1
|
Kamalabadi-Farahani M, Kia V, Dylami S, Atashi A. Integrins linked kinase and focal adhesion kinase as the key signaling mediators of vascular mimicry in metastatic breast tumor cells. BMC Res Notes 2024; 17:282. [PMID: 39354559 PMCID: PMC11445843 DOI: 10.1186/s13104-024-06953-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
OBJECTIVE In highly aggressive malignant cancers including breast cancer, vasculogenic mimicry (VM) is the potential of tumor cells to generate a vascular channel network for delivering blood to tumor cells. Detection of genes involved in this process is critical to designing targeted therapy against breast cancer metastasis. In this study, we evaluated the roles of FAK and ILK in the progression of VM in metastatic breast tumor cells. RESULTS Primary (4T1T), and highly metastatic (4T1B and 4T1L) breast tumor cells were isolated from cancerous mice. The potential of cancer cells to organize themselves into vascular-like structures (VM) has been evaluated with in vitro assessment. The expression of ILK and FAK were examined using real-time polymerase chain reaction. We confirmed the high ability of metastatic tumor cells in vascular-like structure formation. In molecular analysis, our data showed that ILK and FAK expression was significantly elevated in metastatic breast tumor cells. These results indicated that the higher potential of metastatic tumor cells in vascular-like structure formation may be related to higher expression of ILK and FAK. Analysis of molecular features of metastatic tumor cells could be utilized to create a targeted therapeutic strategy against metastasis in breast cancer.
Collapse
Affiliation(s)
| | - Vahid Kia
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Sadegh Dylami
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Amir Atashi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
2
|
Christou C, Christodoulou MI, Zaravinos A, Gkretsi V. Ras suppressor 1 long form (RSU1L) silencing promotes apoptosis in invasive breast cancer cells. Cell Signal 2023; 101:110522. [PMID: 36375714 DOI: 10.1016/j.cellsig.2022.110522] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/14/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Ras Suppressor-1 (RSU1) is a cell-extracellular matrix (ECM) adhesion protein implicated in breast cancer (BC) cell metastasis. Nevertheless, its role in apoptosis is yet unknown. In the present study, we used bioinformatics tools to evaluate the association of RSU1 expression and BC patient survival, the expression of basic pro- and anti-apoptotic genes in metastatic BC samples and their correlation with the expression of RSU1. Then, we specifically depleted RSU1 long form (RSU1L) using a short hairpin RNA (shRNA) silencing approach in two BC cell lines, the non-invasive MCF-7 and the highly invasive MDA-MB-231-LM2 cells and assessed gene expression of pro-and anti-apoptotic genes, as well as cell survival and apoptosis. Our results showed that high RSU1 expression was correlated with poor survival and significant changes were found in the expression of apoptosis-related genes (PUMA, TP53, BCL-2 and BCL-XL) in metastatic BC. Moreover, silencing of the long and most common isoform of RSU1 (RSU1L) resulted in the upregulation of PUMA and TP53 and concomitant downregulation of anti-apoptotic BCL-2 and BCL-XL, with the effect being more prominent in invasive MDA-MB-231-LM2 cells. Finally, RSU1L depletion leads to a dramatic increase in apoptosis of MDA-MB-231-LM2 cells, while no change was observed in the apoptotic rate of MCF-7 cells. This is the first study linking RSU1L with apoptosis and provides evidence for its differential role in cell lines of different invasive potential. This indicates that RSU1L represses apoptosis in aggressive BC cells helping them evade cell death and survive.
Collapse
Affiliation(s)
- Christiana Christou
- Cancer Metastasis and Adhesion Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus.
| | - Maria-Ioanna Christodoulou
- Biomedical Sciences Program, Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus; Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus.
| | - Apostolos Zaravinos
- Biological Sciences Program, Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus; Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus.
| | - Vasiliki Gkretsi
- Cancer Metastasis and Adhesion Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus; Biomedical Sciences Program, Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus.
| |
Collapse
|
3
|
Beetham H, Griffith BG, Murina O, Loftus AE, Parry DA, Temps C, Culley J, Muir M, Unciti-Broceta A, Sims AH, Byron A, Brunton VG. Loss of Integrin-Linked Kinase Sensitizes Breast Cancer to SRC Inhibitors. Cancer Res 2022; 82:632-647. [PMID: 34921014 PMCID: PMC9621571 DOI: 10.1158/0008-5472.can-21-0373] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 09/02/2021] [Accepted: 12/13/2021] [Indexed: 01/07/2023]
Abstract
SRC is a nonreceptor tyrosine kinase with key roles in breast cancer development and progression. Despite this, SRC tyrosine kinase inhibitors have so far failed to live up to their promise in clinical trials, with poor overall response rates. We aimed to identify possible synergistic gene-drug interactions to discover new rational combination therapies for SRC inhibitors. An unbiased genome-wide CRISPR-Cas9 knockout screen in a model of triple-negative breast cancer revealed that loss of integrin-linked kinase (ILK) and its binding partners α-Parvin and PINCH-1 sensitizes cells to bosutinib, a clinically approved SRC/ABL kinase inhibitor. Sensitivity to bosutinib did not correlate with ABL dependency; instead, bosutinib likely induces these effects by acting as a SRC tyrosine kinase inhibitor. Furthermore, in vitro and in vivo models showed that loss of ILK enhanced sensitivity to eCF506, a novel and highly selective inhibitor of SRC with a unique mode of action. Whole-genome RNA sequencing following bosutinib treatment in ILK knockout cells identified broad changes in the expression of genes regulating cell adhesion and cell-extracellular matrix. Increased sensitivity to SRC inhibition in ILK knockout cells was associated with defective adhesion, resulting in reduced cell number as well as increased G1 arrest and apoptosis. These findings support the potential of ILK loss as an exploitable therapeutic vulnerability in breast cancer, enhancing the effectiveness of clinical SRC inhibitors. SIGNIFICANCE A CRISPR-Cas9 screen reveals that loss of integrin-linked kinase synergizes with SRC inhibition, providing a new opportunity for enhancing the clinical effectiveness of SRC inhibitors in breast cancer.
Collapse
Affiliation(s)
- Henry Beetham
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, United Kingdom
| | - Billie G.C. Griffith
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, United Kingdom
| | - Olga Murina
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, United Kingdom
| | - Alexander E.P. Loftus
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, United Kingdom
| | - David A. Parry
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, United Kingdom
| | - Carolin Temps
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, United Kingdom
| | - Jayne Culley
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, United Kingdom
| | - Morwenna Muir
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, United Kingdom
| | - Asier Unciti-Broceta
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, United Kingdom
| | - Andrew H. Sims
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, United Kingdom
| | - Adam Byron
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, United Kingdom
| | - Valerie G. Brunton
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, United Kingdom
| |
Collapse
|
4
|
Górska A, Mazur AJ. Integrin-linked kinase (ILK): the known vs. the unknown and perspectives. Cell Mol Life Sci 2022; 79:100. [PMID: 35089438 PMCID: PMC8799556 DOI: 10.1007/s00018-021-04104-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/29/2021] [Accepted: 12/17/2021] [Indexed: 02/08/2023]
Abstract
Integrin-linked kinase (ILK) is a multifunctional molecular actor in cell-matrix interactions, cell adhesion, and anchorage-dependent cell growth. It combines functions of a signal transductor and a scaffold protein through its interaction with integrins, then facilitating further protein recruitment within the ILK-PINCH-Parvin complex. ILK is involved in crucial cellular processes including proliferation, survival, differentiation, migration, invasion, and angiogenesis, which reflects on systemic changes in the kidney, heart, muscle, skin, and vascular system, also during the embryonal development. Dysfunction of ILK underlies the pathogenesis of various diseases, including the pro-oncogenic activity in tumorigenesis. ILK localizes mostly to the cell membrane and remains an important component of focal adhesion. We do know much about ILK but a lot still remains either uncovered or unclear. Although it was initially classified as a serine/threonine-protein kinase, its catalytical activity is now questioned due to structural and functional issues, leaving the exact molecular mechanism of signal transduction by ILK unsolved. While it is known that the three isoforms of ILK vary in length, the presence of crucial domains, and modification sites, most of the research tends to focus on the main isoform of this protein while the issue of functional differences of ILK2 and ILK3 still awaits clarification. The activity of ILK is regulated on the transcriptional, protein, and post-transcriptional levels. The crucial role of phosphorylation and ubiquitylation has been investigated, but the functions of the vast majority of modifications are still unknown. In the light of all those open issues, here we present an extensive literature survey covering a wide spectrum of latest findings as well as a past-to-present view on controversies regarding ILK, finishing with pointing out some open questions to be resolved by further research.
Collapse
Affiliation(s)
- Agata Górska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland.
| | - Antonina Joanna Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland.
| |
Collapse
|
5
|
Tsirtsaki K, Gkretsi V. The focal adhesion protein Integrin-Linked Kinase (ILK) as an important player in breast cancer pathogenesis. Cell Adh Migr 2021; 14:204-213. [PMID: 33043811 PMCID: PMC7553581 DOI: 10.1080/19336918.2020.1829263] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cell-extracellular matrix interactions, or focal adhesions (FA), are crucial for tissue homeostasis but are also implicated in cancer. Integrin-Linked Kinase (ILK) is an abundantly expressed FA protein involved in multiple signaling pathways. Here, we reviewed the current literature on the role of ILK in breast cancer (BC). Articles included in vitro and in vivo experiments as well as studies in human BC samples. ILK attenuation via silencing or pharmaceutical inhibition, leads to apoptosis or inhibition of epithelial-to-mesenchymal transition, and cell invasion whereas ILK overexpression suppresses anoikis and promotes tumor growth and metastasis. Finally, ILK is upregulated in BC tumors and its expression is associated with grade, and metastasis. Therefore, ILK should be evaluated as a potential anti-cancer pharmaceutical target.
Collapse
Affiliation(s)
- Katerina Tsirtsaki
- Department of Life Sciences, School of Sciences, European University Cyprus , Nicosia, Cyprus
| | - Vasiliki Gkretsi
- Department of Life Sciences, School of Sciences, European University Cyprus , Nicosia, Cyprus
| |
Collapse
|
6
|
Duderstadt EL, McQuaide SA, Sanders MA, Samuelson DJ. Chemical carcinogen-induced rat mammary carcinogenesis is a potential model of p21-activated kinase positive female breast cancer. Physiol Genomics 2020; 53:61-68. [PMID: 33346690 DOI: 10.1152/physiolgenomics.00112.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The p21-activated kinase 1 (PAK1) gene encodes a serine/threonine kinase that is overexpressed in a subset of human breast carcinomas with poor prognosis. The laboratory rat (Rattus norvegicus) orthologous gene is located at Mammary carcinoma susceptibility 3 (Mcs3) QTL on rat chromosome 1. We used quantitative PCR to determine effects of Mcs3 genotype and 7,12-dimethylbenz(a)anthracene (DMBA) exposure on Pak1 expression. There was no effect of Mcs3 genotype; however, there was a 3.5-fold higher Pak1 level in DMBA-exposed mammary glands (MGs) than in unexposed glands (P < 0.05). Sequence variants in Pak1 exons did not alter amino acid sequence between Mcs3-susceptible and -resistant strains. Protein expression of PAK1/Pak1 in human breast carcinomas and DMBA-exposed rat mammary glands was detected using immunohistochemistry (IHC). Rat mammary glands from 12-wk-old females unexposed to DMBA were negative for Pak1, whereas 24% of carcinogen-exposed mammary glands from age-matched females stained positive for Pak1. The positive mammary glands exposed to carcinogen had no pathological signs of disease. Human breast carcinomas, used as comparative controls, had a 22% positivity rats. This was consistent with other human breast cancer studies of PAK1 expression. Similar frequencies of human/rat PAK1/Pak1 expression in female breast carcinomas and carcinogen-induced rat mammary glands, showing no visible pathogenesis of disease, suggests aberrant PAK1 expression is an early event in development of some breast cancers. Laboratory rats will be a useful experimental organism for comparative studies of Pak1-mediated mechanisms of breast carcinogenesis. Future studies of PAK1 as a diagnostic marker of early breast disease are warranted.
Collapse
Affiliation(s)
- Emily L Duderstadt
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky
| | - Sarah A McQuaide
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky
| | - Mary A Sanders
- Department of Pathology, University of Louisville School of Medicine, Louisville, Kentucky
| | - David J Samuelson
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky.,James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
7
|
Physical Confirmation and Comparative Genomics of the Rat Mammary carcinoma susceptibility 3 Quantitative Trait Locus. G3-GENES GENOMES GENETICS 2017; 7:1767-1773. [PMID: 28391240 PMCID: PMC5473756 DOI: 10.1534/g3.117.039388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Human breast and rat mammary cancer susceptibility are complex phenotypes where complete sets of risk associated loci remain to be identified for both species. We tested multiple congenic rat strains to physically confirm and positionally map rat Mammary carcinoma susceptibility 3 (Mcs3)-a mammary cancer resistance allele previously predicted at Rattus norvegicus chromosome 1 (RNO1). The mammary cancer susceptible Wistar Furth (WF) strain was the recipient, and the mammary cancer resistant Copenhagen (Cop) strain was the RNO1-segment donor for congenics. Inbred WF females averaged 6.3 carcinogen-induced mammary carcinomas per rat. Two WF.Cop congenic strains averaged 2.8 and 3.4 mammary carcinomas per rat, which confirmed Mcs3 as an independently acting allele. Two other WF.Cop congenic strains averaged 6.6 and 8.1 mammary carcinomas per rat, and, thus, did not contain Mcs3 Rat Mcs3 was delimited to 27.8 Mb of RNO1 from rs8149408 to rs105131702 (RNO1:143700228-171517317 of RGSC 6.0/rn6). Human genetic variants with p values for association to breast cancer risk below 10-7 had not been reported for Mcs3 orthologous loci; however, human variants located in Mcs3-orthologous regions with potential association to risk (10-7 < p < 10-3) were listed in some population-based studies. Further, rat Mcs3 contains sequence orthologous to human 11q13/14-a region frequently amplified in female breast cancer. We conclude that Mcs3 is an independently acting mammary carcinoma resistance allele. Human population-based, genome-targeted association studies interrogating Mcs3 orthologous loci may yield novel breast cancer risk associated variants and genes.
Collapse
|
8
|
Kumar R, Li DQ. PAKs in Human Cancer Progression: From Inception to Cancer Therapeutic to Future Oncobiology. Adv Cancer Res 2016; 130:137-209. [PMID: 27037753 DOI: 10.1016/bs.acr.2016.01.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Since the initial recognition of a mechanistic role of p21-activated kinase 1 (PAK1) in breast cancer invasion, PAK1 has emerged as one of the widely overexpressed or hyperactivated kinases in human cancer at-large, allowing the PAK family to make in-roads in cancer biology, tumorigenesis, and cancer therapeutics. Much of our current understanding of the PAK family in cancer progression relates to a central role of the PAK family in the integration of cancer-promoting signals from cell membrane receptors as well as function as a key nexus-modifier of complex, cytoplasmic signaling network. Another core aspect of PAK signaling that highlights its importance in cancer progression is through PAK's central role in the cross talk with signaling and interacting proteins, as well as PAK's position as a key player in the phosphorylation of effector substrates to engage downstream components that ultimately leads to the development cancerous phenotypes. Here we provide a comprehensive review of the recent advances in PAK cancer research and its downstream substrates in the context of invasion, nuclear signaling and localization, gene expression, and DNA damage response. We discuss how a deeper understanding of PAK1's pathobiology over the years has widened research interest to the PAK family and human cancer, and positioning the PAK family as a promising cancer therapeutic target either alone or in combination with other therapies. With many landmark findings and leaps in the progress of PAK cancer research since the infancy of this field nearly 20 years ago, we also discuss postulated advances in the coming decade as the PAK family continues to shape the future of oncobiology.
Collapse
Affiliation(s)
- R Kumar
- School of Medicine and Health Sciences, George Washington University, Washington, DC, United States; Rajiv Gandhi Center of Biotechnology, Thiruvananthapuram, India.
| | - D-Q Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Epigenetics in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Mining for Candidate Genes Related to Pancreatic Cancer Using Protein-Protein Interactions and a Shortest Path Approach. BIOMED RESEARCH INTERNATIONAL 2015; 2015:623121. [PMID: 26613085 PMCID: PMC4647023 DOI: 10.1155/2015/623121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/15/2015] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer (PC) is a highly malignant tumor derived from pancreas tissue and is one of the leading causes of death from cancer. Its molecular mechanism has been partially revealed by validating its oncogenes and tumor suppressor genes; however, the available data remain insufficient for medical workers to design effective treatments. Large-scale identification of PC-related genes can promote studies on PC. In this study, we propose a computational method for mining new candidate PC-related genes. A large network was constructed using protein-protein interaction information, and a shortest path approach was applied to mine new candidate genes based on validated PC-related genes. In addition, a permutation test was adopted to further select key candidate genes. Finally, for all discovered candidate genes, the likelihood that the genes are novel PC-related genes is discussed based on their currently known functions.
Collapse
|
10
|
Xu X, Zheng Q, Zhang Z, Zhang X, Liu R, Liu P. Periostin Enhances Migration, Invasion, and Adhesion of Human Endometrial Stromal Cells Through Integrin-Linked Kinase 1/Akt Signaling Pathway. Reprod Sci 2015; 22:1098-106. [DOI: 10.1177/1933719115572481] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaoxuan Xu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qiaomei Zheng
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zongzheng Zhang
- Department of Orthopedics, Taishan Medical University, Tai’an, Shandong, China
| | - Xiaolei Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ruihan Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Peishu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|