1
|
Wang J, Ma Y, Xu X, Huang G, Zhang R, Jia X, Dong L, Deng M, Zhang M, Huang F. Comparison of different longan polysaccharides during gut Bacteroides fermentation. Food Chem 2024; 461:140840. [PMID: 39154462 DOI: 10.1016/j.foodchem.2024.140840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
The bioactivity of polysaccharide was closely related to its fermentation utilization by gut Bacteroides, and its utilization degree was determined by various gut Bacteroides species and different polysaccharides characteristics. The effects of longan polysaccharide (LP) and LP treated by ultrasonic-assisted hydrogen peroxide for 8 h (DLP-8) on gut Bacteroides growth, and their fermentation utilization were compared. The results of LP and DLP-8 on the proliferation of six Bacteroides species showed that Bacteroides uniformis had the highest proliferation index. In fermentation by B. uniformis, DLP-8 (with a lower molecular weight), the viable count of which was higher than that of LP, was degraded more and especially utilized more glucose and glucuronic acid. The microstructure of the two polysaccharides changed differently during fermentation. Moreover, DLP-8 promoted greater short-chain fatty acids production than LP. These results indicated that the fermentation properties of DLP-8 by B. uniformis were superior to those of LP.
Collapse
Affiliation(s)
- Jidongtian Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Yongxuan Ma
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xiang Xu
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Guitao Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xuchao Jia
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Mei Deng
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; Food Laboratory of Zhongyuan, Luohe 462300, China.
| | - Fei Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| |
Collapse
|
2
|
Sarkhel S, Mondal M, Datta D, Sahoo B, Kumari A, Saha S, Bera S, Jana M, Tiwari A, Roy A. Ultrasonic high-yield extraction of non-toxic fucose-containing Abroma augusta polysaccharide bearing emulsifying properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8858-8868. [PMID: 38988267 DOI: 10.1002/jsfa.13712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND The stem of Abroma augusta contains mucilaginous polysaccharides having numerous ethnomedicinal properties. The present work aimed to develop a scalable ultrasonic-assisted aqueous Abroma augusta mucilage (AAM) extraction (UAE) method and further explores its emulsifying property and toxicity concern. RESULTS The combination of ultrasonic power (750 W), solid-to-liquid ratio (1:15) and temperature (348 K) gave the highest extraction yield of 2.28% with a diffusivity value of 3.85 × 10-9 m2 s-1, which was higher than aqueous extraction method using a kinetic model based on Fick's second law of diffusion. The extracted polysaccharide showed no toxicity as measured through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assay on RAW cell line. Additionally, the polysaccharide over its critical micelle concentration (400, 500, 600 and 700 μg mL-1) offered emulsifying properties with 0.5%, 1% and 5% oil (v/v). The emulsion with a polysaccharide concentration of 600 μg mL-1 with 5% oil (v/v) provides stability against coalescence for 3 days. CONCLUSION The overall findings indicated that UAE of AAM polysaccharide can be used for an efficient extraction method, and the obtained polysaccharide is nontoxic in nature and bears emulsifying properties. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shubhajit Sarkhel
- Laboratory of Applied Food Chemistry, Microbiology, and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi, India
| | - Mrinmoy Mondal
- Membrane Science and Separation Technology Division, GB Marg, CSIR - Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
| | - Deepanwita Datta
- Laboratory of Applied Food Chemistry, Microbiology, and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi, India
| | - Bijendra Sahoo
- Laboratory of Applied Food Chemistry, Microbiology, and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi, India
| | - Ankanksha Kumari
- Laboratory of Applied Food Chemistry, Microbiology, and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi, India
| | - Sreyajit Saha
- Laboratory of Applied Food Chemistry, Microbiology, and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi, India
| | - Sandipan Bera
- Laboratory of Applied Food Chemistry, Microbiology, and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi, India
| | - Malabendu Jana
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Amit Tiwari
- Laboratory of Applied Food Chemistry, Microbiology, and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi, India
| | - Anupam Roy
- Laboratory of Applied Food Chemistry, Microbiology, and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi, India
| |
Collapse
|
3
|
Zeng S, Wang K, Liu X, Hu Z, Zhao L. Potential of longan (Dimocarpus longan Lour.) in functional food: A review of molecular mechanism-directing health benefit properties. Food Chem 2024; 437:137812. [PMID: 37897820 DOI: 10.1016/j.foodchem.2023.137812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Longan (Dimocarpus longan Lour.) has received widespread attention worldwide as a therapeutic food with nutritional, economic, and medicinal value. Its fruit, seed, pericarp, and flower becoming dietary tools for health maintenance when it comes to targeting chronic diseases or sub-health conditions. In recent years, research focusing on longan and human health has intensified, and the high-value products of the whole fruit, including polyphenols, polysaccharides, angiotensin-I-converting enzyme (ACE)-inhibiting peptides, gamma-aminobutyric acid (GABA), and Maillard reaction products etc., may have beneficial effects on human health by preventing the onset of chronic diseases and cancer, maintaining intestinal homeostasis and skin health. Here, we review and summarize the new available evidence on the bioactive role of phytochemicals in longan and explore the relationship between longan bioactive compounds and health benefits, with a focus on the molecular mechanisms of the health effects.
Collapse
Affiliation(s)
- Shiai Zeng
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China; College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China; College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China; College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China; College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Cheng SM, Kumar VB, Wu LY, Chang HC, Kuo CH, Wei LS, Lin YM, Padma VV, Lee SD, Huang CY. Anti-apoptotic and pro-survival effects of longan flower extracts on rat hearts with fructose-induced metabolic syndrome. ENVIRONMENTAL TOXICOLOGY 2021; 36:1021-1030. [PMID: 33475235 DOI: 10.1002/tox.23101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 01/02/2021] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
The aim of this study was to investigate the effects of longan flower (LF) water extract on cardiac apoptotic and survival pathways in rat models of fructose-induced metabolic syndrome. The study findings revealed that the levels of glucose, insulin, triglyceride, and cholesterol and TUNEL-positive apoptotic cells were significantly increased in the HF group compared with the control group; whereas, the levels were decreased in the HFLF group. The expressions of Fas, FADD, and activated caspases 8 and 3, as well as the expressions of Bax, Bak, Bax/Bcl-2, Bak/Bcl-xL, cytosolic cytochrome c, and activated caspases 9 and 3 were increased in the HF group were significantly reversed in HFLF administrated group. Furthermore, LF extract increased IGF-1R, p-PI3K, p-Akt, Bcl-2, and Bcl-xL expression compared to HF group. Taken together, the present findings help identify LF as a potential cardioprotective agent that can be effectively used in treating fructose-induced metabolic syndrome.
Collapse
Affiliation(s)
- Shiu-Min Cheng
- Department of Long Term Care, National Quemoy University, Kinmen County, Taiwan
| | - V Bharath Kumar
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Liang-Yi Wu
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Hsiao-Chuan Chang
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, Taipei Physical Education College, Taipei, Taiwan
| | - Li-Shan Wei
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Yueh-Min Lin
- Department of pathology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - V Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Shin-Da Lee
- Department of Physical Therapy, Asia University, Taichung, Taiwan
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Cardiovascular and Mitochondria Related Diseases Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
5
|
Mohan K, Muralisankar T, Uthayakumar V, Chandirasekar R, Revathi N, Ramu Ganesan A, Velmurugan K, Sathishkumar P, Jayakumar R, Seedevi P. Trends in the extraction, purification, characterisation and biological activities of polysaccharides from tropical and sub-tropical fruits - A comprehensive review. Carbohydr Polym 2020; 238:116185. [PMID: 32299552 DOI: 10.1016/j.carbpol.2020.116185] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/06/2020] [Accepted: 03/14/2020] [Indexed: 01/04/2023]
Abstract
Tropical and sub-tropical fruits are tremendous sources of polysaccharides (PSs), which are of great interest in the human welfare system as natural medicines, food and cosmetics. This review paper aims to highlight the recent trends in extraction (conventional and non-conventional), purification and analytic techniques of fruit polysaccharides (FPSs). The chemical structure and biological activities, such as immunomodulatory, anti-cancer, anti-oxidant, anti-inflammatory, anti-viral, anti-coagulant and anti-diabetic effects, of PSs extracted from 53 various fruits were compared and discussed. With this wide coverage, a total of 172 scientific articles were reviewed and discussed. This comprehensive survey from previous studies suggests that the FPSs are non-toxic and highly biocompatible. In addition, this review highlights that FPSs might be excellent functional foods as well as effective therapeutic drugs. Finally, the future research advances of FPSs are also described. The content of this review will promote human wellness-based food product development in the future.
Collapse
Affiliation(s)
- Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu, 638 316, India.
| | - Thirunavukkarasu Muralisankar
- Aquatic Ecology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | | | | | - Nagarajan Revathi
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu, 638 316, India
| | - Abirami Ramu Ganesan
- School of Applied Sciences, College of Engineering, Science and Technology (CEST), Fiji National University, 5529, Fiji
| | - Kalamani Velmurugan
- Department of Zoology, Kongunadu Arts and Science College, Coimbatore, Tamil Nadu, 641029, India
| | - Palanivel Sathishkumar
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, PR China
| | - Rajarajeswaran Jayakumar
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Palaniappan Seedevi
- Department of Environmental Science, Periyar University, Salem, Tamil Nadu, 636011, India
| |
Collapse
|
6
|
Polyphenols and Alkaloids in Byproducts of Longan Fruits ( Dimocarpus Longan Lour.) and Their Bioactivities. Molecules 2019; 24:molecules24061186. [PMID: 30917573 PMCID: PMC6471414 DOI: 10.3390/molecules24061186] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 12/30/2022] Open
Abstract
The longan industry produces a large amount of byproducts such as pericarp and seed, resulting in environmental pollution and resource wastage. The present study was performed to systematically evaluate functional components, i.e., polyphenols (phenolics and flavonoids) and alkaloids, in longan byproducts and their bioactivities, including antioxidant activities, nitrite scavenging activities in simulated gastric fluid and anti-hyperglycemic activities in vitro. Total phenolic and total flavonoid contents in pericarp were slightly higher than those in seeds, but seeds possessed higher alkaloid content than pericarp. Four polyphenolic substances, i.e., gallic acid, ethyl gallate, corilagin and ellagic acid, were identified and quantified using high-performance liquid chromatography. Among these polyphenolic components, corilagin was the major one in both pericarp and seed. Alkaloid extract in seed showed the highest DPPH radical scavenging activity and oxygen radical absorbance capacity. Nitrite scavenging activities were improved with extract concentration and reaction time increasing. Flavonoids in seed and alkaloids in pericarp had potential to be developed as anti-hyperglycemic agents. The research result was a good reference for exploring longan byproducts into various valuable health-care products.
Collapse
|
7
|
Zeng P, Li J, Chen Y, Zhang L. The structures and biological functions of polysaccharides from traditional Chinese herbs. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 163:423-444. [PMID: 31030757 PMCID: PMC7102684 DOI: 10.1016/bs.pmbts.2019.03.003] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Most of traditional Chinese medicine substances come from herbal plants. The medicinal quality of herbal plants varies with the locations of cultivation, the parts of the herb collected, the season of the herb collected, and the herb processing method. Polysaccharides are major components of the herb plants and their biosynthesis is partly controlled by the genes but mostly influenced by the availability of the nutrition and determined by the various environmental factors. In recent decades, polysaccharides isolated from different kinds of Chinese herbs have received much attention due to their important biological activities, such as anti-tumor, anti-oxidant, anti-diabetic, radiation protecting, antiviral, hypolipidemic, and immunomodulatory activities. Interestingly, different batches of the same herb can obtain different polysaccharide fractions with subtle differences in molecular weight, monosaccharide compositions, glycosidic linkages, and biological functions. Even with these variations, a large number of bioactive polysaccharides from different kinds of traditional Chinese herbs have been purified, characterized, and reported. This review provides a comprehensive summary of the latest polysaccharide extraction methods and the strategies used for monosaccharide compositional analysis plus polysaccharide structural characterization. Most importantly, the reported chemical characteristics and biological activities of the polysaccharides from the famous traditional Chinese herbs including Astragalus membranaceus, Ginseng, Lycium barbarum, Angelica sinensis, Cordyceps sinensis, and Ophiopogon japonicus will be reviewed and discussed. The published studies provide evidence that polysaccharides from traditional Chinese herbs play an important role in their medical applications, which forms the basis for future research, development, and application of these polysaccharides as functional foods and therapeutics in modern medicine.
Collapse
Affiliation(s)
- Pengjiao Zeng
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China,Corresponding authors:
| | - Juan Li
- Department of Medical Records, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yulong Chen
- Department of Gynecology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China,Corresponding authors:
| |
Collapse
|
8
|
Liu YH, Mou X, Zhou DY, Zhou DY, Shou CM. Extraction of flavonoids from Chrysanthemum morifolium and antitumor activity in vitro. Exp Ther Med 2017; 15:1203-1210. [PMID: 29399116 PMCID: PMC5774524 DOI: 10.3892/etm.2017.5574] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 05/11/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to optimize flavonoid extraction from Chrysanthemum morifolium and to study the antitumor effects of flavonoids on human gastric cancer MKN45 cells in vitro. A single factor experiment was designed and the extraction process was optimized using an orthogonal test. MKN45 cells were treated with different concentrations of flavonoid from Chrysanthemum morifolium for 24 and 48 h and the inhibitory effect on the MKN45 cells was evaluated using an MTT assay. Following staining with Annexin V-fluorescein isothiocyanate/propidium iodide, flow cytometry was performed. The optimized flavonoid extraction conditions were as follows: Duration of ultrasonic treatment: 35 min; ethanol concentration: 75%; extraction temperature: 80°Cand liquid-to-solid ratio 25: 1. Under the above conditions, the extraction rate of flavonoids was 5.24%. When compared with a blank control group, flavonoids extracted from Chrysanthemum morifolium inhibited the proliferation of MKN45 cells in a dose- and time-dependent manner. Furthermore, in cell groups treated with low, moderate and high concentrations of flavonoid, it was observed that the proportion of apoptotic cells increased in a dose-dependent manner. The extraction process optimized by the orthogonal test achieved a high yield and satisfactory extraction efficiency. Additionally, the experiment demonstrated that flavonoids from Chrysanthemum morifolium inhibited the growth of MKN45 cells and induced their apoptosis. Thus, flavonoids from Chrysanthemum morifolium exerted antitumor effects on MKN45 cells, which may be exploited as a potential antitumor therapeutic for gastric cancer.
Collapse
Affiliation(s)
- Ying-Hui Liu
- Department of Endocrinology, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, Zhejiang 310003, P.R. China
| | - Xin Mou
- Department of Endocrinology, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, Zhejiang 310003, P.R. China
| | - Di-Yi Zhou
- Department of Endocrinology, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, Zhejiang 310003, P.R. China
| | - Dan-Yang Zhou
- Department of Endocrinology, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, Zhejiang 310003, P.R. China
| | - Cheng-Min Shou
- Department of Endocrinology, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
9
|
Composition of polysaccharides fromAlectryon tomentosusF. Muell. leaves with potential cytotoxic and antimicrobial activities. STARCH-STARKE 2016. [DOI: 10.1002/star.201500317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Jiao R, Liu Y, Gao H, Xiao J, So KF. The Anti-Oxidant and Antitumor Properties of Plant Polysaccharides. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:463-488. [DOI: 10.1142/s0192415x16500269] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Oxidative stress has been increasingly recognized as a major contributing factor in a variety of human diseases, from inflammation to cancer. Although certain parts of signaling pathways are still under investigation, detailed molecular mechanisms for the induction of diseases have been elucidated, especially the link between excessive oxygen reactive species (ROS) damage and tumorigenesis. Emerging evidence suggests anti-oxidant therapy can play a key role in treating those diseases. Among potential drug resources, plant polysaccharides are natural anti-oxidant constituents important for human health because of their long history in ethnopharmacology, wide availability and few side effects upon consumption. Plant polysaccharides have been shown to possess anti-oxidant, anti-inflammation, cell viability promotion, immune-regulation and antitumor functions in a number of disease models, both in laboratory studies and in the clinic. In this paper, we reviewed the research progress of signaling pathways involved in the initiation and progression of oxidative stress- and cancer-related diseases in humans. The natural sources, structural properties and biological actions of several common plant polysaccharides, including Lycium barbarum, Ginseng, Zizyphus Jujuba, Astragalus lentiginosus, and Ginkgo biloba are discussed in detail, with emphasis on their signaling pathways. All of the mentioned common plant polysaccharides have great potential to treat oxidative stress and cancinogenic disorders in cell models, animal disease models and clinical cases. ROS-centered pathways (e.g. mitochondrial autophagy, MAPK and JNK) and transcription factor-related pathways (e.g. NF-[Formula: see text]B and HIF) are frequently utilized by these polysaccharides with or without the further involvement of inflammatory and death receptor pathways. Some of the polysaccharides may also influence tumorigenic pathways, such as Wnt and p53 to play their anti-tumor roles. In addition, current problems and future directions for the application of those plant polysaccharides are also listed and discussed.
Collapse
Affiliation(s)
- Rui Jiao
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Yingxia Liu
- State Key Discipline of Infectious Diseases, Department of Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Jia Xiao
- Department of Immunobiology, Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
- State Key Discipline of Infectious Diseases, Department of Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, China
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kwok Fai So
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- GMH Institute of Central Nervous System Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
11
|
Jiang S, Qiu L, Li Y, Li L, Wang X, Liu Z, Guo Y, Wang H. Effects of Marsdenia tenacissima polysaccharide on the immune regulation and tumor growth in H22 tumor-bearing mice. Carbohydr Polym 2015; 137:52-58. [PMID: 26686104 DOI: 10.1016/j.carbpol.2015.10.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 10/05/2015] [Accepted: 10/15/2015] [Indexed: 01/10/2023]
Abstract
One water-soluble polysaccharide (Marsdenia tenacissima polysaccharide, MTP), with an average molecular weight of 4.9 × 10(4) Da, was isolated from the dried rattan of M. tenacissima. MTP contained 93.8% carbohydrates, 5.6% proteins and 21.3% uronic acid, and were composed of arabinose, mannose, galactose, xylose, glucuronic acid at a molar ratio of 9.1, 17.7, 30.2, 22.4 and 20.6. The experiments on the animals showed that MTP could increase the serum hemolysin, promote the formation of antibody-forming cells and improve the phagocytosis of mononuclear macrophage in normal mice. Meanwhile, MTP could also inhibit the growth of tumor in H22 tumor-bearing mice dose-dependently, and increase the spleen index, thymus index and serum albumin level in the mice. In addition, MTP could elevate the serum level of TNF-α and IL-2, increase the activity of GSH-Px, CAT and SOD in the liver tissue, and reduce the content of VEGF and MDA. These results suggest that MTP can regulate the immune function in mice and suppress the growth of tumor in H22 tumor-bearing mice, and its antitumor activity may be related to its antioxidant and immunomodulatory effects.
Collapse
Affiliation(s)
- Shuang Jiang
- College of Basic Medical Sciences, Changchun University of Chinese Medicine, Changchun 130117, Jilin, PR China.
| | - Limin Qiu
- Qianwei Hospital, Changchun 130021, Jilin, PR China
| | - Yiquan Li
- Animal Science and Technology College, Jilin Agricultural University, Changchun 130117, Jilin, PR China
| | - Lu Li
- College of Basic Medical Sciences, Changchun University of Chinese Medicine, Changchun 130117, Jilin, PR China
| | - Xingyun Wang
- College of Basic Medical Sciences, Changchun University of Chinese Medicine, Changchun 130117, Jilin, PR China
| | - Zhi Liu
- College of Basic Medical Sciences, Changchun University of Chinese Medicine, Changchun 130117, Jilin, PR China
| | - Yan Guo
- College of Basic Medical Sciences, Changchun University of Chinese Medicine, Changchun 130117, Jilin, PR China
| | - Haotian Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, Jilin, PR China.
| |
Collapse
|
12
|
A polysaccharide from the alkaline extract of Glycyrrhiza inflata induces apoptosis of human oral cancer SCC-25 cells via mitochondrial pathway. Tumour Biol 2015; 36:6781-8. [DOI: 10.1007/s13277-015-3359-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/18/2015] [Indexed: 11/27/2022] Open
|
13
|
Rheological Properties of Polysaccharides from Longan (Dimocarpus longanLour.) Fruit. INT J POLYM SCI 2015. [DOI: 10.1155/2015/168064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Longan polysaccharide (LP) was extracted from longan (Dimocarpus longanLour.) pulp. The composition and rheological properties were determined by chemical analysis and dynamic shear rheometer. The flow behavior and viscoelastic behavior of longan polysaccharide (LP) solution were investigated by steady shear and small amplitude oscillatory shear (SAOS) experiments, respectively. The result shows that the solution is a pseudoplastic flow in a range of shear rate (1–100 s−1). The rheological behavior of LP was influenced by cations such as Na+and Ca2+. With an increase of apparent viscosity,G′andG′′were accompanied by addition of Na+and Ca2+.
Collapse
|