1
|
Chao J, Chen TY, Pao LH, Deng JS, Cheng YC, Su SY, Huang SS. Ethnobotanical Survey on Bitter Tea in Taiwan. Front Pharmacol 2022; 13:816029. [PMID: 35250565 PMCID: PMC8894760 DOI: 10.3389/fphar.2022.816029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
Ethnopharmacological evidence: In Taiwan, herbal tea is considered a traditional medicine and has been consumed for hundreds of years. In contrast to regular tea, herbal teas are prepared using plants other than the regular tea plant, Camellia sinensis (L.) Kuntze. Bitter tea (kǔ-chá), a series of herbal teas prepared in response to common diseases in Taiwan, is often made from local Taiwanese plants. However, the raw materials and formulations have been kept secret and verbally passed down by store owners across generations without a fixed recipe, and the constituent plant materials have not been disclosed. Aim of the study: The aim was to determine the herbal composition of bitter tea sold in Taiwan, which can facilitate further studies on pharmacological applications and conserve cultural resources. Materials and methods: Interviews were conducted through a semi-structured questionnaire. The surveyed respondents were traditional sellers of traditional herbal tea. The relevant literature was collated for a systematic analysis of the composition, characteristics, and traditional and modern applications of the plant materials used in bitter tea. We also conducted an association analysis of the composition of Taiwanese bitter tea with green herb tea (qing-cao-cha tea), another commonly consumed herbal tea in Taiwan, as well as herbal teas in neighboring areas outside Taiwan. Results: After visiting a total of 59 stores, we identified 32 bitter tea formulations and 73 plant materials. Asteraceae was the most commonly used family, and most stores used whole plants. According to a network analysis of nine plant materials used in high frequency as drug pairs, Tithonia diversifolia and Ajuga nipponensis were found to be the core plant materials used in Taiwanese bitter tea. Conclusion: Plant materials used in Taiwanese bitter tea were distinct, with multiple therapeutic functions. Further research is required to clarify their efficacy and mechanisms.
Collapse
Affiliation(s)
- Jung Chao
- Chinese Medicine Research Center, Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, Master Program for Food and Drug Safety, China Medical University, Taichung, Taiwan
| | - Ting-Yang Chen
- Chinese Medicine Research Center, Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Li-Heng Pao
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jeng-Shyan Deng
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Shan-Yu Su
- Department of Chinese Medicine, China Medical University Hospital, School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- *Correspondence: Shan-Yu Su, ; Shyh-Shyun Huang,
| | - Shyh-Shyun Huang
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
- School of Pharmacy, China Medical University, Taichung, Taiwan
- *Correspondence: Shan-Yu Su, ; Shyh-Shyun Huang,
| |
Collapse
|
2
|
Xie ZS, Xing RR, Chen X, Hu S, Bai XH. Simultaneous preconcentration of both polar and non-polar Q-markers of flavonoids in traditional Chinese medicine by reverse micellar floating solidification liquid-phase microextraction. J LIQ CHROMATOGR R T 2022. [DOI: 10.1080/10826076.2022.2026784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zhong-shui Xie
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Rong-rong Xing
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Xuan Chen
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Shuang Hu
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Xiao-hong Bai
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| |
Collapse
|
3
|
Yang PW, Chen TT, Zhao WX, Liu GW, Feng XJ, Wang SM, Pan YC, Wang Q, Zhang SH. Scutellaria barbata D.Don and Oldenlandia diffusa (Willd.) Roxb crude extracts inhibit hepatitis-B-virus-associated hepatocellular carcinoma growth through regulating circRNA expression. JOURNAL OF ETHNOPHARMACOLOGY 2021; 275:114110. [PMID: 33864890 DOI: 10.1016/j.jep.2021.114110] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/30/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellaria barbata D.Don (SB) and Oldenlandia diffusa (Willd.) Roxb are commonly known as Ban Zhi Lian and Bai Hua She Cao in Chinese herbal medicines, respectively. As a pair of herbs, they have traditionally been used as ethnomedicines for clearing away heat and toxins, removing blood stasis, and promoting blood circulation, diuresis, and detumescence. AIM OF THE STUDY The aim of the present study was to determine the active ingredients in SB and OD extracts and to investigate whether these extracts can inhibit the growth of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) cell lines (HepG2.2.15 and Hep3B) in vitro and in vivo, as well as to explore their mechanisms of action. MATERIALS AND METHODS We determined the levels of total flavonoids, luteolin, and apigenin in SB and OD extracts via ultraviolet-visible spectrophotometry and high-performance liquid chromatography. The effects of SB and OD extracts on HBV-associated HCC cell growth were assessed by HepG2.2.15 and Hep3B cells phenotype and RNA sequencing of Hep3B cells in vitro, and xenograft models in vivo. RESULTS The extracts of SB and OD contained total flavonoids. There were active ingredients of luteolin and apigenin in SB, but not in OD. The extracts of SB and OD significantly inhibited HCC growth, migration, invasion, and HBV activity in vitro and in vivo, as well as altered circRNA expression in Hep3B cells. Moreover, we constructed a circRNA-miRNA-mRNA co-expression network. CONCLUSIONS The extracts of SB and OD may inhibit HCC cell growth and HBV activity in vitro and in vivo through altering circRNA-miRNA-gene expression and that the efficacies of these extracts may be related to the presence of luteolin and apigenin.
Collapse
MESH Headings
- Animals
- Apigenin/analysis
- Apoptosis/drug effects
- Autophagy-Related Proteins/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/pathology
- Cell Cycle Checkpoints/drug effects
- Cell Line, Tumor
- Cell Movement/drug effects
- Disease Models, Animal
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Flavonoids/analysis
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Regulatory Networks/drug effects
- Hepatitis B/complications
- Hepatitis B/drug therapy
- Hepatitis B virus/drug effects
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/etiology
- Liver Neoplasms/pathology
- Luteolin/analysis
- Mice, Nude
- Oldenlandia/chemistry
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Scutellaria/chemistry
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Pei-Wei Yang
- Department of Gastroenterology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, Henan, China.
| | - Ting-Ting Chen
- Department of Pathology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Chinese Medicine, Shanghai, 200437, Shanghai, China.
| | - Wen-Xia Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, Henan, China.
| | - Guang-Wei Liu
- Department of Gastroenterology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, Henan, China.
| | - Xiao-Jun Feng
- Department of Pathology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Chinese Medicine, Shanghai, 200437, Shanghai, China.
| | - Shou-Mei Wang
- Department of Pathology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Chinese Medicine, Shanghai, 200437, Shanghai, China.
| | - Yun-Cui Pan
- Department of Pathology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Chinese Medicine, Shanghai, 200437, Shanghai, China.
| | - Qian Wang
- Department of Pathology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Chinese Medicine, Shanghai, 200437, Shanghai, China.
| | - Shu-Hui Zhang
- Department of Pathology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Chinese Medicine, Shanghai, 200437, Shanghai, China.
| |
Collapse
|
4
|
Wang L, Chen W, Li M, Zhang F, Chen K, Chen W. A review of the ethnopharmacology, phytochemistry, pharmacology, and quality control of Scutellaria barbata D. Don. JOURNAL OF ETHNOPHARMACOLOGY 2020; 254:112260. [PMID: 31577937 DOI: 10.1016/j.jep.2019.112260] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 09/28/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellaria barbata D. Don (S. barbata) is a well-known perennial herb that is used in traditional Chinese and Korean medicine. In China, it is known as Ban Zhi Lian, while in Korea, it is known as Banjiryun. In the Traditional Chinese Medicine (TCM) system, S. barbata has heat-clearing and detoxifying properties (Qingre Jiedu in Chinese). AIM OF THE REVIEW To provide a systematic review on current multifaceted understanding of S. barbata, with particular emphasis on the correlation between its traditional applications and pharmacological activities. MATERIALS AND METHODS All available S. barbata-related information from internet databases, including PubMed, Science Direct, Elsevier, China National Knowledge Internet, and Google Scholar (up to October 2018) were searched. Additional information was gathered from classical books on Chinese Herbals, Chinese Pharmacopoeia, and so on. RESULTS In the TCM system, S. barbata is mainly prescribed for its heat-clearing and detoxifying effects. More than 203 compounds have been isolated and identified from this herb, with neo-clerodane diterpenoids and flavonoids as the main compounds. Most neo-clerodanes have been demonstrated to have cytotoxic effects against different cancer cell types in vitro. The S. barbata extracts exhibited anti-inflammatory, anti-microbial, antitumor, and other pharmacological activities. To add, flavonoids, including wogonin, baicalein, apigenin, naringenin, and scutellarin, were identified as the key to quality control. CONCLUSIONS The heat-clearing effects of S. barbata could be attributed to its anti-inflammatory and hepatoprotective activities, whereas its detoxifying effects might be due to the anti-microbial functions of neo-clerodane diterpenoids and flavones. S. barbata may display anti-tumor effects and through active ingredient analysis, neo-clerodane diterpenoids are suggested to be its representative compounds. Overall, many pre-clinical studies have been conducted but very little concrete evidences are available on its specific effects, which are of therapeutic relevance.
Collapse
Affiliation(s)
- Liang Wang
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Mingming Li
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Feng Zhang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Kaixian Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wansheng Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| |
Collapse
|
5
|
Chinese herbal medicine therapy and the risk of overall mortality for patients with liver cancer who underwent surgical resection in Taiwan. Complement Ther Med 2019; 47:102213. [DOI: 10.1016/j.ctim.2019.102213] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/02/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
|
6
|
Gao J, Yin W, Corcoran O. From Scutellaria barbata to BZL101 in Cancer Patients: Phytochemistry, Pharmacology, and Clinical Evidence. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19880645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Scutellaria barbata D.Don is a popular Chinese medicinal plant documented to treat cancer patients in traditional Chinese medicine (TCM). A botanical new investigational drug for breast cancer BZL101 (FDA IDN# 59521) was previously developed in the United States from the aqueous extract of the aerial parts from S. barbata. The early phase 1A and 1B clinical trials show its favorable toxicity profiles, good clinical tolerance, and promising efficacy for patients with metastatic breast cancer. To further evidence the phytopharmacology research, drug development, and anticancer use of this herb, a systematic literature review was performed herein on the phytochemistry, pharmacology, and specifically anticancer clinical evidence. A systematic review of the literature on phytochemical and pharmacological properties of the plant related to cancer treatment employed several web-based scientific databases including Wanfang (Chinese), Pubmed, Web of Science, and Elsevier. Key words included Scutellaria barbata, Ban Zhi Lian, cancer, and tumor. Based on critical quality criteria, only 8 out of 69 reports related to clinical studies of cancer patients in China. This review covered the available literature up to July 2019. The anticancer effects of S. barbata can be explained by the presence of various flavonoids and diterpenoids alkaloids. The underlying mechanisms are primarily summarized as cyclin/cyclin-dependent kinase (CDK)-modulated cell cycle arrest and mitochondria-mediated apoptotic death. The highly cancer-cell selective cytotoxicity and detoxifying effects of S. barbata contribute to a favorable clinical profile and enhanced quality of life for the cancer patient, thereby demanding further study as an adjuvant or alternative to conventional chemotherapy. The phytochemical and pharmacological studies reviewed strongly underpin a fundamental understanding of the anticancer activity of S. barbata and support ongoing clinical trials. The further safety verification and clinical trials are expected to progress S. barbata-based development to finally transform the traditional TCM herb S. barbata to the valuable anticancer drug.
Collapse
Affiliation(s)
- Jiayu Gao
- School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang, China
| | - Weiping Yin
- School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang, China
| | - Olivia Corcoran
- Medicines Research Group, School of Health, Sport and Bioscience, University of East London, Water Lane, London, UK
| |
Collapse
|
7
|
Ganji Formulation for Patients with Hepatocellular Carcinoma Who Have Undergone Surgery: A Multicenter, Randomized, Double-Blind, Controlled Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9492034. [PMID: 31320916 PMCID: PMC6607716 DOI: 10.1155/2019/9492034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/10/2019] [Accepted: 06/10/2019] [Indexed: 11/29/2022]
Abstract
Objective. To ascertain the efficacy and safety of Ganji Formulation (GF) for patients with Hepatocellular carcinoma (HCC) who had undergone surgery. Materials and Methods. A total of 262 HCC patients who had undergone liver resection, local ablation, or transcatheter arterial chemoembolization (TACE) were divided randomly into the treatment group and control group. The former was treated with GF and the later with placebo, both for 6 months. The primary endpoint was overall survival (OS). Second endpoints were disease-free survival (DFS) or time to disease progression (TTP). Results. OS of the treatment group was significantly longer than that of the control group (P < 0.05). Subgroup analysis showed that, for patients who received TACE, the TTP was significantly longer in the treatment group than in the control group (P < 0.05). However, for patients who underwent liver resection or local ablation, there was no significant difference in DFS between the two groups (P > 0.05). Conclusion. GF could improve postoperative cumulative survival and prolong the TTP. This clinical trial number is registered with ChiCTR-IOR-15007349.
Collapse
|
8
|
Liu K, Tian T, Zheng Y, Zhou L, Dai C, Wang M, Lin S, Deng Y, Hao Q, Zhai Z, Dai Z. Scutellarin inhibits proliferation and invasion of hepatocellular carcinoma cells via down-regulation of JAK2/STAT3 pathway. J Cell Mol Med 2019; 23:3040-3044. [PMID: 30697962 PMCID: PMC6433857 DOI: 10.1111/jcmm.14169] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/27/2018] [Accepted: 12/29/2018] [Indexed: 02/06/2023] Open
Abstract
The prognosis of hepatocellular carcinoma (HCC) is poor because of high incidence of recurrence and metastasis. JAK/STAT signalling pathway regulates cell proliferation, apoptosis, differentiation and migration and epithelial‐mesenchymal transition (EMT) is also considered to contribute to invasion and metastasis of epithelial malignant tumours. Scutellarin is an active component found in many traditional Chinese herbs and has been regularly used in anti‐inflammatory and antitumour medicine. This study aimed to identify the effect of scutellarin and its possible mechanism of action in HCC cells. Proliferation, colony‐forming, apoptosis and cell migration assays were used to examine the effect of scutellarin on HCC cells. Quantitative real‐time PCR and Western blotting were performed to study the molecular mechanisms of action of scutellarin. Light and electron microscopy and immunofluorescence analysis were performed to study the effect of scutellarin on cellular mechanics. We show that scutellarin potentially suppresses invasiveness of HepG2 and MHCC97‐H cells in vitro by remodelling their cytoskeleton. The molecular mechanism behind it might be the inhibition of the EMT process, which could be attributed to the down‐regulation of the JAK2/STAT3 pathway. These findings may provide new clinical ideas for the treatment of liver cancer.
Collapse
Affiliation(s)
- Kang Liu
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tian Tian
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yi Zheng
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Linghui Zhou
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Cong Dai
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Meng Wang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shuai Lin
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yujiao Deng
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qian Hao
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhen Zhai
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhijun Dai
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
9
|
Li L, Xu X, Wu L, Zhu H, He Z, Zhang B, Chi Y, Song G. Scutellaria barbata polysaccharides inhibit tumor growth and affect the serum proteomic profiling of hepatoma H22‑bearing mice. Mol Med Rep 2019; 19:2254-2262. [PMID: 30664217 PMCID: PMC6390040 DOI: 10.3892/mmr.2019.9862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 12/20/2018] [Indexed: 12/29/2022] Open
Abstract
The present study aimed to evaluate the antitumor effect of Scutellaria barbata polysaccharides (SBPS) in a hepatoma mouse model and examine the serum proteins involved in the tumorigenesis and SBPS treatment. A hepatoma model was established by the subcutaneous inoculation of murine hepatocellular carcinoma into Kunming mice. The treatment (once a day) lasted until the tumor weight in the model group was ~1 g (~7-10 days after inoculation). The sera proteins from each group were then collected and subjected to two-dimensional gel electrophoresis. Differentially expressed proteins were screened out and representatives were identified using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. SBPS treatment at different doses significantly inhibited hepatoma growth (all P<0.01 vs. model group). The comparative serum proteomics showed that pseudouridine synthase 1 and chain A of the signal recognition particle Alu RNA-binding heterodimer (Srp9/14) were increased in the serum of the H22 hepatoma-bearing mice, and both were reduced by SBPS treatment. Mitochondrial ribosomal protein L24 was absent from the serum of H22 hepatoma-bearing mice, and was restored by SBPS treatment to approximately the normal level. Taken together, SBPS inhibited the growth of hepatic carcinoma in mice and affected serum proteomic profiling.
Collapse
Affiliation(s)
- Li Li
- Department of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Xiaoyi Xu
- Department of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Leilei Wu
- Department of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Haicheng Zhu
- Department of Digestive Surgery, Mudanjiang Anorectal Hospital, Mudanjiang, Heilongjiang 157000, P.R. China
| | - Zhipeng He
- Department of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Bo Zhang
- Department of Clinical Laboratory, Tumor Hospital of Mudanjiang City, Mudanjiang, Heilongjiang 157009, P.R. China
| | - Yanjun Chi
- Department of Brain Surgery, Mudanjiang First People's Hospital, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Gaochen Song
- Department of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| |
Collapse
|
10
|
EghbaliFeriz S, Taleghani A, Tayarani-Najaran Z. Scutellaria: Debates on the anticancer property. Biomed Pharmacother 2018; 105:1299-1310. [PMID: 30021367 DOI: 10.1016/j.biopha.2018.06.107] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 12/20/2022] Open
Abstract
The widespread use of plants as accessible anticancer agents leads to the identification of many natural source chemotherapeutic agents. Scutellaria one of the popular genus of flowering plants has been used for various human illnesses for thousands of years. Scutellaria has anti-metastatic, anti-proliferative, anti-invasion, anti-angiogenic and apoptosis effects in vitro as well as in vivo. Despite numerous reports on the cytotoxic-antitumor activity of the plant, there are still some issues need further consideration. Issues such as unjustified interpretations, lack of attention to the pharmacokinetics profile and weak study design may affect the final decision about the use of plants as anticancer agents and possibly needs reconsideration. In this review, we have summarized the potential health benefits of Scutellaria and its active components also the underlying mechanism of cytotoxicity and antitumor activity. Meanwhile we have discussed concerns may interfere with the precise conclusion.
Collapse
Affiliation(s)
- Samira EghbaliFeriz
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Akram Taleghani
- Department of Chemistry, Faculty of Science, University of Birjand, Birjand, Iran
| | - Zahra Tayarani-Najaran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Wang Q, Acharya N, Liu Z, Zhou X, Cromie M, Zhu J, Gao W. Enhanced anticancer effects of Scutellaria barbata D. Don in combination with traditional Chinese medicine components on non-small cell lung cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2018; 217:140-151. [PMID: 29458146 DOI: 10.1016/j.jep.2018.02.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/06/2018] [Accepted: 02/12/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Experience-based herbal medicine as a complementary to modern western medicine has triggered an array of studies in quest of novel anticancer drugs. Scutellaria barbata D. Don (SB) is commonly used to treat different types of cancers, but its molecular mechanism of action is not clearly understood. In this study, we attempted to elucidate the mode of action of a traditional Chinese medicine prescription with a total of 14 components, named Lian-Jia-San-Jie-Fang (LJSJF, in Chinese), where SB works as the "principle" against non-small cell lung cancer (NSCLC) cells. MATERIALS AND METHODS Four different NSCLC cell lines (A549, H460, H1650, and H1975) were used. Cytotoxicity, in vitro tumorigenicity, gene expression, and protein expression were analyzed by MTT assay, soft agar assay, real-time PCR, and Western blots, respectively. RESULTS Among the 14 components in LJSJF, SB was the only one to possess cytotoxic effects at its pharmacologically relevant doses. Additionally, we observed synergistically dose-dependent cytotoxic effects of SB in combination with other LJSJF components. After SB or LJSJF treatment, significant reductions in colony number and/or size were observed in A549 and H460; a notable dose-dependent decrease in EGFR was observed in A549, H460, and H1650; significant downregulation in EGFR and its downstream signaling targets mTOR and p38MAPK were also observed in A549 and H460; and p53 and p21 were significantly increased while survivin, cyclin D1, and MDM2 were significantly decreased in A549. Additionally, p53, p21, and Mettl7b were decreased, but p73 was increased in H460. Neither EGFR nor p53 was changed in H1975. Therefore, SB or LJSJF may induce cytotoxic effects by regulating multiple and/or distinct apoptotic pathways in different NSCLC cells. CONCLUSION LJSJF exerts more pronounced cytotoxic effects against NSCLC cells than SB does by synergistically regulating the underlining molecular mechanisms including EGFR and/or p53 signaling pathways.
Collapse
Affiliation(s)
- Qian Wang
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas 79416, United States; Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Narayan Acharya
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas 79416, United States
| | - Zhongwei Liu
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas 79416, United States
| | - Xianmei Zhou
- Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Meghan Cromie
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas 79416, United States
| | - Jia Zhu
- Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Weimin Gao
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas 79416, United States.
| |
Collapse
|
12
|
Zheng X, Kang W, Liu H, Guo S. Inhibition effects of total flavonoids from Sculellaria barbata D. Don on human breast carcinoma bone metastasis via downregulating PTHrP pathway. Int J Mol Med 2018; 41:3137-3146. [PMID: 29512770 PMCID: PMC5881663 DOI: 10.3892/ijmm.2018.3515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/29/2018] [Indexed: 02/07/2023] Open
Abstract
It is abundantly clear that tumor-derived parathyroid hormone-related protein (PTHrP), receptor activator of nuclear factor-κB ligand (RANKL) and osteoprotegerin (OPG) are central contributors in promoting osteolytic process of breast carcinoma bone metastasis. Forcusing on this molecular basis, the study was undertaken to explore the inhibition effects of total flavonoids from Scutellaria barbata D. Don (TF-SB) on human breast carcinoma bone metastasis. MDA-MB-231 cells and nude mouse models of breast cancer bone metastasis were given TF-SB in different concentrations. The proliferation, migration and invasion potentials of MDA-MB-231 cells were respectively tested. The effects of TF-SB on tumor weights and bone destruction were investigated. The mRNA and protein expression of PTHrP, OPG and RANKL were assessed by qPCR and western blot analysis. In vitro, TF-SB inhibited the proliferation, migration and invasion of MDA-MB-231 cells in a dose-dependent manner. In vivo, TF-SB prevented bone metastasis of breast cancer by decreasing the number of osteoclast cells per field in a dose-dependent manner, but not affecting tumor growth or mouse survival. Molecular analysis revealed that TF-SB controled the secretion of osteolysis-related factors PTHrP and its downstream RANKL/OPG. Together, by controlling the expression of PTHrP and its downstream OPG/RANKL, TF-SB has significant inhibition effects on breast cancer bone metastasis, which indicates a new therapeutic method.
Collapse
Affiliation(s)
- Xiao Zheng
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Wen Kang
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Huihui Liu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Shanyu Guo
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
13
|
Hu B, Zhang T, An HM, Zheng JL, Yan X, Huang XW. Herbal formula YGJDSJ inhibits anchorage-independent growth and induces anoikis in hepatocellular carcinoma Bel-7402 cells. Altern Ther Health Med 2018; 18:17. [PMID: 29338725 PMCID: PMC5771203 DOI: 10.1186/s12906-018-2083-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/08/2018] [Indexed: 12/11/2022]
Abstract
Background Based on clinical medications and related studies, we established a Yang-Gan Jie-Du Sang-Jie (YGJDSJ) herbal formula for hepatocarcinoma treatment. In present study, we evaluated the anti-cancer potential of YGJDSJ on suspension-grown human hepatocellular carcinoma Bel-7402 cells. Methods Bel-7402 cells were cultured in poly(2-hydroxyethyl methacrylate) (poly-HEMA) coated plates and treated with YGJDSJ. Anchorage-independent cell growth was detected by cell Counting Kit-8 (CCK-8) assay and soft agar colony formation assay. Anoikis was detected by ethdium homodimer-1 (EthD-1) staining and flow cytometry analysis. Caspases activities were detected by the cleavage of chromogenic substrate. Reactive oxygen species (ROS) was detected by 2′,7′-dichlorofluorescin diacetate (DCFH-DA) staining. Protein expression and phosphorylation was identified by western blot. Protein expression was knocked-down by siRNA. Results YGJDSJ inhibited the proliferation of Bel-7402 cells in poly-HEMA coated plates and anchorage-independent growth of Bel-7402 cells in soft agar. YGJDSJ also induced anoikis in Bel-7402 cells as indicated by EthD-1 staining and flow cytometry analysis. YGJDSJ activated caspase-3, − 8, and − 9 in suspension-grown Bel-7402 cells. The pan-caspase inhibitor Z-VAD-FMK significantly abrogated the effects of YGJDSJ on anoikis in suspension-grown Bel-7402 cells. In addition, YGJDSJ increased ROS in suspension-grown Bel-7402 cells. The ROS scavenger N-acetyl-L-cysteine (NAC) partially attenuated YGJDSJ-induced activation of caspase-3, − 8 and − 9 and anoikis in suspension-grown Bel-7402 cells. Furthermore, YGJDSJ inhibited expression and phosphorylation of protein tyrosine kinase 2 (PTK2) in suspension-grown Bel-7402 cells. Over-expression of PTK2 significantly abrogated YGJDSJ induced anoikis. Conclusions YGJDSJ inhibits anchorage-independent growth and induce caspase-mediated anoikis in Bel-7402 cells, and may relate to ROS generation and PTK2 downregulation.
Collapse
|
14
|
Chen CC, Kao CP, Chiu MM, Wang SH. The anti-cancer effects and mechanisms of Scutellaria barbata D. Don on CL1-5 lung cancer cells. Oncotarget 2017; 8:109340-109357. [PMID: 29312612 PMCID: PMC5752525 DOI: 10.18632/oncotarget.22677] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/29/2017] [Indexed: 12/11/2022] Open
Abstract
Lung cancer, with a poor prognosis and resistance to chemotherapy, is the most common malignant tumor and has the highest mortality rate worldwide. Scutellaria barbata D. Don (SB), which is derived from the dried whole plant of Labiatae, is a well-known anti-inflammatory and anti-cancer herb. The aim of this study was to examine the anti-cancer effects and precise regulatory mechanisms of SB in CL1-5 lung cancer cells. In an in vitro assay, we found that the anti-tumor mechanism of SB was due to P38/SIRT1-regulated cell apoptosis through G2/M phase arrest and ER stress-, intrinsic mitochondrial-, and extrinsic FAS/FASL-mediated pathways. Autophagy also plays a key role in SB-induced CL1-5 cell cytotoxicity. In addition, SB exerts additive effects with etoposide or cisplatin in lung cancer cells. In an in vivo assay, we found that SB significantly reduces tumor size with decreased proliferation and angiogenesis, as well as increased apoptosis and autophagy in CL1-5 tumor-bearing mice. These findings provided experimental evidence for the application of SB in the treatment of lung cancer.
Collapse
Affiliation(s)
- Chin-Chuan Chen
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan, Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chun-Pin Kao
- Department of Nursing, Hsin Sheng Junior College of Medical Care and Management, Taoyuan, Taiwan
| | - Mei-Miao Chiu
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan, Republic of China
| | - Shu-Huei Wang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
15
|
Lee SR, Kim MS, Kim S, Hwang KW, Park SY. Constituents from Scutellaria barbata
Inhibiting Nitric Oxide Production in LPS-Stimulated Microglial Cells. Chem Biodivers 2017; 14. [DOI: 10.1002/cbdv.201700231] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/11/2017] [Indexed: 12/18/2022]
Affiliation(s)
- So Ra Lee
- Department of Nanomedicine; World Class University; Dankook University; Cheonan 31116 Korea
| | - Min-Suk Kim
- Laboratory of Pharmacognosy; College of Pharmacy; Dankook University; Cheonan 31116 Korea
| | - Sunggun Kim
- Laboratory of Pharmacognosy; College of Pharmacy; Dankook University; Cheonan 31116 Korea
| | - Kwang Woo Hwang
- College of Pharmacy; Chung-Ang University; Seoul 06974 Korea
| | - So-Young Park
- Department of Nanomedicine; World Class University; Dankook University; Cheonan 31116 Korea
- Laboratory of Pharmacognosy; College of Pharmacy; Dankook University; Cheonan 31116 Korea
| |
Collapse
|
16
|
Zhang L, Ren B, Zhang J, Liu L, Liu J, Jiang G, Li M, Ding Y, Li W. Anti-tumor effect of Scutellaria barbata D. Don extracts on ovarian cancer and its phytochemicals characterisation. JOURNAL OF ETHNOPHARMACOLOGY 2017; 206:184-192. [PMID: 28571726 DOI: 10.1016/j.jep.2017.05.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/26/2017] [Accepted: 05/27/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellaria barbata D. Don is a widely used medicinal herb in China. It possess various medicinal properties including antioxidative, anti-inflammatory and anti-cancer effects. The aim of this study was to explore whether Scutellaria barbata D. Don could inhibit the growth of ovarian cancer cells in vitro and further investigate the underlying mechanisms. MATERIALS AND METHODS Effects of Scutellaria barbata D. Don on the viability of ovarian cancer A2780 cells were measured by MTT assay. Apoptosis was measured by cell morphologic observation through DAPI staining and Annexin V-FITC staining assay for apoptosis analysis. The migration of ovarian cancer cells which exposed to Scutellaria barbata D. Don were measured by wound healing and transwell chamber assays. The protein levels of caspase 3/9, Bcl-2 and MMP-2/9 in human ovarian cancer cells treated with Scutellaria barbata D. Don were assessed by western blotting analysis. The potential bioactive compounds were characterized by HPLC-Q-TOF-MS. RESULTS The present study was to investigate the anticancer effects of crude extracts from Scutellaria barbata D. Don on ovarian cancer A2780 cells by MTT, DAPI staining, wound healing assay, transwell migration assay and western blotting analysis. Our study showed that Scutellaria barbata D. Don reduced the viability of A2780 cells and induced apoptosis by down-regulated Bcl-2 protein and increased Caspase 3/9 proteins. Furthermore, migration of A2780 cells were significantly inhibited by Scutellaria barbata D. Don and the underlying mechanism may be related to the decrease of MMP-2/9. The main constituents from Scutellaria barbata D. Don were identified to be thirteen flavonoids. A HPLC-Q-TOF-MS analysis of Scutellaria barbata D. Don indicated the presence of 14 flavonoids compounds, which may contribute to the anticancer activity of the Scutellaria barbata D. Don. CONCLUSIONS Scutellaria barbata D. Don could inhibit proliferation and induce apoptosis in A2780 cells through mitochondrial pathway. Moreover, the inhibitory effect of Scutellaria barbata D. Don on the migration of ovarian cancer cells was associated with the down-regulation of MMP-2/9 expression. These findings could shed a light on the therapy of ovarian cancer.
Collapse
Affiliation(s)
- Lin Zhang
- Academy of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Baoyin Ren
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Jing Zhang
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Likun Liu
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Jia Liu
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Guoqiang Jiang
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Man Li
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Yuejia Ding
- Academy of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Weiling Li
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
17
|
Yang HH, Liu YJ, Wang XZ. Synthesis of novel dibenzoxanthene derivatives and observation of apoptosis in human hepatocellular cancer cells. Bioorg Chem 2017; 72:333-344. [PMID: 28521246 DOI: 10.1016/j.bioorg.2017.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/21/2017] [Accepted: 04/21/2017] [Indexed: 11/18/2022]
Abstract
We have synthesized dibenzoxanthene derivatives 2a-2i via nucleophilic substitution of methoxyl group and evaluated underlying antitumor molecular mechanism of target compounds. Compounds showed high cytotoxic activities against BEL-7402, A549, HeLa and MG-63 cancer cells in the µM range. These compounds inhibited the cell growth of BEL-7402 cells at S or G2/M phase. The compounds 2a-2i also induced the apoptosis of BEL-7402 cells. In addition, compounds enhanced the level of intramolecular ROS and decreased the mitochondrial membrane potential. Western blot analysis showed caspase-3 were activated and the expression of Bcl-2 and Bcl-xl was down-regulated. According to given results, these dibenzoxanthenes exhibited a broad spectrum of antiproliferative effects on various tumors and therapeutic efficacy. Molecular mechanism indicated that induction of apoptosis was associated with DNA fragmentation, ROS generation, mitochondria dysfunction. Compounds induced apoptosis in BEL-7402 cells through the intrinsic ROS-mediated mitochondrial pathway.
Collapse
Affiliation(s)
- Hui-Hui Yang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yun-Jun Liu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Cosmetics Engineering & Technology Research Center, Guangzhou 510006, PR China.
| | - Xiu-Zhen Wang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
18
|
Zhang L, Fang Y, Feng JY, Cai QY, Wei LH, Lin S, Peng J. Chloroform fraction of Scutellaria barbata D. Don inhibits the growth of colorectal cancer cells by activating miR‑34a. Oncol Rep 2017; 37:3695-3701. [PMID: 28498458 DOI: 10.3892/or.2017.5625] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/19/2017] [Indexed: 11/06/2022] Open
Abstract
Scutellaria barbata D. Don (SB) is a well known formula in traditional Chinese medicine, which exhibits potent anticancer effects on various cancers. Many miRNAs play crucial roles in the regulation of cancer, for instance, miR‑34a functions as a tumor suppressor, and is often downregulated during cancer. In this study, we investigated the role of ECSB in suppressing the growth of human colon cancer HCT‑8 cells, and whether this is mediated by regulation of miR‑34a and its downstream target genes, using real-time PCR and western blot analysis. ECSB treatment significantly inhibited the proliferation of HCT‑8 cells and promoted apoptosis in a dose-dependent manner. In addition, ECSB treatment significantly increased the level of miR‑34a expression and decreased the levels of Bcl-2, Notch1/2 and Jagged1 expression. Furthermore, knockdown of miR‑34a expression through transfection of anti-miR‑34a oligonucleotide was significantly reversed by ECSB treatment. Likewise, knockdown of miR‑34a resulted in significant upregulation of Bcl-2, Notch1/2 and Jagged1 expression, which was reversed following ECSB treatment. Therefore, this study reveals that ECSB inhibited cancer cell growth via promoting apoptosis and inhibiting proliferation, through regulation of miR‑34a. These findings further support the use of ECSB as an effective therapeutic agent against colon cancer.
Collapse
Affiliation(s)
- Ling Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yi Fang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jian-Yu Feng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Qiao-Yan Cai
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Li-Hui Wei
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Shan Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
19
|
Shim JH, Gim H, Lee S, Kim BJ. Inductions of Caspase-, MAPK- and ROS-dependent Apoptosis and Chemotherapeutic Effects Caused by an Ethanol Extract of Scutellaria barbata D. Don in Human Gastric Adenocarcinom Cells. J Pharmacopuncture 2016; 19:129-36. [PMID: 27386146 PMCID: PMC4931298 DOI: 10.3831/kpi.2016.19.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVES The crude extracts of Scutellaria barbata D. Don (SB) have traditionally demonstrated inhibitory effects on numerous human cancers both in vitro and in vivo. Gastric cancer is one of the most common types of cancer on world. The authors investigated the effects of an ethanol extract of Scutellaria barbata D. Don (ESB) on the growth and survival of MKN-45 cells (a human gastric adenocarcinoma cell line). METHODS The MKN-45 cells were treated with different concentrations of ESB, and cell death was examined using an MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay. Analyses of sub-G1 peaks, caspase-3 and -9 activities, and mitochondrial membrane depolarizations were conducted to determine the anti-cancer effects of SB on MKN-45 cells. Also, intracellular reactive oxygen species (ROS) generation was investigated. RESULTS ESB inhibited the growth of MKN-45 cells, caused cell cycle arrest, and increased the sub-G1 population. In addition, ESB markedly increased mitochondrial membrane depolarization and the activities of caspase-3 and -9. ESB exerted anti-proliferative effects on MKN-45 cells by modulating the mitogen-activated protein kinase (MAPK) signaling pathway and by increasing the generation of ROS. Furthermore, combinations of anti-cancer drugs plus ESB suppressed cell growth more than treatments with an agent or ESB, and this was especially true for cisplatin, etoposide, and doxorubicin. CONCLUSION ESB has a dose-dependent cytotoxic effect on MKN-45 cells and this is closely associated with the induction of apoptosis. ESB-induced apoptosis is mediated by mitochondria- , caspase- and MAPK dependent pathways. In addition, ESB enhances ROS generation and increases the chemosensitivity of MKN-45 cells. These results suggest that treatment with ESB can inhibit the proliferation and promote the apoptosis of human gastric adenocarcinoma cells by modulating the caspase-, MAPK- and ROS-dependent pathway.
Collapse
Affiliation(s)
- Ji Hwan Shim
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Korea
| | - Huijin Gim
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Korea
| | - Soojin Lee
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Korea
| | - Byung Joo Kim
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Korea
| |
Collapse
|