1
|
Alharbi KS. The ncRNA-TGF-β axis: Unveiling new frontiers in colorectal cancer research. Pathol Res Pract 2024; 254:155138. [PMID: 38266458 DOI: 10.1016/j.prp.2024.155138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
Colorectal cancer (CRC) poses a substantial global challenge, necessitating a deeper understanding of the molecular underpinnings governing its onset and progression. The transforming growth factor beta (TGF-β) network has been a well-recognized cornerstone in advancing CRC. Nevertheless, a recent study has highlighted the growing importance of non-coding RNAs (ncRNAs) in this context. This comprehensive review aims to present an extensive examination of the interaction between ncRNAs and TGF-signaling. Noncoding RNAs (ncRNAs), encompassing circular RNAs (circRNAs), long-ncRNAs (lncRNAs), and microRNAs (miRNAs), have surfaced as pivotal modulators governing various aspects of TGF-β signaling. MiRNAs have been discovered to target elements within the TGF-β signaling, either enhancing or inhibiting signaling, depending on the context. LncRNAs have been associated with CRC progression, functioning as miRNA sponges or directly influencing TGF-β pathway elements. Even circRNAs, a relatively recent addition to the ncRNA family, have impacted CRC, affecting TGF-β signaling through diverse mechanisms. This review encompasses recent progress in comprehending specific ncRNAs involved in TGF-β signaling, their functional roles, and their clinical relevance in CRC. We investigate the possibility of ncRNAs as targets for detection, prognosis, and therapy. Additionally, we explore the interaction of TGF-β and other pathways in CRC and the role of ncRNAs within this intricate network. As we unveil the intricate regulatory function of ncRNAs in the TGF-β signaling in CRC, we gain valuable insights into the disease's pathogenesis. Incorporating these discoveries into clinical settings holds promise for more precise diagnosis, prognosis, and targeted therapeutic approaches, ultimately enhancing the care of CRC patients. This comprehensive review underscores the ever-evolving landscape of ncRNA research in CRC and the potential for novel interventions in the battle against this formidable disease.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia.
| |
Collapse
|
2
|
Li J, Liu H, Lin Q, Chen H, Liu L, Liao H, Cheng Y, Zhang X, Wang Z, Shen A, Chen G. Baicalin suppresses the migration and invasion of breast cancer cells via the TGF-β/lncRNA-MALAT1/miR-200c signaling pathway. Medicine (Baltimore) 2022; 101:e29328. [PMID: 36401368 PMCID: PMC9678613 DOI: 10.1097/md.0000000000029328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Metastasis is the major cause of death and failure of cancer chemotherapy in patients with breast cancer (BC). Activation of TGF-β/lncRNA-MALAT1/miR-200c has been reported to play an essential role during the metastasis of BC cells. The present study aimed to validate the suppression of BC-cell migration and invasion by baicalin and explore its regulatory effects on the TGF-β/lncRNA-MALAT1/miR-200c signaling pathway. We found that baicalin treatment inhibited cell viability and migration and invasion. Mechanistically, baicalin treatment significantly downregulated the expression of TGF-β, ZEB1, and N-cadherin and upregulated E-cadherin on both mRNA and protein levels. Additionally, baicalin treatment significantly downregulated the expression of lncRNA-MALAT1 and upregulated that of miR-200c. Collectively, baicalin significantly suppresses cell viability, migration, and invasion of BC cells possibly by regulating the TGF-β/lncRNA-MALAT1/miR-200c pathway.
Collapse
Affiliation(s)
- Jiafeng Li
- Department of pharmacy department, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Huixin Liu
- Academy of Integrative Medicine
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Qiwang Lin
- Department of pharmacy department, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Huajiao Chen
- Department of pharmacy department, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Liya Liu
- Academy of Integrative Medicine
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Hongjuan Liao
- Department of pharmacy department, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Ying Cheng
- Academy of Integrative Medicine
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Xiuli Zhang
- Academy of Integrative Medicine
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Zhenlong Wang
- Academy of Integrative Medicine
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Aling Shen
- Academy of Integrative Medicine
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Guolong Chen
- Department of pharmacy department, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
- *Correspondence: Guolong Chen, Department of Pharmacy Department, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China (e-mail: )
| |
Collapse
|
3
|
Kondkar AA, Azad TA, Sultan T, Osman EA, Almobarak FA, Al-Obeidan SA. Association of rs12997 variant in the ACVR1 gene: a member of bone morphogenic protein signaling pathway with primary open-angle glaucoma in a Saudi cohort. J Investig Med 2021; 69:402-407. [PMID: 33443061 DOI: 10.1136/jim-2020-001596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 12/18/2022]
Abstract
We investigated the association between variants rs12997 in activin A receptor type I (ACVR1) and rs1043784 in BMP6 located in the 3' untranslated region, and primary open-angle glaucoma (POAG). The retrospective case-control study used TaqMan real-time PCR assay to genotype 400 subjects, including 150 patients with POAG and 250 controls. The minor 'G' allele of rs12997 in ACVR1 showed significant association with POAG (p=0.027, OR=1.39, 95% CI=1.03 to 1.87). Likewise, rs12997 genotypes showed moderate association with POAG in recessive (p=0.048, OR=1.80, 95% CI=1.01 to 3.20) and log-additive models (p=0.030, OR=1.39, 95% CI=1.03 to 1.87), but did not survive Bonferroni correction. Rs1043784 in BMP6 showed no associations. Furthermore, rs12997 G/G genotype significantly (p=0.033) increased the risk of POAG (twofolds) independent of age, sex and rs1043784 genotypes in regression analysis. However, clinical variables such as intraocular pressure and cup/disc ratio showed no association with both the polymorphisms. To conclude, the study shows a modest association between rs12997 in the ACVR1 gene, a member of the bone morphogenic protein signaling pathway and POAG. However, the results need further replication in large population-based cohorts and different ethnicities to validate its role as an important genetic biomarker.
Collapse
Affiliation(s)
- Altaf A Kondkar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia .,Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Taif A Azad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Tahira Sultan
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Essam A Osman
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Faisal A Almobarak
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Al-Obeidan
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Kondkar AA, Sultan T, Azad TA, Osman EA, Almobarak FA, Al-Obeidan SA. Association analysis of polymorphisms rs12997 in ACVR1 and rs1043784 in BMP6 genes involved in bone morphogenic protein signaling pathway in primary angle-closure and pseudoexfoliation glaucoma patients of Saudi origin. BMC MEDICAL GENETICS 2020; 21:145. [PMID: 32641001 PMCID: PMC7346469 DOI: 10.1186/s12881-020-01076-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/24/2020] [Indexed: 01/08/2023]
Abstract
Background Glaucoma is a polygenic neurodegenerative disease and the second most common cause of blindness in Saudi Arabia. To test the hypothesis that genetic variants in the genes involved in the bone morphogenic protein (BMP) signaling pathway may be associated with glaucoma, we investigated the association between 3′ untranslated region variants, rs12997 in ACVR1 and rs1043784 in BMP6, and primary angle-closure glaucoma (PACG) and pseudoexfoliation glaucoma (PXG). Methods In a case-control study, TaqMan® real-time PCR-based genotyping was done in 444 subjects consisting of 250 controls, 101 PACG and 95 PXG cases, and tested for genetic association with glaucoma-types and other clinical phenotypes. Results Rs12997[G] allele in ACVR1 exhibited significant 2-fold increased risk of PACG (p = 0.005) in women but not in men. Similarly, genotype analysis also showed that subjects carrying rs12997[G/G] genotype were at > 2-fold risk of PACG that remained significant after adjustment for age, sex, and Bonferroni correction in the recessive model. Furthermore, this effect was also significant in women only. In PXG, the rs12997[G/G] genotype showed a significant trend towards increased risk of the disease (OR = 2.04, 95% CI = 0.99–4.18, p = 0.049) but did not survive the Bonferroni correction. Regression analysis showed that rs12997[G/G] genotype was a significant predictor of PACG independent of age, sex, and rs1043784 genotypes. Likewise, age and rs12997[G/G] genotype showed significant effect on PXG outcome. The rs12997[A/G] genotype showed significant association with cup/disc ratio as compared to wild-type (p = 0.005) in PXG. Genotype and allele frequencies of rs1043784 in BMP6 did not show any significant association either with PACG or PXG. Conclusions Our results suggest that the polymorphism rs12997 in the ACVR1 gene involved in the BMP signaling pathway is significantly associated with PACG and PXG in a Saudi cohort. This is the first study to associate this variant/gene with PACG and PXG. However, further studies would be needed to replicate these findings in a large population-based cohort.
Collapse
Affiliation(s)
- Altaf A Kondkar
- Department of Ophthalmology, College of Medicine, King Saud University, P.O. Box 245, Riyadh, 11411, Saudi Arabia. .,Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Tahira Sultan
- Department of Ophthalmology, College of Medicine, King Saud University, P.O. Box 245, Riyadh, 11411, Saudi Arabia
| | - Taif A Azad
- Department of Ophthalmology, College of Medicine, King Saud University, P.O. Box 245, Riyadh, 11411, Saudi Arabia
| | - Essam A Osman
- Department of Ophthalmology, College of Medicine, King Saud University, P.O. Box 245, Riyadh, 11411, Saudi Arabia
| | - Faisal A Almobarak
- Department of Ophthalmology, College of Medicine, King Saud University, P.O. Box 245, Riyadh, 11411, Saudi Arabia.,Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Al-Obeidan
- Department of Ophthalmology, College of Medicine, King Saud University, P.O. Box 245, Riyadh, 11411, Saudi Arabia.,Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
MicroRNA binding site polymorphism in inflammatory genes associated with colorectal cancer: literature review and bioinformatics analysis. Cancer Gene Ther 2020; 27:739-753. [PMID: 32203060 DOI: 10.1038/s41417-020-0172-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/21/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023]
Abstract
Inflammation, among environmental risk factors, is one of the most important contributors to colorectal cancer (CRC) development. In this way, studies revealed that the incidence of CRC in inflammatory bowel disease patients is up to 60% higher than the general population. MicroRNAs (miRNAs), small noncoding RNA molecules, have attracted excessive attention due to their fundamental role in various aspects of cellular biology, such as inflammation by binding to the 3'-untranslated regions (3'-UTR) of pro and anti-inflammatory genes. Based on multiple previous studies, SNPs at 3'-UTR can affect miRNA recognition elements by changing the thermodynamic features and secondary structure. This effect can be categorized, based on the number of changes, into four groups, including break, decrease, create, and enhance. In this paper, we will focus on functional variants in miRNA binding sites in inflammatory genes, which can modulate the risk of CRC by both investigating previous studies, regarding miRSNPs in inflammatory genes associated with CRC and recruiting in silico prediction algorithms to report putative miRSNPs in 176 inflammatory genes. In our analysis, we achieved 110 miRSNPs in 3'-UTR of 67 genes that seem good targets for future researches.
Collapse
|
6
|
Gholami M, Larijani B, Sharifi F, Hasani‐Ranjbar S, Taslimi R, Bastami M, Atlasi R, Amoli MM. MicroRNA-binding site polymorphisms and risk of colorectal cancer: A systematic review and meta-analysis. Cancer Med 2019; 8:7477-7499. [PMID: 31637880 PMCID: PMC6885874 DOI: 10.1002/cam4.2600] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
Genetic variations in miRNAs binding site might participate in cancer risk. This study aimed to systematically review the association between miRNA-binding site polymorphisms and colorectal cancer (CRC). Electronic literature search was carried out on PubMed, Web of Science (WOS), Scopus, and Embase. All types of observational studies till 30 November 2018 were included. Overall 85 studies (21 SNPs) from two systematic searches were included analysis. The results showed that in the Middle East population, the minor allele of rs731236 was associated with decreased risk of CRC (heterozygote model: 0.76 [0.61-0.95]). The minor allele of rs3025039 was related to increased risk of CRC in East Asian population (allelic model: 1.25 [1.01-1.54]). Results for rs3212986 were significant in overall and subgroup analysis (P < .05). For rs1801157 in subgroup analysis the association was significant in Asian populations (including allelic model: 2.28 [1.11-4.69]). For rs712, subgroup analysis revealed a significant (allelic model: 1.41 [1.23-1.61]) and borderline (allelic model: 0.92 [0.84-1.00]) association in Chinese and Czech populations, respectively. The minor allele of rs17281995 increased risk of CRC in different genetic models (P < .05). Finally, rs5275, rs4648298, and rs61764370 did not show significant associations. In conclusion, minor allele of rs3025039, rs3212986, and rs712 polymorphisms increases the risk of CRC in the East Asian population, and heterozygote model of rs731236 polymorphism shows protective effect in the Middle East population. In Europeans, the minor allele of rs17281995 may increase the risk of CRC, while rs712 may have a protective effect. Further analysis based on population stratifications should be considered in future studies.
Collapse
Affiliation(s)
- Morteza Gholami
- Obesity and Eating Habits Research CenterEndocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
- Endocrinology and Metabolism Research CenterEndocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Bagher Larijani
- Endocrinology and Metabolism Research CenterEndocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Farshad Sharifi
- Elderly Health Research CenterEndocrinology and Metabolism Population Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Shirin Hasani‐Ranjbar
- Obesity and Eating Habits Research CenterEndocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Reza Taslimi
- Department of GastroenterologyImam Khomeini HospitalTehran University of Medical SciencesTehranIran
| | - Milad Bastami
- Department of Medical GeneticsFaculty of MedicineTabriz University of Medical SciencesTabrizIran
| | - Rasha Atlasi
- Evidence Based Practice Research CenterEndocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Mahsa M. Amoli
- Metabolic Disorders Research CenterEndocrinology and Metabolism Molecular‐Cellular Sciences InstituteTehran University of Medical SciencesTehranIran
| |
Collapse
|
7
|
Zhang GL, Pan LL, Huang T, Wang JH. The transcriptome difference between colorectal tumor and normal tissues revealed by single-cell sequencing. J Cancer 2019; 10:5883-5890. [PMID: 31737124 PMCID: PMC6843882 DOI: 10.7150/jca.32267] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/17/2019] [Indexed: 12/29/2022] Open
Abstract
The previous cancer studies were difficult to reproduce since the tumor tissues were analyzed directly. But the tumor tissues were actually a mixture of different cancer cells. The transcriptome of single-cell was much robust than the transcriptome of a mixed tissue. The single-cell transcriptome had much smaller variance. In this study, we analyzed the single-cell transcriptome of 272 colorectal cancer (CRC) epithelial cells and 160 normal epithelial cells and identified 342 discriminative transcripts using advanced machine learning methods. The most discriminative transcripts were LGALS4, PHGR1, C15orf48, HEPACAM2, PERP, FABP1, FCGBP, MT1G, TSPAN1 and CKB. We further clustered the 342 transcripts into two categories. The upregulated transcripts in CRC epithelial cells were significantly enriched in Ribosome, Protein processing in endoplasmic reticulum, Antigen processing and presentation and p53 signaling pathway. The downregulated transcripts in CRC epithelial cells were significantly enriched in Mineral absorption, Aldosterone-regulated sodium reabsorption and Oxidative phosphorylation pathways. The biological analysis of the discriminative transcripts revealed the possible mechanism of colorectal cancer.
Collapse
Affiliation(s)
- Guo-Liang Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| | - Le-Lin Pan
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jin-Hai Wang
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| |
Collapse
|
8
|
D'Almeida O, Mothar O, Bondzie EA, Lieumo Y, Tagne L, Gupta S, Volkert T, Levine S, Tagne JB. Encapsulated miR-200c and Nkx2.1 in a nuclear/mitochondria transcriptional regulatory network of non-metastatic and metastatic lung cancer cells. BMC Cancer 2019; 19:136. [PMID: 30744585 PMCID: PMC6371494 DOI: 10.1186/s12885-019-5337-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/31/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND MicroRNAs are noncoding RNA molecules of ~ 22 nucleotides with diagnostic and therapeutic action [Curr Drug Targets, 2015. 16(12): p. 1381-403], affecting the expression of mRNAs involved in invasion, migration, and development [Oncotarget, 2015. 6(9): p. 6472-98, Cancer Manag Res, 2014. 6: p. 205-16]. miR-200c is part of the miR-200c/141 cluster on chromosome 12p13. Its mechanism of action when encapsulated is critical in lung cancer when patients express changes in miRNAs. miR-200c be a potential biomarkers for various lung diseases. As a potential therapy, miR-200c can impacts lives as target lung cancer is a leading cause of death with about 234,000 cases annually, high heterogeneity, complex screening, and a 5-year survival rate of 16% [CA Cancer J Clin, 2016.66(1): p. 7-30]. Encapsulated miR-200c efficiently enhances bioavailability, pharmacokinetics of therapeutics and targeting to cells, improves efficacy and provides potential cure. METHODS The functions of miR-200c were determined in non-metastatic KW-634 and metastatic 821-T4 and 821-LN mouse lung cancer cell lines after various Nano vehicle treatments. Viability and cytotoxicity were determined by cell cycle and quantitative real-time PCR analyses were used to quantify levels of miR-200c and its target genes. In situ hybridization was used to visualize patterns of expression of miR-200c and others in the lung and many organs. Next-generation sequencing accession number GSE125000, invasion and migration assays using transwell chambers, and ActivSignal were used to elucidate the activation and inhibition profiles and perform direct expression measurements and modification of cellular components. RESULTS Due to their effectiveness as intracellular vesicles transporting miR-200c into, out, and between parts of the cells, miR-200c is encapsulated with cholesterol, an integral part of the biological membranes with very important physical properties of the vehicle. Nano miR-200c showed efficient cellular uptake in KW-634, 821-T4, and 821-LN cells with important changes in gene expression and new isoforms. In KW-634, when treated with encapsulated miR-200c and compare to the non-encapsulated control; miR-29b increased by 5261-fold, and in 821-T4/LN, miR-1247 increased by 150-fold. Conversely, miR-1247 and miR-675 decreased by 348 and 1029.5-fold, respectively. miR-189 decreased by 34-fold in treated 821-T4 cells. A reduction of growth was observed only after 48 h of treatment with Nano miR-200c. Moreover, labeling the vehicle with carboxy-fluorescein showed that the encapsulated particles enter the nucleus and mitochondria. Encapsulated miR-200c by entering the cells, the nucleus and mitochondria, trigger changes in cell cycle phases with 4 up to 12 fold percentage in G2 and S phase respectively compare to miR-200c. Endogenous expression of Nkx2.1, miR-200c, and their targets Myb, Nfib, Six4 and Six1 showed an inverse correlation, as observed in development. CONCLUSIONS Little is known about miR-200c involvement in regulatory processes. Nano miR-200c affects invasion and migration mechanisms. The expression of encapsulated miR-200c contributes to the inhibition/activation of Kras, EMT, Hippo, regulatory pathways and blockers of metastasis. Delivery of miR-200c increases the expression of miR-29b, an EMY regulator, and miR-1247, an inhibitor of cancer genes, both tumor suppressors involved in lung metastasis. Encapsulated miR-200c act on different proteins that regulates cell cycle pathways. These findings represent a part of a regulatory network providing new insights towards improvement of therapy.
Collapse
Affiliation(s)
- Olga D'Almeida
- The Pulmonary Center, Boston University School of Medicine (BUSM), East Concord Street R304, Boston, MA, 02118, USA.,Faculté de Pharmacie, Université D'Auvergne, Clermont Ferrand, France
| | - Omar Mothar
- The Pulmonary Center, Boston University School of Medicine (BUSM), East Concord Street R304, Boston, MA, 02118, USA
| | - Esther Apraku Bondzie
- The Pulmonary Center, Boston University School of Medicine (BUSM), East Concord Street R304, Boston, MA, 02118, USA
| | - Yolande Lieumo
- The Pulmonary Center, Boston University School of Medicine (BUSM), East Concord Street R304, Boston, MA, 02118, USA
| | - Laure Tagne
- The Pulmonary Center, Boston University School of Medicine (BUSM), East Concord Street R304, Boston, MA, 02118, USA
| | - Sumeet Gupta
- Whitehead Institute for Biomedical Research (WIBR), Nine Cambridge Center Cambridge, Cambridge, MA, 02142, USA
| | - Thomas Volkert
- Whitehead Institute for Biomedical Research (WIBR), Nine Cambridge Center Cambridge, Cambridge, MA, 02142, USA
| | - Stuart Levine
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
| | - Jean-Bosco Tagne
- The Pulmonary Center, Boston University School of Medicine (BUSM), East Concord Street R304, Boston, MA, 02118, USA.
| |
Collapse
|
9
|
Wang J, Liang S, Duan X. Molecular mechanism of miR-153 inhibiting migration, invasion and epithelial-mesenchymal transition of breast cancer by regulating transforming growth factor beta (TGF-β) signaling pathway. J Cell Biochem 2018; 120:9539-9546. [PMID: 30525231 DOI: 10.1002/jcb.28230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 11/15/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To investigate the role and mechanism of action of miR-153 in the migration, invasion, and epithelial-mesenchymal transition (EMT) of breast cancer cells. METHODS Quantitative real time polymerase chain reaction (qRT-PCR) was used to detect the expression of miR-153 and transforming growth factor beta receptor 2 (TGFBR2) in tissue specimens and cells. miR-153 overexpression in breast cancer cells was achieved by miR-153 mimic transfection. Mobility and invasiveness of breast cancer cells were evaluated by transwell assay. EMT was evaluated by Western blot detecting the protein level of E-cadherin and Vimentin. Interaction of miR-153 and 3'-untranslated region (UTR) of TGFBR2 messenger RNA (mRNA) was investigated by luciferase reporter assay. RESULTS The expression of miR-153 in breast cancer tissue specimens and MDA-MB-231 cells was significantly lower than that in nonmalignant counterparts, inversely correlating with that of TGFBR2 mRNA. Transfection with miR-153 mimic significantly increased miR-153 level in MDA-MB-231 cells while inhibiting its migration, invasion, and EMT in vitro, which could be mimicked by TGFBR2 knockdown. Luciferase reporter assay confirmed two targets of miR-153 on the 3'-UTR of TGFBR2 mRNA. Restoring TGFBR2 protein level by transient overexpression largely rescued migration, invasion, and EMT of MDA-MB-231 cells that were repressed by miR-153 mimic transfection. CONCLUSION miR-153 inhibits breast cancer cell migration, invasion, and EMT by targeting TGFBR2.
Collapse
Affiliation(s)
- Jingwei Wang
- Department of Breast Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shuhang Liang
- Department of Hepatic Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiuqing Duan
- Department of Breast Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
10
|
Motieghader H, Kouhsar M, Najafi A, Sadeghi B, Masoudi-Nejad A. mRNA-miRNA bipartite network reconstruction to predict prognostic module biomarkers in colorectal cancer stage differentiation. MOLECULAR BIOSYSTEMS 2018; 13:2168-2180. [PMID: 28861579 DOI: 10.1039/c7mb00400a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biomarker detection is one of the most important and challenging problems in cancer studies. Recently, non-coding RNA based biomarkers such as miRNA expression levels have been used for early diagnosis of many cancer types. In this study, a systems biology approach was used to detect novel miRNA based biomarkers for CRC diagnosis in early stages. The mRNA expression data from three CRC stages (Low-grade Intraepithelial Neoplasia (LIN), High-grade Intraepithelial Neoplasia (HIN) and Adenocarcinoma) were used to reconstruct co-expression networks. The networks were clustered to extract co-expression modules and detected low preserved modules among CRC stages. Then, the experimentally validated mRNA-miRNA interaction data were applied to reconstruct three mRNA-miRNA bipartite networks. Twenty miRNAs with the highest degree (hub miRNAs) were selected in each bipartite network to reconstruct three bipartite subnetworks for further analysis. The analysis of these hub miRNAs in the bipartite subnetworks revealed 30 distinct important miRNAs as prognostic markers in CRC stages. There are two novel CRC related miRNAs (hsa-miR-190a-3p and hsa-miR-1277-5p) in these 30 hub miRNAs that have not been previously reported in CRC. Furthermore, a drug-gene interaction network was reconstructed to detect potential candidate drugs for CRC treatment. Our analysis shows that the hub miRNAs in the mRNA-miRNA bipartite network are very essential in CRC progression and should be investigated precisely in future studies. In addition, there are many important target genes in the results that may be critical in CRC progression and can be analyzed as therapeutic targets in future research.
Collapse
Affiliation(s)
- Habib Motieghader
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | | | | | | | | |
Collapse
|
11
|
A phosphorylation-related variant ADD1-rs4963 modifies the risk of colorectal cancer. PLoS One 2015; 10:e0121485. [PMID: 25816007 PMCID: PMC4376805 DOI: 10.1371/journal.pone.0121485] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/02/2015] [Indexed: 11/19/2022] Open
Abstract
It is well-established that abnormal protein phosphorylation could play an essential role in tumorgenesis by disrupting a variety of physiological processes such as cell growth, signal transduction and cell motility. Moreover, increasing numbers of phosphorylation-related variants have been identified in association with cancers. ADD1 (α-adducin), a versatile protein expressed ubiquitously in eukaryotes, exerts an important influence on membrane cytoskeleton, cell proliferation and cell-cell communication. Recently, a missense variant at the codon of ADD1's phosphorylation site, rs4963 (Ser586Cys), was reported to modify the risk of non-cardia gastric cancer. To explore the role of ADD1-rs4963 in colorectal cancer (CRC), we conducted a case-control study with a total of 1054 CRC cases and 1128 matched controls in a Chinese population. After adjustment for variables including age, gender, smoking and drinking, it was demonstrated that this variant significantly conferred susceptibility to CRC (G versus C: OR = 1.16, 95% CI = 1.03-1.31, P = 0.016; CG versus CC: OR = 1.25, 95% CI = 1.02-1.55, P = 0.036; GG versus CC: OR = 1.35, 95% CI = 1.06-1.72, P = 0.015). We further investigated the interaction of ADD1-rs4963 with smoking or drinking exposure, but found no significant result. This study is the first report of an association between ADD1 and CRC risk, promoting our knowledge of the genetics of CRC.
Collapse
|
12
|
MicroRNAs as potential biomarkers in cancer: opportunities and challenges. BIOMED RESEARCH INTERNATIONAL 2015; 2015:125094. [PMID: 25874201 PMCID: PMC4385606 DOI: 10.1155/2015/125094] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/05/2014] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are a group of small noncoding RNAs (ncRNAs) that posttranscriptionally regulate gene expression by targeting their corresponding messenger RNAs (mRNAs). Dysregulated miRNAs have been considered as a new type of ‘‘oncomiRs” or ‘‘tumor suppressors,” playing essential roles in cancer initiation and progression. Using genome-wide detection methods, ubiquitously aberrant expression profiles of miRNAs have been identified in a broad array of human cancers, showing great potential as novel diagnostic and prognostic biomarkers of cancer with high specificity and sensitivity. The detectable miRNAs in tissue, blood, and other body fluids with high stability provide an abundant source for miRNA-based biomarkers in human cancers. Despite the fact that an increasing number of potential miRNA biomarkers have been reported, the transition of miRNAs-based biomarkers from bench to bedside still necessitates addressing several challenges. In this review, we will summarize our current understanding of miRNAs as potential biomarkers in human cancers.
Collapse
|
13
|
Obsteter J, Dovc P, Kunej T. Genetic variability of microRNA regulome in human. Mol Genet Genomic Med 2014; 3:30-9. [PMID: 25629077 PMCID: PMC4299713 DOI: 10.1002/mgg3.110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 07/19/2014] [Accepted: 07/31/2014] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs are currently being extensively studied due to their important role as post-transcriptional regulators. During miRNA biogenesis, precursors undergo two cleavage steps performed by Drosha-DGCR8 (Microprocessor) cleaving of pri-miRNA to produce pre-miRNA and Dicer-mediated cleaving to create mature miRNA. Genetic variants within human miRNA regulome have been shown to influence miRNA expression, target interaction and to affect the phenotype. In this study, we reviewed the literature, existing bioinformatics tools and catalogs associated with polymorphic miRNA regulome, and organized them into four categories: (1) polymorphisms located within miRNA genes (miR-SNPs), (2) transcription factor-binding sites/miRNA regulatory regions (miR-rSNPs), (3) miRNA target sites (miR-TS-SNPs), and 4. miRNA silencing machinery (miR-SM-SNPs). Since the miR-SM-SNPs have not been systematically studied yet, we have collected polymorphisms associated with miRNA silencing machinery. We have developed two catalogs containing genetic variability within: (1) genes encoding three main catalytic components of the silencing machinery, DROSHA, DGCR8, and DICER1; (2) miRNA genes itself, overlapping Drosha and Dicer cleavage sites. The developed resource of polymorphisms is available online (http://www.integratomics-time.com/miRNA-regulome) and will be useful for further functional studies and development of biomarkers associated with diseases and phenotypic traits.
Collapse
Affiliation(s)
- Jana Obsteter
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science Groblje 3, 1230, Domzale, Slovenia
| | - Peter Dovc
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science Groblje 3, 1230, Domzale, Slovenia
| | - Tanja Kunej
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science Groblje 3, 1230, Domzale, Slovenia
| |
Collapse
|