1
|
Zhou J, Zhou D, Zhang Q, Zhang X, Liu X, Ding L, Wen J, Xu X, Cheng Z. DCLK1 mediated cooperative acceleration of EMT by avian leukosis virus subgroup J and Marek's disease virus via the Wnt/β-catenin pathway promotes tumor metastasis. J Virol 2024:e0111224. [PMID: 39445786 DOI: 10.1128/jvi.01112-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Co-infection with oncogenic retrovirus and herpesvirus significantly facilitates tumor metastasis in human and animals. Co-infection with avian leukosis virus subgroup J (ALV-J) and Marek's disease virus (MDV), which are typical oncogenic retrovirus and herpesvirus, respectively, leads to enhanced oncogenicity and accelerated tumor formation, resulting in increased mortality of affected chickens. Previously, we found that ALV-J and MDV cooperatively promoted tumor metastasis. However, the molecular mechanism remains elusive. Here, we found that doublecortin-like kinase 1 (DCLK1) mediated cooperative acceleration of epithelial-mesenchymal transition (EMT) by ALV-J and MDV promoted tumor metastasis. Mechanistically, DCLK1 induced EMT via activating Wnt/β-catenin pathway by interacting with β-catenin, thereby cooperatively promoting tumor metastasis. Initially, we screened and found that DCLK1 was a potential mediator for the cooperative activation of EMT by ALV-J and MDV, and enhanced cell proliferation, migration, and invasion. Subsequently, we revealed that DCLK1 physically interacted with β-catenin to promote the formation of the β-catenin-TCF4 complex, inducing transcription of the Wnt target gene, c-Myc, promoting EMT by increasing the expression of N-cadherin, Vimentin, and Snail, and decreasing the expression of E-cadherin. Taken together, we discovered that jointly activated DCLK1 by ALV-J and MDV accelerated cell proliferation, migration and invasion, and ultimately activated EMT, paving the way for tumor metastasis. This study elucidated the molecular mechanism underlying cooperative metastasis induced by co-infection with retrovirus and herpesvirus. IMPORTANCE Tumor metastasis, a complex phenomenon in which tumor cells spread to new organs, is one of the greatest challenges in cancer research and is the leading cause of cancer-induced death. Numerous studies have shown that oncoviruses and their encoded proteins significantly affect metastasis, especially the EMT process. ALV-J and MDV are classic tumorigenic retrovirus and herpesvirus, respectively. We found that ALV-J and MDV synergistically promoted EMT. Further, we identified the tumor stem cell marker DCLK1 in ALV-J and MDV co-infected cells. DCLK1 directly interacted with β-catenin, promoting the formation of the β-catenin-TCF4 complex. This interaction activated the Wnt/β-catenin pathway, thereby inducing EMT and paving the way for synergistic tumor metastasis. Exploring the molecular mechanisms by which ALV-J and MDV cooperate during EMT will contribute to our understanding of tumor progression and metastasis. This study provides new insights into the cooperative induced tumor metastasis by retroviruses and herpesviruses.
Collapse
Affiliation(s)
- Jing Zhou
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Defang Zhou
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Qian Zhang
- Department of Neurology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Xinyue Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Xiaoyang Liu
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Longying Ding
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Jing Wen
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Xiaoyu Xu
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
2
|
Safizadeh B, Sadeh M, Robati AK, Riahi T, Tavakoli-Yaraki M. Assessment of the circulating levels of immune system checkpoint selected biomarkers in patients with lung cancer. Mol Biol Rep 2024; 51:1036. [PMID: 39361074 DOI: 10.1007/s11033-024-09971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Lung cancer is recognized as one of the leading causes of cancer-related deaths globally, with a significant increase in incidence and intricate pathogenic mechanisms. This study examines the expression profiles of Programmed Cell Death Protein 1 (PD-1), PD-1 ligand (PDL-1), β-catenin, CD44, interleukin 6 (IL-6), and interleukin 10 (IL-10), as well as their correlations with the clinic-pathological features and diagnostic significance in lung cancer patients. METHODS AND RESULTS The research involved lung cancer patients exhibiting various pathological characteristics, alongside demographically matched healthy controls. The expression levels of PD-1, PDL-1, β-catenin, and CD44 were analyzed using Real-Time PCR, while circulating levels of IL-6 and IL-10 were assessed through ELISA assays. This investigation focused on peripheral blood mononuclear cells (PBMC) to evaluate these factors non-invasively. Findings indicated that levels of PD-1, PDL-1, and CD44 were significantly elevated in patients compared to controls, which coincided with a decrease in β-catenin levels. Additionally, a concurrent rise in IL-6 and IL-10, both pro-inflammatory cytokines, was observed in patients, suggesting a potential regulatory role for these cytokines on the PD-1/PDL-1 axis, which may help tumors evade immune system checkpoints. The predictive value of these factors concerning lung tumors and metastasis was significant (Regression analysis). Furthermore, these markers demonstrated diagnostic potential in differentiating between patients and healthy controls, as well as between individuals with metastatic and non-metastatic tumors (ROC curve analysis). CONCLUSIONS This study provides insights into the expression profiles of PD-1/PDL-1 immune system checkpoints and their regulatory factors in lung cancer, potentially paving the way for new therapeutic and diagnostic approaches.
Collapse
Affiliation(s)
- Banafsheh Safizadeh
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Maryam Sadeh
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Karami Robati
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Taghi Riahi
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran.
| |
Collapse
|
3
|
Mehdawi LM, Ghatak S, Chakraborty P, Sjölander A, Andersson T. LGR5 Expression Predicting Poor Prognosis Is Negatively Correlated with WNT5A in Colon Cancer. Cells 2023; 12:2658. [PMID: 37998393 PMCID: PMC10670301 DOI: 10.3390/cells12222658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/05/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
WNT/β-catenin signaling is essential for colon cancer development and progression. WNT5A (ligand of non-canonical WNT signaling) and its mimicking peptide Foxy5 impair β-catenin signaling in colon cancer cells via unknown mechanisms. Therefore, we investigated whether and how WNT5A signaling affects two promoters of β-catenin signaling: the LGR5 receptor and its ligand RSPO3, as well as β-catenin activity and its target gene VEGFA. Protein and gene expression in colon cancer cohorts were analyzed by immunohistochemistry and qRT-PCR, respectively. Three colon cancer cell lines were used for in vitro and one cell line for in vivo experiments and results were analyzed by Western blotting, RT-PCR, clonogenic and sphere formation assays, immunofluorescence, and immunohistochemistry. Expression of WNT5A (a tumor suppressor) negatively correlated with that of LGR5/RSPO3 (tumor promoters) in colon cancer cohorts. Experimentally, WNT5A signaling suppressed β-catenin activity, LGR5, RSPO3, and VEGFA expression, and colony and spheroid formations. Since β-catenin signaling promotes colon cancer stemness, we explored how WNT5A expression is related to that of the cancer stem cell marker DCLK1. DCLK1 expression was negatively correlated with WNT5A expression in colon cancer cohorts and was experimentally reduced by WNT5A signaling. Thus, WNT5A and Foxy5 decrease LGR5/RSPO3 expression and β-catenin activity. This inhibits stemness and VEGFA expression, suggesting novel treatment strategies for the drug candidate Foxy5 in the handling of colon cancer patients.
Collapse
Affiliation(s)
| | | | | | | | - Tommy Andersson
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, SE 214 28 Malmö, Sweden; (S.G.); (P.C.); (A.S.)
| |
Collapse
|
4
|
Carli ALE, Hardy JM, Hoblos H, Ernst M, Lucet IS, Buchert M. Structure-Guided Prediction of the Functional Impact of DCLK1 Mutations on Tumorigenesis. Biomedicines 2023; 11:biomedicines11030990. [PMID: 36979969 PMCID: PMC10046695 DOI: 10.3390/biomedicines11030990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Doublecortin-like kinase 1 (DCLK1) is a functional serine/threonine (S/T)-kinase and a member of the doublecortin family of proteins which are characterized by their ability to bind to microtubules (MTs). DCLK1 is a proposed cancer driver gene, and its upregulation is associated with poor overall survival in several solid cancer types. However, how DCLK1 associates with MTs and how its kinase function contributes to pro-tumorigenic processes is poorly understood. This review builds on structural models to propose not only the specific functions of the domains but also attempts to predict the impact of individual somatic missense mutations on DCLK1 functions. Somatic missense mutations in DCLK1 are most frequently located within the N-terminal MT binding region and likely impact on the ability of DCLK1 to bind to αβ-tubulin and to polymerize and stabilize MTs. Moreover, the MT binding affinity of DCLK1 is negatively regulated by its auto-phosphorylation, and therefore mutations that affect kinase activity are predicted to indirectly alter MT dynamics. The emerging picture portrays DCLK1 as an MT-associated protein whose interactions with tubulin heterodimers and MTs are tightly controlled processes which, when disrupted, may confer pro-tumorigenic properties.
Collapse
Affiliation(s)
- Annalisa L E Carli
- Cancer Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Joshua M Hardy
- ACRF Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Hanadi Hoblos
- ACRF Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Matthias Ernst
- Cancer Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Isabelle S Lucet
- ACRF Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael Buchert
- Cancer Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
5
|
Kalantari E, Razmi M, Tajik F, Asadi-Lari M, Ghods R, Madjd Z. Oncogenic functions and clinical significances of DCLK1 isoforms in colorectal cancer: a systematic review and meta-analysis. Cancer Cell Int 2022; 22:217. [PMID: 35717205 PMCID: PMC9206744 DOI: 10.1186/s12935-022-02632-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/06/2022] [Indexed: 12/24/2022] Open
Abstract
Background The oncogenic role of doublecortin-like kinase 1 (DCLK1) as a putative cancer stem cell (CSC) marker has been clarified in colorectal cancer (CRC). Isoform-specific functions of DCLK1 have shed new light on different functions of DCLK1 short (DCLK1-S) and DCLK1 long (DCLK1-L) isoforms in tumor initiation, growth, and metastasis. Therefore, the current systematic review and meta-analysis aimed to review the available in vitro, in vivo, and clinical evidence on the oncogenic roles and clinical significance of DCLK1 isoforms in colorectal cancer. Methods The literature databases of PubMed, Scopus, ISI Web of Science, and Embase were searched to identify eligible articles. The description characteristics of in vitro and pre-clinical studies were extracted from identified reports. In addition, hazard ratios (HRs) or odds ratios (ORs) with 95% confidence intervals (CIs) were recorded to determine the relationships between DCLK1-L and DCLK1-S expression and prognostic outcomes in patients with CRC. Results Both in vitro and in vivo evidence have emphasized the potential oncogenic functions of DCLK1 in tumor initiation, self-renewal ability, tumor invasion, epithelial-mesenchymal transition (EMT), and metastasis. However, the anti-DCLK1 antibodies generally utilized in these studies could detect sequence homology epitopes of both isoforms. Recent limited isoform-specific evidence has strongly supported the significant positive expression and rather oncogenic efficacy of DCLK1-S in tumorigenesis, EMT, and invasion compared with DCLK1-L in human CRC cell lines. Our meta-analysis findings of limited clinical studies indicated that only overexpression of DCLK1-S is associated with worse overall survival (OS) (HR = 7.930, 95% CI 2.252–27.924, p = 0.001). Increased expression of both DCLK1-S (HR = 1.610, 95% CI 1.020–2.541, p = 0.041) and DCLK1-L (HR = 5.890, 95% CI 1.219–28.453, p = 0.027) isoforms was closely associated with worse DSS/CSS in CRC patients. Furthermore, the high expression of DCLK1-S was found to be associated with poor DFS/RFS/PFS (HR = 1.913, 95% CI 1.230–2.973, p = 0.004). Conclusions The current findings strongly supported that the DCLK1-S isoform may play a crucial role in the invasion, aggressive tumor behavior, and worsened survival outcomes of CRC patients. However, further critical investigations related to the potential preclinical and clinical utilities of DCLK1-S as a specific CRC-CSC marker are warranted. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02632-9.
Collapse
Affiliation(s)
- Elham Kalantari
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mahdieh Razmi
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mohsen Asadi-Lari
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran. .,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran. .,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
6
|
Interaction between avian leukosis virus subgroup J surface protein and doublecortin-like kinase 1 accelerates cell proliferation and epithelial-mesenchymal transition. J Virol 2022; 96:e0165721. [PMID: 35080427 DOI: 10.1128/jvi.01657-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) induces myelocytomas, which can metastasize to multiple organs in diseased chicken. Although metastasis is the primary cause of death in such cases, the mechanism for it remains unclear. Here, we found that interaction between ALV-J surface protein (SU) and doublecortin-like kinase 1 (DCLK1) promotes epithelial-mesenchymal transition (EMT) and cell proliferation. We found that ALV-J can activate EMT in infected cells. Subsequently, proteomics analysis revealed that DCLK1, a well-established putative tumor stem cell marker, which is highly expressed in ALV-J-infected DF-1 cells and chickens, might be a potential factor mediating EMT. Furthermore, using immunofluorescence and immunoprecipitation, we verified that SU interacts with DCLK1. Functional studies suggested that overexpression of DCLK1 increased viral replication, and promoted cell proliferation by accelerating the progression of cells from the G0/G1 phase to the S phase of cell cycle, whereas RNA-interference of DCLK1 reduced viral replication and arrested cell proliferation by retarding cell cycle progression from the late G1 phase into the S phase in ALV-J-infected cells. Moreover, we demonstrate that the increased accumulation of DCLK1 promotes EMT by increasing the expression of N-cadherin, vimentin, MMP2, transcription factor Snail1, and decreasing the expression of epithelial marker E-cadherin. These results suggest that ALV-J SU interacts with DCLK1, and accelerates cell proliferation, leading to increased viral replication, and ultimately activating EMT, which paves the way for tumor metastasis. IMPORTANCE Tumor metastasis is a major challenge in cancer research, because of its systemic nature and the resistance of disseminated tumor cells to existing therapeutic agents. It is estimated that >90% of mortality from cancer is attributable to metastases. We found that ALV-J can activate EMT, which plays a critical role in cancer metastasis. Subsequently, we identified a tumor stem cell marker, DCLK1, in ALV-J infected cells, which interacts with surface protein (SU) of ALV-J to promote virus replication, activate EMT, and accelerate cell proliferation enabling ALV-J to obtain metastatic ability. Understanding the process of participation of ALV-J in EMT and the route of metastasis will help elucidate the mechanism of virus-induced tumor metastasis, and help identify promising molecular targets and key obstacles for ALV-J control and clinical technology development.
Collapse
|
7
|
Kalantari E, Ghods R, Zanjani LS, Rahimi M, Eini L, Razmi M, Asadi-Lari M, Madjd Z. Cytoplasmic expression of DCLK1-S, a novel DCLK1 isoform, is associated with tumor aggressiveness and worse disease-specific survival in colorectal cancer. Cancer Biomark 2021; 33:277-289. [DOI: 10.3233/cbm-210330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND: Isoform-specific function of doublecortin-like kinase 1 (DCLK1) has highlighted the key role of the DCLK1-S (short isoform) in the maintenance, progression, and invasion of the tumor. OBJECTIVE: This study was designed to produce an anti-DCLK1-S polyclonal antibody to evaluate DCLK1-S in human colorectal cancer (CRC) specifically. METHODS: The expression pattern and clinical significance of DCLK1-S were assessed in a well-defined tissue microarray (TMA) series of 348 CRC and 51 adjacent normal tissues during a follow-up period of 108 months. RESULTS: Expression of DCLK1-S was significantly higher in CRC samples compared to adjacent normal samples (P< 0.001). Cytoplasmic expression of DCLK1-S was significantly higher in the tumors at the advanced stage of cancer and with poorer differentiation (P< 0.001, P= 0.02). The patients with CRC whose tumors showed higher cytoplasmic expression of DCLK1-S had worse disease-specific survival (DSS) (log-rank test, P= 0.03) and 5-year DSS rates (P= 0.01). Additionally, an improved prognostic value was observed in the patients with CRC with high DCLK1-S expression vs. its moderate expression (HR: 2.70, 95% CI: 0.98–7.38; p= 0.04) by multivariate analysis. CONCLUSIONS: Our findings strongly supported that high cytoplasmic expression of DCLK1-S compared to its moderate expression could be considered an independent prognostic factor influencing DSS.
Collapse
Affiliation(s)
- Elham Kalantari
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Mandana Rahimi
- Hasheminejad Kidney Center, Pathology Department, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Leila Eini
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Division of Histology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahdieh Razmi
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mohsen Asadi-Lari
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
8
|
Mansoori M, Abdi Rad I, Mirzaei A, Tam KJ, Mohsen Hosseini S, Mahmodlu R, Mansouri F, Saeednejad Zanjani L, Madjd Z. Does GD2 synthase (GD2S) detect cancer stem cells in blood samples of breast carcinomas? J Appl Biomed 2021; 19:181-189. [PMID: 34907737 DOI: 10.32725/jab.2021.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 09/03/2021] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Cancer stem cells (CSCs) are a theorized subset of cells within the tumor that is thought to drive disease recurrence and metastatic spread. The aim of this study is to investigate mRNA and protein levels of ganglioside GD2 synthase (GD2S), in breast cancer (BC) patients. METHODS 65 PBMCs of preoperative BC patients without chemotherapy were compared to PBMCs after chemotherapy and controls. RESULTS GD2S were significantly higher in BC patients after chemotherapy compared to pre-chemotherapy at both mRNA and protein. GD2S was higher in pre-chemotherapy blood samples compared to control samples. CONCLUSIONS Higher expression of GD2S in BC samples compared to healthy control indicates the potential utility of GD2S as a marker of malignancy.
Collapse
Affiliation(s)
- Maryam Mansoori
- Iran University of Medical Sciences, Oncopathology Research Center, Tehran, Iran.,Iran University of Medical Sciences, Faculty of Advanced Technologies in Medicine, Department of Molecular Medicine, Tehran, Iran
| | - Isa Abdi Rad
- Urmia University of Medical Sciences, Cellular and Molecular Research Center, Urmia, Iran
| | - Alireza Mirzaei
- Iran University of Medical Sciences, Shafa Orthopedic Hospital, Bone and Joint Reconstruction Research Center, Tehran, Iran
| | - Kevin J Tam
- University of British Columbia, Vancouver Prostate Centre, Department of Urologic Sciences, Vancouver, Canada
| | - Seyed Mohsen Hosseini
- Omid specialty and subspecialty Hospital, Oncology and Radiotherapy Ward, Urmia, Iran
| | - Rahim Mahmodlu
- Urmia University of Medical Sciences, Faculty of Medicine, Imam Khomeini Hospital, Department of Surgery, Urmia, Iran
| | - Fatemeh Mansouri
- Urmia University of Medical Sciences, Faculty of Medicine, Department of Genetics and Immunology, Urmia, Iran
| | | | - Zahra Madjd
- Iran University of Medical Sciences, Oncopathology Research Center, Tehran, Iran.,Iran University of Medical Sciences, Faculty of Advanced Technologies in Medicine, Department of Molecular Medicine, Tehran, Iran
| |
Collapse
|
9
|
Vijai M, Baba M, Ramalingam S, Thiyagaraj A. DCLK1 and its interaction partners: An effective therapeutic target for colorectal cancer. Oncol Lett 2021; 22:850. [PMID: 34733368 PMCID: PMC8561619 DOI: 10.3892/ol.2021.13111] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/02/2021] [Indexed: 12/23/2022] Open
Abstract
Doublecortin-like kinase protein 1 (DCLK1) is a microtubule-associated protein with a C-terminal serine/threonine kinase domain. Its expression was first reported in radial glial cells, where it serves an essential role in early neurogenesis, and since then, other functions of the DCLK1 protein have also been identified. Initially considered to be a marker of quiescent gastrointestinal and pancreatic stem cells, DCLK1 has recently been identified in the gastrointestinal tract as a marker of tuft cells. It has also been implicated in different types of cancer, where it regulates several vital pathways, such as Kras signaling. However, its underlying molecular mechanisms remain unclear. The present review discusses the different roles of DCLK1 and its interactions with other proteins that are homologically similar to DCLK1 to develop a novel therapeutic strategy to target cancer cells more accurately.
Collapse
Affiliation(s)
- Muthu Vijai
- Department of Genetic Engineering, SRM Institute of Science and Technology, Sri Ramaswamy Memorial (SRM) Nagar, Kattankulathur, Tamil Nadu 603203, India
| | - Mursaleen Baba
- Department of Genetic Engineering, SRM Institute of Science and Technology, Sri Ramaswamy Memorial (SRM) Nagar, Kattankulathur, Tamil Nadu 603203, India
| | - Satish Ramalingam
- Department of Genetic Engineering, SRM Institute of Science and Technology, Sri Ramaswamy Memorial (SRM) Nagar, Kattankulathur, Tamil Nadu 603203, India
| | - Anand Thiyagaraj
- Department of Genetic Engineering, SRM Institute of Science and Technology, Sri Ramaswamy Memorial (SRM) Nagar, Kattankulathur, Tamil Nadu 603203, India
| |
Collapse
|
10
|
Cheng L, Huang S, Chen L, Dong X, Zhang L, Wu C, Ye K, Shao F, Zhu Z, Thorne RF. Research Progress of DCLK1 Inhibitors as Cancer Therapeutics. Curr Med Chem 2021; 29:2261-2273. [PMID: 34254905 DOI: 10.2174/0929867328666210709110721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/29/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022]
Abstract
Doublecortin-like kinase 1 (DCLK1) has emerged over the last decade as a unique stem cell marker within gastrointestinal tissues. Evidence from mouse models shows that high Dclk1 expression denotes a population of cells that promote tissue regeneration and serve as potential cancer stem cells. Moreover, since specific DCLK1 isoforms are overexpressed in many cancers and not normal cells, targeting the expression or kinase activity of DCLK1 can inhibit cancer cell growth. Here we review the evidence for DCLK1 as a prospective cancer target, including its isoform-specific expression and mutational status in human cancers. We further discuss the challenges and current progress in the development of small-molecule inhibitors of DCLK1.
Collapse
Affiliation(s)
- Linna Cheng
- Institute of Hematology, Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Lijuan Chen
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Xiaoyan Dong
- Institute of Hematology, Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Lei Zhang
- Institute of Hematology, Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Chengye Wu
- Institute of Hematology, Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Kaihong Ye
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, No.7, WeiWu Road, Zhengzhou, 450003, Henan, China
| | - Fengmin Shao
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, No.7, WeiWu Road, Zhengzhou, 450003, Henan, China
| | - Zunmin Zhu
- Institute of Hematology, Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Rick F Thorne
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, No.7, WeiWu Road, Zhengzhou, 450003, Henan, China
| |
Collapse
|
11
|
Carli ALE, Afshar-Sterle S, Rai A, Fang H, O'Keefe R, Tse J, Ferguson FM, Gray NS, Ernst M, Greening DW, Buchert M. Cancer stem cell marker DCLK1 reprograms small extracellular vesicles toward migratory phenotype in gastric cancer cells. Proteomics 2021; 21:e2000098. [PMID: 33991177 DOI: 10.1002/pmic.202000098] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/15/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022]
Abstract
Doublecortin-like kinase 1 (DCLK1) is a putative cancer stem cell marker, a promising diagnostic and prognostic maker for malignant tumors and a proposed driver gene for gastric cancer (GC). DCLK1 overexpression in a majority of solid cancers correlates with lymph node metastases, advanced disease and overall poor-prognosis. In cancer cells, DCLK1 expression has been shown to promote epithelial-to-mesenchymal transition (EMT), driving disruption of cell-cell adhesion, cell migration and invasion. Here, we report that DCLK1 influences small extracellular vesicle (sEV/exosome) biogenesis in a kinase-dependent manner. sEVs isolated from DCLK1 overexpressing human GC cell line MKN1 (MKN1OE -sEVs), promote the migration of parental (non-transfected) MKN1 cells (MKN1PAR ). Quantitative proteome analysis of MKN1OE -sEVs revealed enrichment in migratory and adhesion regulators (STRAP, CORO1B, BCAM, COL3A, CCN1) in comparison to MKN1PAR -sEVs. Moreover, using DCLK1-IN-1, a specific small molecule inhibitor of DCLK1, we reversed the increase in sEV size and concentration in contrast to other EV subtypes, as well as kinase-dependent cargo selection of proteins involved in EV biogenesis (KTN1, CHMP1A, MYO1G) and migration and adhesion processes (STRAP, CCN1). Our findings highlight a specific role of DCLK1-kinase dependent cargo selection for sEVs and shed new light on its role as a regulator of signaling in gastric tumorigenesis.
Collapse
Affiliation(s)
- Annalisa L E Carli
- Cancer Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - Shoukat Afshar-Sterle
- Cancer Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - Alin Rai
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Haoyun Fang
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia
| | - Ryan O'Keefe
- Cancer Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - Janson Tse
- Cancer Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - Fleur M Ferguson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthias Ernst
- Cancer Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael Buchert
- Cancer Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
12
|
Pourjafar M, Samadi P, Karami M, Najafi R. Assessment of clinicopathological and prognostic relevance of BMI-1 in patients with colorectal cancer: A meta-analysis. Biotechnol Appl Biochem 2020; 68:1313-1322. [PMID: 33086431 DOI: 10.1002/bab.2053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Abstract
B-cell-specific Moloney leukemia virus insertion site 1 (BMI-1) is one of the stemness markers. The prognostic and clinicopathological effects of BMI-1 expression in colorectal cancer (CRC) have been in dispute with different studies. Eligible studies were retrieved from international databases up to December 2019. Studies with a relationship between the clinicopathological and prognostic value of CRC patients with BMI-1 expression were selected. The correlations in the random-effect model were evaluated using the hazard ratios, odds ratio, and 95% confidence intervals (CIs). A total of nine studies comprising Asian cases (seven studies) and European cases (two studies) covering 1,294 samples of CRC were included for this meta-analysis. The analysis suggested that in Asian cases, increased expression of BMI-1 was associated with poor overall survival (OS) and death-free survival, whereas in European populations, high expression of BMI-1 was associated with better OS. Also, overexpression of BMI-1 in the Asian population was associated with the tumor size, distant metastasis, and patient's gender and age. Results suggested that high expression of BMI-1 can be involved in the progression and invasion of CRC, and so its inhibitor-based therapies could be used to prevent the progression of CRC.
Collapse
Affiliation(s)
- Mona Pourjafar
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran.,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pouria Samadi
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran.,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Manoochehr Karami
- Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
13
|
Razi S, Sadeghi A, Asadi-Lari Z, Tam KJ, Kalantari E, Madjd Z. DCLK1, a promising colorectal cancer stem cell marker, regulates tumor progression and invasion through miR-137 and miR-15a dependent manner. Clin Exp Med 2020; 21:139-147. [PMID: 32965580 DOI: 10.1007/s10238-020-00665-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022]
Abstract
Cancer stem cells (CSCs) are thought to be a major player in tumor initiation, progression, and metastasis. Targeting CSCs for elimination presents a promising therapeutic strategy; however, this approach will require a stronger understanding of CSC biology and identification of CSC-specific markers. The present study was conducted to examine the correlation between DCLK1 and miR-137 and miR-15a levels in colorectal cancer. A total of 222 samples, including 181 colorectal cancer specimens, 24 adenomatosis, and 17 non-adenomatosis colonic polyps, were stained for DCLK1 expression using immunohistochemistry. Also, expression of miR-137 and miR-15a was assessed in colorectal cancer with high and low DCLK1 expression levels. Most colorectal cancer specimens (76%) showed strong expression of DCLK1, whereas only 21% of adenomatous and none of non-adenomatous colonic polyps showed strong DCLK1 expression. A significant difference in DCLK1 expression was found between colorectal cancer, adenomatous, and non-adenomatous colonic polyps (P < 0.001). Higher expression of DCLK1 was more frequently detected in colorectal cases with larger tumor size (P = 0.03), poor differentiation (P = 0.03), and lymph node involvement (P = 0.04). Comparison of miR-137 and miR-15a in colorectal cancer cases revealed a significant inverse correlation with DCLK1 expression (P = 0.03 and P = 0.04, respectively). DCLK1 may act as a candidate marker for colorectal cancer stem cells. The critical role of DCLK1 in colorectal cancer suggests that it may represent an early diagnostic marker and therapeutic target; however, further investigation is warranted.
Collapse
Affiliation(s)
- Sepideh Razi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Asieh Sadeghi
- Department of Pathology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Kevin J Tam
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Elham Kalantari
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran. .,Department of Pathology, Iran University of Medical Sciences, Tehran, Iran. .,Department of Molecular Medicine, Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Güllü N, Kobelt D, Brim H, Rahman S, Timm L, Smith J, Soleimani A, Di Marco S, Bisti S, Ashktorab H, Stein U. Saffron Crudes and Compounds Restrict MACC1-Dependent Cell Proliferation and Migration of Colorectal Cancer Cells. Cells 2020; 9:cells9081829. [PMID: 32756469 PMCID: PMC7463853 DOI: 10.3390/cells9081829] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 12/12/2022] Open
Abstract
The high mortality rate of colorectal cancer (CRC) patients is directly associated with metastatic dissemination. However, therapeutic options specifically for metastasis are still limited. We previously identified Metastasis-Associated in Colon Cancer 1 (MACC1) as a major causal metastasis-inducing gene. Numerous studies confirmed its value as a biomarker for metastasis risk. We investigated the inhibitory impact of saffron on MACC1-induced cancer cell growth and motility. Saffron crudes restricted the proliferation and migration of MACC1-expressing CRC cells in a concentration- and MACC1-dependent manner. Saffron delays cell cycle progression at G2/M-phase and does not induce apoptosis. Rescue experiments showed that these effects are reversible. Analysis of active saffron compounds elucidated that crocin was the main compound that reproduced total saffron crudes effects. We showed the interaction of MACC1 with the cancer stem cell (CSC) marker DCLK1, which contributes to metastasis formation in different tumor entities. Saffron extracts reduced DCLK1 with crocin being responsible for this reduction. Saffron's anti-proliferative and anti-migratory effects in MACC1-expressing cells are mediated by crocin through DCLK1 down-regulation. This research is the first identification of saffron-based compounds restricting cancer cell proliferation and motility progression via the novel target MACC1.
Collapse
Affiliation(s)
- Nazli Güllü
- Experimental and Clinical Research Center, Charité—Universitätsmedizin Berlin, and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany; (N.G.); (D.K.); (S.R.); (L.T.); (J.S.)
- German Cancer Consortium (DKTK), Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Dennis Kobelt
- Experimental and Clinical Research Center, Charité—Universitätsmedizin Berlin, and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany; (N.G.); (D.K.); (S.R.); (L.T.); (J.S.)
- German Cancer Consortium (DKTK), Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Hassan Brim
- College of Medicine & Cancer Center, Howard University 2041 Georgia Av. NW, Washington, DC 20059, USA;
- Correspondence: (H.B.); (H.A.); (U.S.); Tel.: +1-202-806-4198 (H.B.); +1-202-806-6121 (H.A.); +49-30-9406-3432 (U.S.); Fax: +1-202-667-1686 (H.B.); +1-202-667-1686 (H.A.); +49-30-9406-3432 (U.S.)
| | - Shaman Rahman
- Experimental and Clinical Research Center, Charité—Universitätsmedizin Berlin, and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany; (N.G.); (D.K.); (S.R.); (L.T.); (J.S.)
| | - Lena Timm
- Experimental and Clinical Research Center, Charité—Universitätsmedizin Berlin, and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany; (N.G.); (D.K.); (S.R.); (L.T.); (J.S.)
| | - Janice Smith
- Experimental and Clinical Research Center, Charité—Universitätsmedizin Berlin, and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany; (N.G.); (D.K.); (S.R.); (L.T.); (J.S.)
| | - Akbar Soleimani
- College of Medicine & Cancer Center, Howard University 2041 Georgia Av. NW, Washington, DC 20059, USA;
| | - Stefano Di Marco
- Center for Synaptic Neuroscience and Technology, The Italian Institute of Technology, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Silvia Bisti
- NetS3 Laboratory Neuroscience and Brain Technologies (NBT), The Italian Institute of Technology (IIT), Via Morego 30, 16128 Genova, Italy;
- Consorzio Interuniversitario INBB Istituto Nazionale Biostrutture e Biosistemi, V.le Medaglie D’Oro, 305, 00136 Roma, Italy
| | - Hassan Ashktorab
- College of Medicine & Cancer Center, Howard University 2041 Georgia Av. NW, Washington, DC 20059, USA;
- Correspondence: (H.B.); (H.A.); (U.S.); Tel.: +1-202-806-4198 (H.B.); +1-202-806-6121 (H.A.); +49-30-9406-3432 (U.S.); Fax: +1-202-667-1686 (H.B.); +1-202-667-1686 (H.A.); +49-30-9406-3432 (U.S.)
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité—Universitätsmedizin Berlin, and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany; (N.G.); (D.K.); (S.R.); (L.T.); (J.S.)
- German Cancer Consortium (DKTK), Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Correspondence: (H.B.); (H.A.); (U.S.); Tel.: +1-202-806-4198 (H.B.); +1-202-806-6121 (H.A.); +49-30-9406-3432 (U.S.); Fax: +1-202-667-1686 (H.B.); +1-202-667-1686 (H.A.); +49-30-9406-3432 (U.S.)
| |
Collapse
|
15
|
Li L, Mei H, Commey ANA. Application of RNA-sequencing to identify transcriptome modification by DCLK1 in colorectal cancer cells. Cancer Gene Ther 2019; 27:691-701. [PMID: 31636360 PMCID: PMC7170768 DOI: 10.1038/s41417-019-0144-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 12/02/2022]
Abstract
Doublecortin like kinase 1 (DCLK1) is a cancer stem cell marker for the colorectal cancer (CRC). It plays critical roles in the oncogenesis, progression and metastasis of CRC. DCLK1 can be an intriguing therapeutic target for CRC treatment. However, the molecular mechanism of how DCLK1 functions is unclear currently. In our research, we aim to apply RNA-Sequencing (RNA Seq) technology, a high throughput massively Next Generation Sequencing approach, to monitor transcriptome changes due to DCLK1 over-expression in the CRC cells. In order to achieve our goal, RNA from quadruplicate samples from two clones of isogenic DCLK1 stable over-expression cells and the parental wild type HCT116 cells was sent for RNA Seq on the Illumina NextSeq500 platform. Differentially expressed (DE) genes were evaluated by t-test (P <0.05 and fold-change ±1.5 or greater) using two methods: (1) FWER; and (2) Benjamani and Hochberg FDR (false discovery rate) which corrects for multiple comparisons. Gene networks and functional analysis were evaluated using Ingenuity Pathways Analysis (IPA). We identified 1463 DE genes common for both DCLK1 overexpression clone A and clone B cells. IPA results indicated that 72 canonical pathways were significantly modified by DCLK1 over-expression (P<0.05), among which 9 out of the top 10 pathways are involved in the cell cycle regulation, indicating that DCLK1 might play its tumorigenesis role via activation of pathways facilitating cell proliferation, repression of pathways inhibiting cells proliferation and function against pathways facilitating cell apoptosis. Cell cycle analysis results confirmed the IPA findings, which demonstrated that DCLK1 over-expression cells had much less G0/G1 cells but much more S and G2/M cells (P<0.05). In conclusion, DCLK1 over-expression significantly modified transcriptome profile of CRC cancer cells. Control of the cell cycle regulation might be one of the critical mechanism for DCLK1 function. Our findings provide more direct evidence for the development of DCLK1 as a therapeutic target for CRC treatment, and will be of great benefit for the discovery of novel therapeutic target within the DCLK1 molecular network for the treatment of colorectal cancer patients.
Collapse
Affiliation(s)
- Lianna Li
- Biology Department, Tougaloo College, 500 West County Line Road, Tougaloo, MS, 39174, USA.
| | - Hao Mei
- Department of Data Science, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
| | | |
Collapse
|
16
|
Vafaei S, Fattahi F, Ebrahimi M, Janani L, Shariftabrizi A, Madjd Z. Common molecular markers between circulating tumor cells and blood exosomes in colorectal cancer: a systematic and analytical review. Cancer Manag Res 2019; 11:8669-8698. [PMID: 31576171 PMCID: PMC6768129 DOI: 10.2147/cmar.s219699] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022] Open
Abstract
Nearly half of patients with colorectal cancer (CRC), the third leading cause of cancer deaths worldwide, are diagnosed in the late stages of the disease. Appropriate treatment is not applied in a timely manner and nearly 90% of the patients who experience metastasis ultimately die. Timely detection of CRC can increase the five-year survival rate of patients. Existing histopathological and molecular classifications are insufficient for prediction of metastasis, which limits approaches to treatment. Detection of reliable cancer-related biomarkers can improve early diagnosis, prognosis, and treatment response prediction and recurrence risk. Circulating tumor cells (CTCs) and exosomes in peripheral blood can be used in a liquid biopsy to assess the status of a tumor. Exosomes are abundant and available in all fluids of the body, have a high half-life and are released by most cells. Tumor-derived exosomes are released from primary tumors or CTCs with selective cargo that represents the overall tumor. The current systematic review highlights new trends and approaches in the detection of CRC biomarkers to determine tumor signatures using CTC and exosomes. When these are combined, they could be used to guide molecular pathology and can revolutionize detection tools. Relevant observational studies published until July 24, 2019 which evaluated the expression of tumor markers in CTCs and exosomes were searched in PubMed, Scopus, Embase, and ISI Web of Science databases. The extracted biomarkers were analyzed using String and EnrichR tools.
Collapse
Affiliation(s)
- Somayeh Vafaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fahimeh Fattahi
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Leila Janani
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Zahra Madjd
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Narayanankutty A. PI3K/ Akt/ mTOR Pathway as a Therapeutic Target for Colorectal Cancer: A Review of Preclinical and Clinical Evidence. Curr Drug Targets 2019; 20:1217-1226. [DOI: 10.2174/1389450120666190618123846] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
Background:
Phosphoinositide 3-kinase (PI3Ks) is a member of intracellular lipid kinases
and involved in the regulation of cellular proliferation, differentiation and survival. Overexpression of
the PI3K/Akt/mTOR signalling has been reported in various forms of cancers, especially in colorectal
cancers (CRC). Due to their significant roles in the initiation and progression events of colorectal cancer,
they are recognized as a striking therapeutic target.
Objective:
The present review is aimed to provide a detailed outline on the role of PI3K/Akt/mTOR
pathway in the initiation and progression events of colorectal cancers as well as its function in drug
resistance. Further, the role of PI3K/Akt/mTOR inhibitors alone and in combination with other chemotherapeutic
drugs, in alleviating colorectal cancer is also discussed. The review contains preclinical
and clinical evidence as well as patent literature of the pathway inhibitors which are natural
and synthetic in origin.
Methods:
The data were obtained from PubMed/Medline databases, Scopus and Google patent literature.
Results:
PI3K/Akt/mTOR signalling is an important event in colorectal carcinogenesis. In addition, it
plays significant roles in acquiring drug resistance as well as metastatic initiation events of CRCs.
Several small molecules of natural and synthetic origin have been found to be potent inhibitors of
CRCs by effectively downregulating the pathway. Data from various clinical studies also support
these pathway inhibitors and several among them are patented.
Conclusion:
Inhibitors of the PI3K/mTOR pathway have been successful for the treatment of primary
and metastatic colorectal cancers, rendering the pathway as a promising clinical cancer therapeutic target.
Collapse
Affiliation(s)
- Arunaksharan Narayanankutty
- Post Graduate & Research Department of Zoologyid1, St. Joseph's College (Autonomous), Devagiri, Calicut, Kerala, 673008, India
| |
Collapse
|
18
|
Li L, Jones K, Mei H. Doublecotin-Like Kinase 1 Increases Chemoresistance of Colorectal Cancer Cells through the Anti-Apoptosis Pathway. JOURNAL OF STEM CELL RESEARCH & THERAPY 2019; 9. [PMID: 31372308 DOI: 10.4172/2157-7633.1000447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Colorectal Cancer (CRC) is the third most common cancer diagnosed and the second leading cause of cancer-related deaths in the United States. Cancer Stem Cells (CSCs) are believed to be the primary reason for the recurrence of CRC. Specific stem cell marker, doublecortin-like kinase 1 (DCLK1) plays critical roles in the tumorigenesis and progression of CRC. Up-regulation of DCLK1 is correlated with poor prognosis. Whether DCLK1 is correlated with enhanced chemoresistance of CRC cells is unclear. We aim to reveal the association of DCLK1 with chemoresistance of CRC cells and the underlying molecular mechanisms. Methods Stable DCLK1 over-expression cells (DCLK1+) were established using the HCT116 cells (WT). DCLK1+ and WT cells were treated with 5-Fluorouracil (5-Fu) at different doses for 24 or 48 hours. MTT assay was used to evaluate cell viability and IC50 of 5-Fu was determined. Quantitative real-time PCR was applied to determine the gene expression of caspase-3 (casp-3), casp-4, and casp-10. Cleaved casp-3 expression was investigated using Western blot and immunofluorescence. Results Our results demonstrated that IC50 of 5-Fu for the DCLK1+ cells was significantly higher than that of the WT cells for both 24 and 48-hour treatment (p=0.002 and 0.048 respectively), indicating increased chemoresistance of the DCLK1+ cells. Gene expression of casp-3, casp-4, and casp-10 were significantly inhibited in the DCLK1+ cells after 5-Fu treatment compared to the WT cells (p=7.616e-08, 1.575e-05 and 5.307e-08, respectively). Cleaved casp-3 amount and casp-3 positive cells were significantly decreased in the DCLK1+ cells after 5-Fu treatment compared to the WT cells (p=0.015). Conclusions In conclusion, our results demonstrated that DCLK1 overexpression enhanced the chemoresistance of CRC cells to 5-Fu treatment by suppressing gene expression of key caspases in the apoptosis pathway and activation of the apoptosis pathway. DCLK1 can be an intriguing therapeutic target for the effective treatment of CRC patients.
Collapse
Affiliation(s)
- Lianna Li
- Biology Department, Tougaloo College, Tougaloo, USA
| | - Kierra Jones
- Biology Department, Tougaloo College, Tougaloo, USA
| | - Hao Mei
- Department of Data Science, University of Mississippi Medical Center, USA
| |
Collapse
|
19
|
Shafiei S, Kalantari E, Saeednejad Zanjani L, Abolhasani M, Asadi Lari MH, Madjd Z. Increased expression of DCLK1, a novel putative CSC maker, is associated with tumor aggressiveness and worse disease-specific survival in patients with bladder carcinomas. Exp Mol Pathol 2019; 108:164-172. [PMID: 31028726 DOI: 10.1016/j.yexmp.2019.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/13/2019] [Accepted: 04/24/2019] [Indexed: 01/06/2023]
Abstract
Doublecortin-like kinase 1 (DCLK1) has been characterized as a novel potential cancer stem cell (CSC) marker in several types of cancer. It is considered as one of the most specific markers for distinguishing colorectal CSCs from normal stem cells. Yet, there are limited reports on the role of DCLK1 as a putative CSC marker in bladder cancer. Using immunohistochemistry, DCLK1 expression was examined in a well-defined tissue microarray series of 472 bladder cancer tissues. The association between DCLK1 protein expression and clinicopathological features, as well as survival outcomes, was assessed. Our findings showed strong, moderate, and weak DCLK1 expression in 123 (26.1%), 230 (48.7%), and 119 (25.2%) of the bladder cancer specimens, respectively. Higher expression of DCLK1 was significantly associated with increase in histological grade (P ≤ .001), pT stage (P = .014), lamina propria (P = .006), and lamina propria/muscularis (L/M) involvement (P = .014). On multivariate analysis, pT stage (P < .001), histological grade (P = .021), and lamina propria involvement (P = .001) were independent prognostic factors in DCLK1 expression. Moreover, the expression of DCLK1 was found to be an independent marker of poor prognosis for disease- specific survival (DSS) (P = .048) in bladder carcinomas. Our observations showed that DCLK1 expression was associated with more aggressive tumor behavior, more advanced disease, and poorer DSS in patients with bladder carcinomas. However, any potential clinical applications of DCLK1 as a novel target molecule in bladder cancer patients would require further investigations.
Collapse
Affiliation(s)
- Somayeh Shafiei
- Dep of Pathology, Iran University of Medical Sciences, (IUMS), Tehran, Iran
| | - Elham Kalantari
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Maryam Abolhasani
- Dep of Pathology, Iran University of Medical Sciences, (IUMS), Tehran, Iran; Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Hasheminejad Kidney, Iran University of Medical Sciences, (IUMS), Tehran, Iran
| | | | - Zahra Madjd
- Dep of Pathology, Iran University of Medical Sciences, (IUMS), Tehran, Iran; Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada..
| |
Collapse
|
20
|
Li C, E C, Zhou Y, Yu W. Candidate genes and potential mechanisms for chemoradiotherapy sensitivity in locally advanced rectal cancer. Oncol Lett 2019; 17:4494-4504. [PMID: 30944639 PMCID: PMC6444485 DOI: 10.3892/ol.2019.10087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 01/15/2019] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to investigate candidate genes for chemoradiotherapy (CRT) sensitivity in patients with locally advanced rectal cancer (LARC), and the potential mechanisms of their action. A microarray dataset (GSE98959) was obtained from the Gene Expression Omnibus database that included microRNA (miRNA, miR) expression profiling of 22 samples from patients with LARC who had received preoperative radiotherapy and chemotherapy. Of these patients, 10 responded to the treatment and 12 did not. Differentially expressed miRNAs (DEMs) were identified, followed by the construction of an miRNA-gene network. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) function analyses were performed on the target genes in the miRNA-gene network. Furthermore, a protein-protein interaction (PPI) network was constructed on the basis of the target genes, followed by GO function enrichment and KEGG pathway analysis. A total of 30 DEMs were identified between the responder and non-responder groups. Thiamine metabolism (including miR-371a-3p) was the pathway with the highest enrichment of DEMs. The pathway that was most markedly enriched in the target genes of upregulated miRNAs was the pluripotency of stem cells pathway, as indicated by phosphoinositide-4,5-bisphosphate 3-kinase γ (PIK3CG) and anaphase-promoting complex subunit 2 (APC2). Pathways in cancer exhibited the highest enrichment in the set of target genes of downregulated miRNAs. KEGG pathway and GO function analysis indicated that target genes in the PPI network were enriched in the glioma pathway and assembled in the intracellular signaling cascade function, as indicated by the proto-oncogene NRAS. miR-371a-3p may be a candidate miRNA for CRT sensitivity in LARC via the thiamine metabolism pathway. PIK3CG and APC2 may contribute to CRT sensitivity via signaling pathways regulating the pluripotency of stem cells. Furthermore, NRAS may serve an important role in mediating CRT sensitivity via an intracellular signaling cascade.
Collapse
Affiliation(s)
- Chunsheng Li
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Changyong E
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yangyang Zhou
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wei Yu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
21
|
Sadeghi A, Roudi R, Mirzaei A, Zare Mirzaei A, Madjd Z, Abolhasani M. CD44 epithelial isoform inversely associates with invasive characteristics of colorectal cancer. Biomark Med 2019; 13:419-426. [PMID: 30942083 DOI: 10.2217/bmm-2018-0337] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: There is no consensus regarding the clinical significance of CD44 and CD24 as cancer stem cell (CSC) marker in colorectal cancer (CRC). Methodology: A total of 494 CRC samples (2008-2017) were assessed for CD44 (epithelial isoform) and CD24 expression using tissue microarray. Results: CD24 individually or in combination with CD44 was not associated with any of the clinicopathologic characteristics of the tumor. CD44 expression was inversely associated with pathological Tumor, Node, Metastasis (pTNM) lower stages (p = 0.038) and lymphatic invasion (p = 0.05). Conclusion: In summary, the epithelial isoform of CD44 is inversely associated with invasive characteristics of CRC.
Collapse
Affiliation(s)
- Asieh Sadeghi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Raheleh Roudi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Mirzaei
- Bone & Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Zare Mirzaei
- Department of Pathology, Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Abolhasani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Pathology, Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Shekarriz R, Montazer F, Alizadeh-Navaei R. Overexpression of cancer stem cell marker Lgr5 in colorectal cancer patients and association with clinicopathological findings. CASPIAN JOURNAL OF INTERNAL MEDICINE 2019; 10:412-416. [PMID: 31814939 PMCID: PMC6856925 DOI: 10.22088/cjim.10.4.411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND To determine the expression of cancer stem cell marker Leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5) in colorectal carcinoma samples compared to normal adjacent tissue and any possible association with clinicopathological findings. METHODS This study was performed on forty samples of cancerous colorectal tissues (case group) and their adjacent normal mucosa (control group) in Imam Khomeini Hospital (Sari, Mazandaran, Iran). Expression of Lgr5 in tissue sections was done by immunohistochemistry. Statistical analysis was carried out using SPSS software. RESULTS Forty colorectal cancer patients including 21 males (57.8±11.6 years) and 19 females (58.4±12.77 years) were enrolled. Lgr5 was overexpressed in tumoral samples than normal adjacent tissues (77.5% vs 27.5%, p<0.001). Also, no association was found between primary tumor, regional lymph nodes, invasion, histological type, grade, distant metastasis and IHC results. Patients with low Lgr5 expression had a better survival rate than patients with high expression but this was not statistically significant (p=0.121). CONCLUSION The higher immunoreactivity of Lgr5 in colorectal cancer tissues may indicate its role as a cancer stem cell marker in tumor carcinogenesis and patient's survival however; Lgr5 is not associated with pathological prognostic variables.
Collapse
Affiliation(s)
- Ramin Shekarriz
- Department of Hematology and Oncology, Gastrointestinal Cancer Research Center, Mazandaran University of Medical Science, Sari, Iran
| | - Fatemeh Montazer
- Department of Pathology, Iran University of Medical Sciences, Tehran, Iran
- Gastrointestinal Cancer Research Center, Mazandaran University of Medical Science, Sari, Iran
- Correspondence: Fatemeh Montazer, Gastrointestinal Cancer Research Center, Mazandaran University of Medical Science, Sari, Iran. E-mail: , Tel: 0098 2151048, Fax: 0098 2155900243
| | - Reza Alizadeh-Navaei
- Gastrointestinal Cancer Research Center, Mazandaran University of Medical Science, Sari, Iran
| |
Collapse
|
23
|
Abbaszadegan MR, Moghbeli M. Genetic and molecular origins of colorectal Cancer among the Iranians: an update. Diagn Pathol 2018; 13:97. [PMID: 30579343 PMCID: PMC6303916 DOI: 10.1186/s13000-018-0774-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one the leading causes of cancer related deaths among Iranians. Despite the various progresses in new therapeutic methods, it has still a low rate of survival. This high ratio of mortality is mainly related to the late diagnosis, in which the patients refer for treatment in advanced stages of tumor. MAIN BODY: colorectal cancer progression is largely associated with molecular and genetic bases. Although Iran has a high ratio of CRC mortality, there is not an efficient genetic panel for detection and prognosis. Therefore, it is critical to introduce new diagnostic markers with ability to detect in early stages. CONCLUSION Present review summarizes all of the genetic and epigenetic factors which are reported in CRC until now among the Iranian patients to pave the way of incorporation of new ethnic specific markers into the clinical practice and development of new targeted therapeutic methods.
Collapse
Affiliation(s)
| | - Meysam Moghbeli
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
24
|
Morio K, Yashima K, Tamoto A, Hosoda K, Yamamoto S, Iwamoto T, Ueda N, Ikebuchi Y, Kawaguchi K, Harada K, Murawaki Y, Isomoto H. Expression of doublecortin and CaM kinase-like-1 protein in serrated neoplasia of the colorectum. Biomed Rep 2018; 8:47-50. [PMID: 29399338 PMCID: PMC5772451 DOI: 10.3892/br.2017.1017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 10/30/2017] [Indexed: 11/05/2022] Open
Abstract
The adenoma-carcinoma sequence (ACS) and the serrated pathway are two distinct developmental routes leading to the formation of colorectal carcinoma. Recently, the doublecortin and CaM kinase-like-1 protein (DCLK1) has been reported to serve as an intestinal cancer stem cell marker and has been demonstrated to be overexpressed through the ACS; however, there is a lack of reports on the role of DCLK1 in the serrated pathway. To clarify the correlation between DCLK1 protein expression and clinicopathological characteristics of the serrated tumorigenic pathway, the present study used immunohistochemistry to examine the expression of DCLK1 in endoscopically resected samples of 62 serrated polyps [20 hyperplastic polyps (HPs), 16 traditional serrated adenomas (TSAs) and 26 sessile serrated adenoma-polyps (SSA/Ps)], as well as 20 non-serrated adenomas, 20 carcinoma in adenomas (CIAs) and 18 early pure colorectal carcinomas without any adenoma component (EPCs). Based on immunostaining score, high DCLK1 expression was detected in 20.0% of HPs (23.1% of microvesicular HPs and 14.3% of goblet cell HPs), 37.5% of TSAs, 7.7% of SSA/Ps, 80.0% of non-serrated adenomas, 75.0% of CIAs and 50.0% of EPCs. Negative or low DCLK1 expression was frequently observed in TSAs (P<0.005), SSA/Ps (P<0.00001) and EPCs (P<0.04) compared with non-serrated adenomas and CIAs. In addition, negative or low DCLK1 expression was significantly more frequent in SSA/Ps (92.3%) compared with TSAs (62.5%; P<0.05). Thus, the expression pattern of DCLK1 between the serrated pathway and ACS differed, indicating that DCLK1 expression may perform a secondary role in serrated tumorigenesis. In addition, the data indicates that EPCs may contain tumors derived from the serrated pathway as well as the ACS.
Collapse
Affiliation(s)
- Keiko Morio
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Kazuo Yashima
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Akihiro Tamoto
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Kohei Hosoda
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Sohei Yamamoto
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Taku Iwamoto
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Naoki Ueda
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Yuichiro Ikebuchi
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Koichiro Kawaguchi
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Kenichi Harada
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Yoshikazu Murawaki
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Hajime Isomoto
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| |
Collapse
|
25
|
Agah S, Akbari A, Talebi A, Masoudi M, Sarveazad A, Mirzaei A, Nazmi F. Quantification of Plasma Cell-Free Circulating DNA at Different Stages of Colorectal Cancer. Cancer Invest 2017; 35:625-632. [DOI: 10.1080/07357907.2017.1408814] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Atefeh Talebi
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Masoudi
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Arash Sarveazad
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Mirzaei
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Farinaz Nazmi
- Department of Zoology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
26
|
Roudi R, Ebrahimi M, Shariftabrizi A, Madjd Z. Cancer stem cell research in Iran: potentials and challenges. Future Oncol 2017; 13:1809-1826. [PMID: 28776391 DOI: 10.2217/fon-2017-0091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Treatment modalities can reduce cancer-related mortality; however, a majority of patients develop drug resistance, metastasis and relapse. It has been proposed that tumorigenic characteristics of tumors are related to a proportion of cancer cells, termed cancer stem cells (CSCs). Following the first evidence regarding the existence of CSC population in acute myeloid leukemia in 1997, publications in CSCs field showed an explosive trend in all cancer types around the world. First research paper in the field of CSCs in Iran was published in 2004 on prostate cancer. Subsequently, an annual number of publications in the field of CSCs displayed a rapidly growing trend. Therefore, in the current review, we have presented a comprehensive evaluation of the CSCs research in Iran.
Collapse
Affiliation(s)
- Raheleh Roudi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells & Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology & Technology, ACECR, Tehran, Iran
| | - Ahmad Shariftabrizi
- Department of Nuclear Medicine & Molecular Imaging, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Role of cancer stem-cell marker doublecortin-like kinase 1 in head and neck squamous cell carcinoma. Oral Oncol 2017; 67:109-118. [DOI: 10.1016/j.oraloncology.2017.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/22/2017] [Accepted: 02/09/2017] [Indexed: 01/24/2023]
|
28
|
Liu YH, Tsang JYS, Ni YB, Hlaing T, Chan SK, Chan KF, Ko CW, Mujtaba SS, Tse GM. Doublecortin-like kinase 1 expression associates with breast cancer with neuroendocrine differentiation. Oncotarget 2016; 7:1464-76. [PMID: 26621833 PMCID: PMC4811473 DOI: 10.18632/oncotarget.6386] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/15/2015] [Indexed: 02/07/2023] Open
Abstract
Doublecortin-like kinase 1 (DCLK1), a microtubule associated kinase, has recently been proposed to be a putative marker for stemness and adverse prognosis in gastrointestinal cancers. However, it is not clear whether the protein also plays similar roles in breast cancer. Here, the expression of DCLK1 was analyzed in a large cohort of invasive breast cancers (IBC) by immunohistochemistry. DCKL1 was associated with favorable clinico-pathologic features, namely lower histologic grade, absence of lymphovascular invasion, fibrotic focus, necrosis and lower pN stage (p≤0.045). Additionally, independent significant correlations were found with estrogen receptor and neuroendocrine markers (p ≤0.019), implicating its relationship with IBC with neuroendocrine differentiation (IBC-NED). In the current cohort, IBC-NED showed worse outcome than luminal cancers without NED (hazard ratio=1.756, p=0.041). Interestingly, within the IBC-NED group, DCLK1 was found to be a good prognostic factor (hazard ratio =0.288, p=0.011). These findings were in contrast to those in gastrointestinal cancers, suggesting different functional roles of DCLK1 in different types of cancers. In clinical practice, NED is not routinely assessed; thus IBC-NED are not well studied. Its poor outcome and significant heterogeneity warrants more attention. DCLK1 expression could aid in the prognostication and management of this special cancer subtype.
Collapse
Affiliation(s)
- Yu-Hong Liu
- Department of Pathology, The Affiliated Baoan Hospital of Southern Medical University, Shenzhen, China
| | - Julia Y S Tsang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong
| | - Yun-Bi Ni
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong
| | - Thazin Hlaing
- Department of Anatomic Pathology, Centro Hospitalar Conde de Sao Januario, Macao, SAR, China
| | - Siu-Ki Chan
- Department of Pathology, Kwong Wah Hospital, Hong Kong
| | - Kui-Fat Chan
- Department of Pathology, Tuen Mun Hospital, Hong Kong
| | - Chun-Wai Ko
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong
| | - S Shafaq Mujtaba
- Histopathology Section, Laboratory Department, King Abdullah Medical City, Makkah, Kingdom of Saudi Arabia
| | - Gary M Tse
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
29
|
Leppänen J, Helminen O, Huhta H, Kauppila JH, Miinalainen I, Ronkainen VP, Saarnio J, Lehenkari PP, Karttunen TJ. Doublecortin-like kinase 1-positive enterocyte - a new cell type in human intestine. APMIS 2016; 124:958-965. [PMID: 27677532 DOI: 10.1111/apm.12599] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/01/2016] [Indexed: 12/26/2022]
Abstract
Doublecortin-like kinase 1 (DCLK1) is a microtubule-associated kinase. In murine intestine, DCLK1 marks tuft cells with characteristic microvilli, features of neuroendocrine cells and also quiescent stem cell-like properties. The occurrence and pathological role of DCLK1-positive cells in human intestinal mucosa is unknown. We analysed DCLK1 expression in healthy duodenal, jejunal and colorectal mucosa samples (n = 35), and in duodenal specimens from patients with coeliac disease (n = 20). The samples were immunohistochemically double-stained with DCLK1, and synaptophysin, chromogranin A and Ki-67. Ultrastructure of DCLK1-expressing duodenal cells was assessed using correlative light and electron microscopy. DCLK1 expression was seen in about 1% of epithelial cells diffusely scattered through the intestinal epithelium. Electron microscopy showed that the duodenal DCLK1-positive cells had short apical microvilli similar to neighbouring enterocytes and cytoplasmic granules on the basal side. DCLK1-positive cells were stained with synaptophysin. The number of DCLK1-positive cells was decreased in villus atrophy in coeliac disease. Our findings indicate that in human intestinal epithelium, DLCK1-positive cells form a subpopulation of non-proliferating neuroendocrine cells with apical brush border similar to that in enterocytes, and their number is decreased in untreated coeliac disease.
Collapse
Affiliation(s)
- Joni Leppänen
- Department of Pathology, University of Oulu, Oulu, Finland. .,Department of Surgery, University of Oulu, Oulu, Finland. .,Medical Research Center Oulu, Oulu, Finland. .,Oulu University Hospital, Oulu, Finland.
| | - Olli Helminen
- Department of Pathology, University of Oulu, Oulu, Finland.,Department of Surgery, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu, Finland.,Oulu University Hospital, Oulu, Finland
| | - Heikki Huhta
- Department of Pathology, University of Oulu, Oulu, Finland.,Department of Surgery, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu, Finland.,Oulu University Hospital, Oulu, Finland
| | - Joonas H Kauppila
- Department of Pathology, University of Oulu, Oulu, Finland.,Department of Surgery, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu, Finland.,Oulu University Hospital, Oulu, Finland
| | | | | | - Juha Saarnio
- Department of Surgery, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu, Finland.,Oulu University Hospital, Oulu, Finland
| | - Petri P Lehenkari
- Department of Surgery, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu, Finland.,Oulu University Hospital, Oulu, Finland.,Department of Anatomy and Cell biology, University of Oulu, Oulu, Finland
| | - Tuomo J Karttunen
- Department of Pathology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu, Finland.,Oulu University Hospital, Oulu, Finland
| |
Collapse
|
30
|
Mirzaei A, Madjd Z, Kadijani AA, Tavakoli-Yaraki M, Modarresi MH, Verdi J, Akbari A, Tavoosidana G. Evaluation of circulating cellular DCLK1 protein, as the most promising colorectal cancer stem cell marker, using immunoassay based methods. Cancer Biomark 2016; 17:301-311. [DOI: 10.3233/cbm-160642] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Alireza Mirzaei
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azade Amini Kadijani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Javad Verdi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Tavoosidana
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Gao T, Wang M, Xu L, Wen T, Liu J, An G. DCLK1 is up-regulated and associated with metastasis and prognosis in colorectal cancer. J Cancer Res Clin Oncol 2016; 142:2131-40. [PMID: 27520310 DOI: 10.1007/s00432-016-2218-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/05/2016] [Indexed: 12/22/2022]
Abstract
PURPOSE Metastasis is a primary cause of colorectal cancer (CRC)-related death, and cancer stem cells (CSCs) are thought to be majorly responsible for initiating metastatic behaviors. Doublecortin-like kinase 1 (DCLK1) was recently discovered to be a marker for gastrointestinal CSCs. Here, we aimed to explore whether DCLK1 is associated with CRC metastasis through clinical and in vitro investigations. METHODS The expression levels of DCLK1 mRNA and protein in human CRC tissues were analyzed through quantitative RT-PCR and immunohistochemistry staining, respectively. Human CRC cell line SW480 was selected to explore the effect of DCLK1 overexpression on cell migration and invasion. Besides, the associations between DCLK1 and epithelial-mesenchymal transition (EMT) were determined. RESULTS Compared to normal colorectal tissues, DCLK1 expression was significantly up-regulated in human CRC tissues and correlated well with high lymphatic metastasis and poor prognosis in patients. DCLK1 expression was inversely associated with overall survival in CRC patients. Overexpression of DCLK1 in SW480 cells markedly promoted cell migration and invasion. Furthermore, we validated that DCLK1 could facilitate EMT in cancer cells by up-regulation of the mesenchymal markers Vimentin and ZEB1 and down-regulation of the epithelial marker E-cadherin in SW480 cells. CONCLUSIONS DCLK1 up-regulation may play a contributory role in CRC metastasis and poor prognosis via activation of EMT. DCLK1 may serve as an independent predictor for CRC prognosis.
Collapse
Affiliation(s)
- Tianbo Gao
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gong Ti Nan Lu, Beijing, 100020, China
| | - Min Wang
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gong Ti Nan Lu, Beijing, 100020, China
| | - Lingling Xu
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gong Ti Nan Lu, Beijing, 100020, China
| | - Tao Wen
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gong Ti Nan Lu, Beijing, 100020, China
| | - Jian Liu
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gong Ti Nan Lu, Beijing, 100020, China.
| | - Guangyu An
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gong Ti Nan Lu, Beijing, 100020, China.
| |
Collapse
|
32
|
Kadletz L, Aumayr K, Heiduschka G, Schneider S, Enzenhofer E, Lill C. Overexpression of DCLK1 is predictive for recurrent disease in major salivary gland malignancies. Eur Arch Otorhinolaryngol 2016; 274:467-475. [PMID: 27470117 DOI: 10.1007/s00405-016-4227-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 07/19/2016] [Indexed: 02/06/2023]
Abstract
Salivary gland carcinomas are a rare malignancy. Therefore, little is known about biomarkers and cancer stem cells in salivary gland malignancies. Double cortin-like kinase 1 (DCLK1) is a promising therapeutic target and cancer stem cell marker, predominantly investigated in pancreatic and colorectal cancer. The purpose of this study was to investigate the expression of DCLK1 in major and minor salivary gland carcinomas and its influence on survival. We examined a total of 80 patients with major or minor salivary gland cancer in this retrospective study. Immunohistochemistry with anti-DCLK1 antibody was applied to assess the expression of DCLK1. Moreover, we evaluated the impact of DCLK1 on overall and disease-free survival. DCLK1 expression could be detected in 66.3 % of all examined cases. Overexpression of DCLK1 was associated with reduced overall and disease-free survival in patients with major salivary gland cancer. Disease-free survival reached statistical significance (p = 0.0107). However, expression of DCLK1 had no influence on survival in patients with minor salivary gland cancer. Since treatment of recurrent disease in oncologic patients is utterly challenging, DCLK1 may be a promising prognostic biomarker that helps to identify patients with a high risk for recurrence of major salivary gland carcinoma.
Collapse
Affiliation(s)
- Lorenz Kadletz
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Klaus Aumayr
- Department of Pathology, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Gregor Heiduschka
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Sven Schneider
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Elisabeth Enzenhofer
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Claudia Lill
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
33
|
Roudier MP, Winters BR, Coleman I, Lam HM, Zhang X, Coleman R, Chéry L, True LD, Higano CS, Montgomery B, Lange PH, Snyder LA, Srivistava S, Corey E, Vessella RL, Nelson PS, Üren A, Morrissey C. Characterizing the molecular features of ERG-positive tumors in primary and castration resistant prostate cancer. Prostate 2016; 76:810-22. [PMID: 26990456 PMCID: PMC5589183 DOI: 10.1002/pros.23171] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 02/10/2016] [Indexed: 11/11/2022]
Abstract
BACKGROUND The TMPRSS2-ERG gene fusion is detected in approximately half of primary prostate cancers (PCa) yet the prognostic significance remains unclear. We hypothesized that ERG promotes the expression of common genes in primary PCa and metastatic castration-resistant PCa (CRPC), with the objective of identifying ERG-associated pathways, which may promote the transition from primary PCa to CRPC. METHODS We constructed tissue microarrays (TMA) from 127 radical prostatectomy specimens, 20 LuCaP patient-derived xenografts (PDX), and 152 CRPC metastases obtained immediately at time of death. Nuclear ERG was assessed by immunohistochemistry (IHC). To characterize the molecular features of ERG-expressing PCa, a subset of IHC confirmed ERG+ or ERG- specimens including 11 radical prostatectomies, 20 LuCaP PDXs, and 45 CRPC metastases underwent gene expression analysis. Genes were ranked based on expression in primary PCa and CRPC. Common genes of interest were targeted for IHC analysis and expression compared with biochemical recurrence (BCR) status. RESULTS IHC revealed that 43% of primary PCa, 35% of the LuCaP PDXs, and 18% of the CRPC metastases were ERG+ (12 of 48 patients [25%] had at least one ERG+ metastasis). Based on gene expression data and previous literature, two proteins involved in calcium signaling (NCALD, CACNA1D), a protein involved in inflammation (HLA-DMB), CD3 positive immune cells, and a novel ERG-associated protein, DCLK1 were evaluated in primary PCa and CRPC metastases. In ERG+ primary PCa, a weak association was seen with NCALD and CACNA1D protein expression. HLA-DMB association with ERG was decreased and CD3 cell number association with ERG was changed from positive to negative in CRPC metastases compared to primary PCa. DCLK1 was upregulated at the protein level in unpaired ERG+ primary PCa and CRPC metastases (P = 0.0013 and P < 0.0001, respectively). In primary PCa, ERG status or expression of targeted proteins was not associated with BCR-free survival. However, for primary PCa, ERG+DCLK1+ patients exhibited shorter time to BCR (P = 0.06) compared with ERG+DCLK1- patients. CONCLUSIONS This study examined ERG expression in primary PCa and CRPC. We have identified altered levels of inflammatory mediators associated with ERG expression. We determined expression of DCLK1 correlates with ERG expression and may play a role in primary PCa progression to metastatic CPRC. Prostate 76:810-822, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Martine P Roudier
- Department of Urology, University of Washington, Seattle, WA
- To whom all correspondence should be addressed: Colm Morrissey Ph.D. Genitourinary Cancer Research Laboratory, Department of Urology, Box 356510, University of Washington, Seattle, WA 98195, Telephone: 206-543-1461, Fax: 206-543-1146,
| | - Brian R Winters
- Department of Urology, University of Washington, Seattle, WA
- To whom all correspondence should be addressed: Colm Morrissey Ph.D. Genitourinary Cancer Research Laboratory, Department of Urology, Box 356510, University of Washington, Seattle, WA 98195, Telephone: 206-543-1461, Fax: 206-543-1146,
| | - Ilsa Coleman
- Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Hung-Ming Lam
- Department of Urology, University of Washington, Seattle, WA
| | - Xiaotun Zhang
- Department of Urology, University of Washington, Seattle, WA
| | | | - Lisly Chéry
- Department of Urology, University of Washington, Seattle, WA
| | | | | | | | - Paul H. Lange
- Department of Urology, University of Washington, Seattle, WA
- Department of Veterans Affairs Medical Center, Seattle, WA
| | | | - Shiv Srivistava
- Uniformed Services University of the Health Sciences, Rockville, MD
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA
| | - Robert L. Vessella
- Department of Urology, University of Washington, Seattle, WA
- Department of Veterans Affairs Medical Center, Seattle, WA
| | - Peter S. Nelson
- Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Aykut Üren
- Georgetown University Medical Center, Washington, D. C
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA
| |
Collapse
|
34
|
Chandrakesan P, Panneerselvam J, Qu D, Weygant N, May R, Bronze MS, Houchen CW. Regulatory Roles of Dclk1 in Epithelial Mesenchymal Transition and Cancer Stem Cells. ACTA ACUST UNITED AC 2016; 7. [PMID: 27335684 PMCID: PMC4913783 DOI: 10.4172/2157-2518.1000257] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The identification of functionally relevant subpopulations of therapy-resistant cancer cells is a challenge. These cells, intrinsically resistant to conventional therapy, can cause recurrence. Evidence has suggested that therapy-resistant cancer cells are likely epithelial–mesenchymal transition (EMT) cells and/or stem-like cells called cancer stem cells (CSCs). EMT, a normal embryological process that converts epithelial cells into mesenchymal cells, is frequently activated during cancer development and progression. CSCs are a small subpopulation of cancer cells within a tumor mass that have the ability to self-renew and maintain tumor-initiating capacity by giving rise to heterogeneous lineages of cancer cells that comprise the whole tumor. Although the origin of CSCs and EMT cells remains to be fully explored, a growing body of evidence has indicated that the biology of EMT and CSCs is strongly linked. Doublecortin-like kinase 1 (DCLK1), a cancer stem cell marker, is functionally involved in maintaining cancer stemness and the process of EMT important for cancer initiation, cancer metastasis, and secondary tumor formation. Therefore, targeting these cells may provide new strategies to overcome tumor heterogeneity, therapeutic resistance, and cancer relapse. In this review, we will provide a potential mechanistic link between EMT induction and the emergence of CSCs for the origin and progression of cancer. We will highlight the functional activity of DCLK1 in supporting EMT and cancer cell self-renewal, which will lead us to a better understanding of DCLK1 expression in cancer development and progression, and help us to develop targeted therapies for effective cancer treatment.
Collapse
Affiliation(s)
- P Chandrakesan
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Stephenson Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - J Panneerselvam
- Stephenson Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - D Qu
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Stephenson Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - N Weygant
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - R May
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - M S Bronze
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - C W Houchen
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Stephenson Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA; COARE Biotechnology, Oklahoma City, OK, USA
| |
Collapse
|
35
|
Mirzaei A, Tavoosidana G, Rad AA, Rezaei F, Tavakoli-Yaraki M, Kadijani AA, Khalili E, Madjd Z. A new insight into cancer stem cell markers: Could local and circulating cancer stem cell markers correlate in colorectal cancer? Tumour Biol 2015; 37:2405-14. [PMID: 26383518 DOI: 10.1007/s13277-015-3989-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 08/25/2015] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cell (CSC) markers could serve as potential prognostic procedure. This study is aimed to investigate the local expression of doublecortin-like kinase 1 (DCLK1) and Lgr5 in colorectal cancer tissues (CRC) at both protein and messenger RNA (mRNA) level, followed by providing a comparison of the local and circulating expression pattern of these markers, based on our present and previous study. The mRNA expression level of DCLK1 and Lgr5 was evaluated using comparative real-time PCR method applying 58 fresh tumor tissues and their correspondent normal margins. Immunohistochemistry was applied to analyze the protein expression level of DCLK1 and Lgr5 in paraffin-embedded CRC tissues. The correlation of DCLK1 and Lgr5 expression pattern with clinicopathological characteristics was assessed. A higher mRNA expression level of DCLK1 (3.28-fold change, p < 0.001) and Lgr5 (2.29-fold change, p < 0.001) was observed in CRC fresh tissues compared to the normal adjacent margins, and the expression level was higher in patients with higher grade and stages of disease and patients who underwent neoadjuvant chemoradiotherapy (CRT). The protein expression level of DCLK1 and Lgr5 was also increased significantly in tumor tissues compared to normal colon tissues which were positively correlated to tumor stage and grade and neoadjuvant CRT. Taken together, the results of protein analysis were in accordance with mRNA assessment. The local expression pattern of DCLK1 and Lgr5 was also in accordance with their expression level in circulation. However, some minor inconsistencies were observed which may be attributed to several factors including the possible effect of CRT on CSC reprogramming.
Collapse
Affiliation(s)
- Alireza Mirzaei
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Eastern side of Tehran University, 88, Italia St, Tehran, Iran
| | - Gholamreza Tavoosidana
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Eastern side of Tehran University, 88, Italia St, Tehran, Iran.
| | - Afshin Abdi Rad
- Surgical Pathology Department, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Rezaei
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azade Amini Kadijani
- Department of Biotechnology, Faculty of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Khalili
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, Iran.
| |
Collapse
|