health Unit, University of Bari, Bari, Italy
| |
Collapse
|
2
|
Vandenhoeck J, van Meerbeeck JP, Fransen E, Raskin J, Van Camp G, Op de Beeck K, Lamote K. DNA Methylation as a Diagnostic Biomarker for Malignant Mesothelioma: A Systematic Review and Meta-Analysis. J Thorac Oncol 2021; 16:1461-1478. [PMID: 34082107 DOI: 10.1016/j.jtho.2021.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/03/2021] [Accepted: 05/26/2021] [Indexed: 01/02/2023]
Abstract
Malignant mesothelioma is an aggressive cancer type linked to asbestos exposure. Because of several intrinsic challenges, mesothelioma is often diagnosed in an advanced disease stage. Therefore, there is a need for diagnostic biomarkers that may contribute to early detection. Recently, the epigenome of tumors is being extensively investigated to identify biomarkers. This manuscript is a systematic review summarizing the state-of-the-art research investigating DNA methylation in mesothelioma. Four literature databases (PubMed, Scopus, Web of Science, MEDLINE) were systematically searched for studies investigating DNA methylation in mesothelioma up to October 16, 2020. A meta-analysis was performed per gene investigated in at least two independent studies. A total of 53 studies investigated DNA methylation of 97 genes in mesothelioma and are described in a qualitative overview. Furthermore, ten studies investigating 13 genes (APC, CDH1, CDKN2A, DAPK, ESR1, MGMT, miR-34b/c, PGR, RARβ, RASSF1, SFRP1, SFRP4, WIF1) were included in the quantitative meta-analysis. In this meta-analysis, the APC gene is significantly hypomethylated in mesothelioma, whereas CDH1, ESR1, miR-34b/c, PGR, RARβ, SFRP1, and WIF1 are significantly hypermethylated in mesothelioma. The three genes that are the most appropriate candidate biomarkers from this meta-analysis are APC, miR-34b/c, and WIF1. Nevertheless, both study number and study objects comprised in this meta-analysis are too low to draw final conclusions on their clinical applications. The elucidation of the genome-wide DNA methylation profile of mesothelioma is desirable in the future, using a standardized genome-wide methylation analysis approach. The most informative CpG sites from this signature could then form the basis of a panel of highly sensitive and specific biomarkers that can be used for the diagnosis of mesothelioma and even for the screening of an at high-risk population of asbestos-exposed individuals.
Collapse
Affiliation(s)
- Janah Vandenhoeck
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium; Centre for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Jan P van Meerbeeck
- Department of Thoracic Oncology, Antwerp University Hospital, Edegem, Belgium; Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Wilrijk, Belgium; Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Erik Fransen
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium; StatUa Centre for Statistics, University of Antwerp, Antwerp, Belgium
| | - Jo Raskin
- Department of Thoracic Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Guy Van Camp
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium; Centre for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Ken Op de Beeck
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium; Centre for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Kevin Lamote
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Wilrijk, Belgium; Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium; Department of Pulmonology, Antwerp University Hospital, Edegem, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
| |
Collapse
|
3
|
Zhang W, Shang S, Yang Y, Lu P, Wang T, Cui X, Tang X. Identification of DNA methylation-driven genes by integrative analysis of DNA methylation and transcriptome data in pancreatic adenocarcinoma. Exp Ther Med 2020; 19:2963-2972. [PMID: 32256782 PMCID: PMC7086284 DOI: 10.3892/etm.2020.8554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/10/2020] [Indexed: 12/15/2022] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is a painful and fatal disease that undoubtedly remains a health care priority and offers significant therapeutic challenges. The significance of epigenetic modifications, including DNA methylation in tumor development, has gained the attention of researchers. Identifying DNA methylation-driven genes and investigating the mechanisms underlying the tumorigenesis of PAAD are of substantial importance for developing methods of physiological evaluation, treatment planning and prognostic prediction for PAAD. In the present study, a comprehensive analysis of DNA methylation and gene expression data from 188 clinical samples was performed to identify DNA methylation-driven genes in PAAD. In addition, the diagnostic and prognostic value of DNA methylation-driven genes was evaluated using receiver operating characteristic curve, survival and recurrence analyses. A total of 7 DNA methylation-driven genes, namely zinc finger protein 208 (ZNF208), eomesodermin (EOMES), prostaglandin D2 receptor (PTGDR), chromosome 12 open reading frame 42 (C12orf42), integrin subunit α 4 (ITGA4), dedicator of cytokinesis 8 and protein phosphatase 1 regulatory inhibitor subunit 14D (PPP1R14D), were identified. All of them may be used to diagnose PAAD with excellent specificity and sensitivity (area under curve, >0.8). Of the 7 DNA methylation-driven genes, 6 were significantly associated with overall survival (OS) and recurrence-free survival (RFS) P<0.05). Among them, ZNF208, EOMES, PTGDR, C12orf42 and ITGA4 were significantly negatively associated with the OS rate and positively associated with the recurrence rate, while PPP1R14D was significantly positively associated with the OS rate and negatively associated with the recurrence rate. The present study provides novel insight into the epigenetic alterations associated with the occurrence and progression of PAAD, thereby increasing the mechanistic understanding of this disease, offering potential novel molecular biomarkers and contributing to the development of therapeutic targets for PAAD.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, P.R. China
| | - Shuai Shang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, P.R. China
| | - Yingying Yang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, P.R. China
| | - Peiyao Lu
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, P.R. China
| | - Teng Wang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, P.R. China
| | - Xinyi Cui
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, P.R. China
| | - Xuexi Tang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, P.R. China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory of Oceanology for Marine Science and Technology, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
4
|
Tomasetti M, Gaetani S, Monaco F, Neuzil J, Santarelli L. Epigenetic Regulation of miRNA Expression in Malignant Mesothelioma: miRNAs as Biomarkers of Early Diagnosis and Therapy. Front Oncol 2019; 9:1293. [PMID: 31850200 PMCID: PMC6897284 DOI: 10.3389/fonc.2019.01293] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
Asbestos exposure leads to epigenetic and epigenomic modifications that, in association with ROS-induced DNA damage, contribute to cancer onset. Few miRNAs epigenetically regulated in MM have been described in literature; miR-126, however, is one of them, and its expression is regulated by epigenetic mechanisms. Asbestos exposure induces early changes in the miRNAs, which are reversibly expressed as protective species, and their inability to reverse reflects the inability of the cells to restore the physiological miRNA levels despite the cessation of carcinogen exposure. Changes in miRNA expression, which results from genetic/epigenetic changes during tumor formation and evolution, can be detected in fluids and used as cancer biomarkers. This article has reviewed the epigenetic mechanisms involved in miRNA expression in MM, focusing on their role as biomarkers of early diagnosis and therapeutic effects.
Collapse
Affiliation(s)
- Marco Tomasetti
- Section of Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Simona Gaetani
- Section of Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Federica Monaco
- Section of Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Jiri Neuzil
- Mitochondria, Apoptosis and Cancer Research Group, School of Medical Science, Griffith University, Southport, QLD, Australia.,Molecular Therapy Group, Institute of Biotechnology, Czech Academy of Sciences, Prague, Czechia
| | - Lory Santarelli
- Section of Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
5
|
Birkett N, Al-Zoughool M, Bird M, Baan RA, Zielinski J, Krewski D. Overview of biological mechanisms of human carcinogens. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 22:288-359. [PMID: 31631808 DOI: 10.1080/10937404.2019.1643539] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This review summarizes the carcinogenic mechanisms for 109 Group 1 human carcinogens identified as causes of human cancer through Volume 106 of the IARC Monographs. The International Agency for Research on Cancer (IARC) evaluates human, experimental and mechanistic evidence on agents suspected of inducing cancer in humans, using a well-established weight of evidence approach. The monographs provide detailed mechanistic information about all carcinogens. Carcinogens with closely similar mechanisms of action (e.g. agents emitting alpha particles) were combined into groups for the review. A narrative synopsis of the mechanistic profiles for the 86 carcinogens or carcinogen groups is presented, based primarily on information in the IARC monographs, supplemented with a non-systematic review. Most carcinogens included a genotoxic mechanism.
Collapse
Affiliation(s)
- Nicholas Birkett
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Mustafa Al-Zoughool
- Department of Community and Environmental Health, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Michael Bird
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Robert A Baan
- International Agency for Research on Cancer, Lyon, France
| | - Jan Zielinski
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Daniel Krewski
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Risk Sciences International, Ottawa, Canada
| |
Collapse
|
6
|
Pan Y, Liu G, Zhou F, Su B, Li Y. DNA methylation profiles in cancer diagnosis and therapeutics. Clin Exp Med 2017; 18:1-14. [PMID: 28752221 DOI: 10.1007/s10238-017-0467-0] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 06/16/2017] [Indexed: 12/12/2022]
Abstract
Cancer initiation and proliferation is regulated by both epigenetic and genetic events with epigenetic modifications being increasingly identified as important targets for cancer research. DNA methylation catalyzed by DNA methyltransferases (DNMTs) is one of the essential epigenetic mechanisms that control cell proliferation, apoptosis, differentiation, cell cycle, and transformation in eukaryotes. Recent progress in epigenetics revealed a deeper understanding of the mechanisms of tumorigenesis and provided biomarkers for early detection, diagnosis, and prognosis in cancer patients. Although DNA methylation biomarker possesses potential contributing to precision medicine, there are still limitations to be overcome before it reaches clinical setting. Hence, the current status of DNA methylation biomarkers was reviewed and the future use in clinic was also predicted.
Collapse
Affiliation(s)
- Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Guohong Liu
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 6767 Bertner Ave, Houston, TX, 77030, USA
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Bojin Su
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 6767 Bertner Ave, Houston, TX, 77030, USA.
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.
| |
Collapse
|
7
|
SHEN BO, JIANG YINGJIE, CHEN YUANRAN, ZHENG HUICONG, ZENG WEI, LI YUYUAN, YIN AOXIAN, NIE YUQIANG. Expression and inhibitory role of TIMP-3 in hepatocellular carcinoma. Oncol Rep 2016; 36:494-502. [DOI: 10.3892/or.2016.4818] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/04/2016] [Indexed: 11/06/2022] Open
|
8
|
Analysis of Helicobacter pylori genotypes in clinical gastric wash samples. Tumour Biol 2016; 37:10123-32. [PMID: 26825980 DOI: 10.1007/s13277-016-4886-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 01/18/2016] [Indexed: 12/27/2022] Open
Abstract
Helicobacter pylori is a key factor in the development of gastric cancer; indeed, clearance of H. pylori helps prevent gastric cancer. However, the relationship between gastric cancer and the abundance and diversity of H. pylori genotypes in the stomach remains unknown. Here, we present, for the first time, a quantitative analysis of H. pylori genotypes in gastric washes. A method was first developed to assess diversity and abundance by pyrosequencing and analysis of single nucleotide polymorphisms in 23S ribosomal RNA (rRNA), a gene associated with clarithromycin resistance. This method was then validated using arbitrarily mixed plasmids carrying 23S rRNA with single nucleotide polymorphisms. Multiple strains were detected in many of 34 clinical samples, with frequency 24.3 ± 24.2 and 26.3 ± 33.8 % for the A2143G and A2144G strains, respectively. Importantly, results obtained from gastric washes were similar to those obtained from biopsy samples. The method provides opportunities to investigate drug resistance in H. pylori and assess potential biomarkers of gastric cancer risk, and should thus be validated in large-scale clinical trials.
Collapse
|
9
|
Mesothelin (MSLN) methylation and soluble mesothelin-related protein levels in a Chinese asbestos-exposed population. Environ Health Prev Med 2015; 20:369-78. [PMID: 26188910 DOI: 10.1007/s12199-015-0477-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/19/2015] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES This study investigated the mesothelin (MSLN) methylation and its relationship with soluble mesothelin-related protein (SMRP) levels in participants stratified by asbestos exposure scenarios and benign asbestos-related diseases (ARDs). METHODS The presence of benign ARDs was confirmed through chest X-ray and the asbestos exposure history was obtained using a standardized questionnaire in this study, including 262 participants. Sera SMRP were measured using MESOMARK, and MSLN methylation in genomic DNA extracted from whole blood was detected by real-time methylation-specific PCR. Covariates were compared with SMRP concentrations using correlation analysis and the potential covariates affecting SMRP were determined by multiple linear regression analysis, and the distribution of methylation status was analyzed by Chi-square test. RESULTS There was a trend toward elevation of SMRP values in healthy individuals exposed to asbestos as compared with those without asbestos exposure. The highest median level of SMRP was 1.3 nM in subjects with asbestosis, followed by cases with pleura plaque and asbestosis (1.2 nM), pleura plaque (0.9 nM), healthy subjects with occupational exposure (0.9 nM), non-occupational exposure (0.8 nM), and mixed exposure (0.8 nM). Within asbestosis cases, those with higher profusion scores had higher SMRP values than those with lower profusion scores (1.6 vs. 0.8 nM). Based on multi-regression analysis, the trend toward elevation of SMRP remained significant in subjects with occupational exposure or in those with asbestosis, as compared with healthy subjects without exposure (p < 0.01), although body mass index had an effect on SMRP (p < 0.0001). Regardless of the differences in SMRP levels among these subgroups, MSLN methylation ranged from 80.5 to 92.5 %, with no significant difference. The elevated level of SMRP in asbestosis with higher profusion scores could not be attributed to low MSLN methylation status. CONCLUSIONS Our findings suggest that the elevation of SMRP is related to asbestos exposure and benign ARDs especially for cases with high profusion scores, which is independent of MSLN methylation.
Collapse
|
10
|
Primary epidural hemangiopericytoma in the sacrum: a rare case and literature review. Tumour Biol 2014; 35:11655-8. [DOI: 10.1007/s13277-014-2455-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 11/13/2013] [Indexed: 12/27/2022] Open
|
11
|
Dong Y, Zhao H, Li H, Li X, Yang S. DNA methylation as an early diagnostic marker of cancer (Review). Biomed Rep 2014; 2:326-330. [PMID: 24748968 PMCID: PMC3990206 DOI: 10.3892/br.2014.237] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/06/2014] [Indexed: 01/04/2023] Open
Abstract
DNA methylation is one of the essential epigenetic mechanisms that are closely correlated with the mechanisms underlying cell growth, differentiation and transformation in eukaryotes. Global changes in the epigenetic landscape are considered to be a hallmark of cancer. The initiation and progression of cancer are mediated through epigenetic modifications along with genetic alterations. Aberrant methylation of promoter regions is an epigenetic abnormality of the human genome that is highly characteristic of cancer. In this review, we aimed to summarize our current understanding of the alterations in the epigenetic landscape and investigate the potential use of DNA and RNA methylation in effective molecular treatment strategies.
Collapse
Affiliation(s)
- Yuanyuan Dong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P.R. China ; Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| | - Haiyang Zhao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P.R. China
| | - Haiyan Li
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| | - Xiaokun Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P.R. China ; Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| | - Shulin Yang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P.R. China
| |
Collapse
|
12
|
de Assis LVM, Isoldi MC. The function, mechanisms, and role of the genes PTEN and TP53 and the effects of asbestos in the development of malignant mesothelioma: a review focused on the genes' molecular mechanisms. Tumour Biol 2013; 35:889-901. [PMID: 24081673 DOI: 10.1007/s13277-013-1210-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 09/16/2013] [Indexed: 12/22/2022] Open
Abstract
The malignant mesothelioma is an aggressive form of cancer with a mean survival rate of less than a year. Moreover, environmental exposure to minerals is an important factor in the development of malignant mesothelioma (MM), especially the mineral asbestos, which has a well-documented role in MM, and more recently, the mineral erionite has been proven to be a strong carcinogenic inducer of MM. In addition, the virus simian virus 40 has been implicated as a co-carcinogenic player in MM. However, the molecular mechanisms involved in the pathogenesis of this cancer are still not fully understood. Indeed, it is known that several genes are altered or mutated in MM, among those are p16(INK4A), p14(ARF), and neurofibromatosis type II. Furthermore, TP53 has been reported to be mutated in the majority of the cancers; however, in MM, it is very uncommon mutations in this gene. Also, the PTEN gene has been shown to play an important role in endometrial cancer and glioblastoma, although the role of PTEN in MM has yet to be established. Taken altogether, this review focuses on the historical aspects, molecular mechanisms, interaction with other genes and proteins, and the role of these genes in MM. Lastly, this review questions the cancer theory of the two hits because the functions of both PTEN and TP53 are not fully explained by this theory.
Collapse
|