1
|
Tang Z, Li Z, Wu G, Li J, Tan J, Zhu L. Long noncoding RNA DHRS4 antisense RNA 1 suppresses osteosarcoma cell proliferation and promotes apoptosis through a competitive endogenous RNA mechanism. Sci Rep 2025; 15:2891. [PMID: 39843945 PMCID: PMC11754436 DOI: 10.1038/s41598-025-87246-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor. Recent evidence suggests that the novel long noncoding RNA DHRS4 antisense RNA 1 (DHRS4-AS1) serves an important role in cancer progression and metastasis. However, its function and molecular mechanism in OS remain largely unknown. In the present study, DHRS4-AS1 expression was detected in OS cells by quantitative PCR. Gain- and loss-of-function experiments were conducted to study the effects of DHRS4-AS1 on the proliferation and apoptosis of OS cells. The potential mechanism of DHRS4-AS1 was examined through bioinformatics analysis and rescue experiments. DHRS4-AS1 was downregulated in OS cell lines. DHRS4-AS1 depletion promoted proliferation and inhibited apoptosis in OS cells, whereas DHRS4-AS1 overexpression had the opposite effects. Further research suggested that DHRS4-AS1 inhibited OS progression by regulating the microRNA-362-5p/aminopeptidase puromycin sensitive axis. The present findings suggested that DHRS4-AS1 may serve as a potential therapeutic target for OS.
Collapse
Affiliation(s)
- Zhouzhou Tang
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue Central Guangzhou, Guangdong510280, Guangzhou, Guangdong510280, China
- Department of Spinal Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei434020, China
| | - Zhihao Li
- Department of Spinal Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei434020, China
| | - Guofeng Wu
- Department of Orthopedics, Southern University of Science and Technology Hospital, Shenzhen, 518052, China
| | - Jianjun Li
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue Central Guangzhou, Guangdong510280, Guangzhou, Guangdong510280, China
| | - Jianye Tan
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang330006, China
| | - Lixin Zhu
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue Central Guangzhou, Guangdong510280, Guangzhou, Guangdong510280, China.
| |
Collapse
|
2
|
Barati T, Mirzaei Z, Ebrahimi A, Shekari Khaniani M, Mansoori Derakhshan S. miR-449a: A Promising Biomarker and Therapeutic Target in Cancer and Other Diseases. Cell Biochem Biophys 2024; 82:1629-1650. [PMID: 38809350 DOI: 10.1007/s12013-024-01322-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
In the regulation of gene expression, epigenetic factors like non-coding RNAs (ncRNAs) play an equal role in genetics. The role of microRNAs (miRNAs), which are members of the ncRNA family, in post-transcriptional gene regulation is well-documented and has important implications for both normal and abnormal biological processes, such as angiogenesis, proliferation, survival, and apoptosis. The purpose of this study was to synthesize previous research on miR-449a by analyzing published results from various databases, as there have been a number of investigations on miR-449's potential involvement in the development of human disorders. Based on our findings, miR-449 is strongly dysregulated in a wide range of diseases, from various cancers to cardiovascular diseases, cognitive impairments, and respiratory diseases, and it may play a pivotal role in the development of these problems. In addition, miR-449a functions as a crucial regulator of the expression of several well-known genes, including E2F-3, BCL2, NOTCH1, and SOX4. This, in turn, modulates various pathways and processes related to cancer, including Notch, PI3K, and TGF-β, and contributes to the improvement of cancer drug sensitivity. Curiously, abnormalities in the expression of this miRNA may serve as diagnostic or prognostic indicators for distinguishing between healthy people and patients or to evaluate the survival rates for specific disorders. This article provides a synopsis of the current understanding of miR-449a's role in human disease development through its regulation of gene expression and the biological processes related to these genes and their linked processes. In addition, we have covered the topic of miR-449a's potential as a clinical feature (diagnosis and prognosis) indicator for a range of disorders, both neoplastic and non-neoplastic. In general, our goal was to gain a thorough comprehension of the numerous functions of miR-449a in different disorders.
Collapse
Affiliation(s)
- Tahereh Barati
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Mirzaei
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ebrahimi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Shekari Khaniani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sima Mansoori Derakhshan
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Chakraborty S, Nandi P, Mishra J, Niharika, Roy A, Manna S, Baral T, Mishra P, Mishra PK, Patra SK. Molecular mechanisms in regulation of autophagy and apoptosis in view of epigenetic regulation of genes and involvement of liquid-liquid phase separation. Cancer Lett 2024; 587:216779. [PMID: 38458592 DOI: 10.1016/j.canlet.2024.216779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Cellular physiology is critically regulated by multiple signaling nexuses, among which cell death mechanisms play crucial roles in controlling the homeostatic landscape at the tissue level within an organism. Apoptosis, also known as programmed cell death, can be induced by external and internal stimuli directing the cells to commit suicide in unfavourable conditions. In contrast, stress conditions like nutrient deprivation, infection and hypoxia trigger autophagy, which is lysosome-mediated processing of damaged cellular organelle for recycling of the degraded products, including amino acids. Apparently, apoptosis and autophagy both are catabolic and tumor-suppressive pathways; apoptosis is essential during development and cancer cell death, while autophagy promotes cell survival under stress. Moreover, autophagy plays dual role during cancer development and progression by facilitating the survival of cancer cells under stressed conditions and inducing death in extreme adversity. Despite having two different molecular mechanisms, both apoptosis and autophagy are interconnected by several crosslinking intermediates. Epigenetic modifications, such as DNA methylation, post-translational modification of histone tails, and miRNA play a pivotal role in regulating genes involved in both autophagy and apoptosis. Both autophagic and apoptotic genes can undergo various epigenetic modifications and promote or inhibit these processes under normal and cancerous conditions. Epigenetic modifiers are uniquely important in controlling the signaling pathways regulating autophagy and apoptosis. Therefore, these epigenetic modifiers of both autophagic and apoptotic genes can act as novel therapeutic targets against cancers. Additionally, liquid-liquid phase separation (LLPS) also modulates the aggregation of misfolded proteins and provokes autophagy in the cytosolic environment. This review deals with the molecular mechanisms of both autophagy and apoptosis including crosstalk between them; emphasizing epigenetic regulation, involvement of LLPS therein, and possible therapeutic approaches against cancers.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Prahallad Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India.
| |
Collapse
|
4
|
Banaszek N, Kurpiewska D, Kozak K, Rutkowski P, Sobczuk P. Hedgehog pathway in sarcoma: from preclinical mechanism to clinical application. J Cancer Res Clin Oncol 2023; 149:17635-17649. [PMID: 37815662 PMCID: PMC10657326 DOI: 10.1007/s00432-023-05441-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023]
Abstract
Sarcomas are a diverse group of malignant neoplasms of mesenchymal origin. They develop rarely, but due to poor prognosis, they are a challenging and significant clinical problem. Currently, available therapeutic options have very limited activity. A better understating of sarcomas' pathogenesis may help develop more effective therapies in the future. The Sonic hedgehog (Shh) signaling pathway is involved in both embryonic development and mature tissue repair and carcinogenesis. Shh pathway inhibitors are presently used in the treatment of basal cell carcinoma. Its increased activity has been demonstrated in many sarcomas, including osteosarcoma, Ewing sarcoma, chondrosarcoma, rhabdomyosarcoma, leiomyosarcoma, and malignant rhabdoid tumor. In vitro studies have demonstrated the effectiveness of inhibitors of the Hedgehog pathway in inhibiting proliferation in those sarcomas in which the components of the pathway are overexpressed. These results were confirmed by in vivo studies, which additionally proved the influence of Shh pathway inhibitors on limiting the metastatic potential of sarcoma cells. However, until now, the efficacy of sarcomas treatment with Shh pathway inhibitors has not been established in clinical trials. The reason for that may be the non-canonical activation of the pathway or interactions with other signaling pathways, such as Wnt or Notch. In this review, we present the Shh signaling pathway's role in the pathogenesis of sarcomas, including both canonical and non-canonical signaling. We also propose how this knowledge could be potentially translated into clinics.
Collapse
Affiliation(s)
- Natalia Banaszek
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland
- Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Dominika Kurpiewska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland
- Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Kozak
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland
| | - Paweł Sobczuk
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland.
| |
Collapse
|
5
|
Gu C, Zhang Q, Li Y, Li R, Feng J, Chen W, Ahmed W, Soufiany I, Huang S, Long J, Chen L. The PI3K/AKT Pathway-The Potential Key Mechanisms of Traditional Chinese Medicine for Stroke. Front Med (Lausanne) 2022; 9:900809. [PMID: 35712089 PMCID: PMC9194604 DOI: 10.3389/fmed.2022.900809] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/26/2022] [Indexed: 12/16/2022] Open
Abstract
Stroke is associated with a high disability and fatality rate, and adversely affects the quality of life of patients and their families. Traditional Chinese Medicine (TCM) has been used effectively in the treatment of stroke for more than 2000 years in China and surrounding countries and regions, and over the years, this field has gleaned extensive clinical treatment experience. The Phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) pathway is important for regulation of cell migration, proliferation, differentiation, and apoptosis, and plays a vital role in vascularization and oxidative stress in stroke. Current Western medicine treatment protocols for stroke include mainly pharmacologic or mechanical thrombectomy to restore blood flow. This review collates recent advances in the past 5 years in the TCM treatment of stroke involving the PI3K/AKT pathway. TCM treatment significantly reduces neuronal damage, inhibits cell apoptosis, and delays progression of stroke via various PI3K/AKT-mediated downstream pathways. In the future, TCM can provide new perspectives and directions for exploring the key factors, and effective activators or inhibitors that affect occurrence and progression of stroke, thereby facilitating treatment.
Collapse
Affiliation(s)
- Chenyang Gu
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qiankun Zhang
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yajing Li
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Rong Li
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jia Feng
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wanghao Chen
- Department of Neurosurgery, Shanghai 9th People Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Waqas Ahmed
- School of Medicine, Southeast University, Nanjing, China
| | | | - Shiying Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jun Long
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lukui Chen
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Hosseini F, Shanehbandi D, Soleimanpour J, Yousefi B, Alemi F. Melatonin Increases the Sensitivity of Osteosarcoma Cells to
Chemotherapy Drug Cisplatin. Drug Res (Stuttg) 2022; 72:312-318. [DOI: 10.1055/a-1830-8716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractChemotherapy, which is one of the common treatments for osteosarcoma (OS), has
many side effects and in some cases has low effectiveness due to
chemoresistance, hence it is vital to study new therapies for OS. In this
regard, we combined melatonin with cisplatin and evaluate their effect on MG63
OS cells. Since melatonin has anti-cancer properties, we hypothesized that its
combination with cisplatin could increase the effectiveness of cisplatin.
Firstly, MTT assay was used to evaluate the cell viability and cytotoxicity of
cisplatin on MG63 cells and the results showed that melatonin in combination
with cisplatin increases the sensitivity of MG63 cells to cisplatin. In
addition, qRT-PCR results showed that the expressions of miR-181 and P53, CYLD,
CBX7 and BCL2 genes change in MG63 cells after treatment with the combination of
cisplatin and melatonin, so that the expression of P53, CYLD and CBX7 increased
and the expression of BCL2 and miR-181b decreases significantly. Furthermore,
analysis of Annexin V/FITC assay data revealed that the rate of
apoptosis in MG63 OS cell line remarkably promoted after treated with cisplatin
and melatonin combination. As a result, our findings show that melatonin in
combination with cisplatin increases the effectiveness of cisplatin in
osteosarcoma cells and this study provides a new therapeutic approach for
OS.
Collapse
Affiliation(s)
- Foroogh Hosseini
- Department of Biochemistry and Clinical Laboratories, Faculty of
Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Molecular Medicine Research Center, Tabriz University of Medical
Sciences, Tabriz, Iran
| | - Jafar Soleimanpour
- Department of Orthopedics Surgery, Shohada Teaching Hospital, Tabriz
University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Biochemistry and Clinical Laboratories, Faculty of
Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of
Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Cai X, Yin W, Tang C, Lu Y, He Y. Molecular mechanism of microRNAs regulating apoptosis in osteosarcoma. Mol Biol Rep 2022; 49:6945-6956. [PMID: 35474050 DOI: 10.1007/s11033-022-07344-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/08/2022] [Indexed: 11/28/2022]
Abstract
Osteosarcoma is a primary malignant bone tumor with no effective treatment. Apoptosis, one of the programmed cell death, is any pathological form of cell death mediated by intracellular processes. Under the pathological state, the de-regulated regulation of apoptosis can disrupt the balance between cell proliferation and death, causing osteosarcoma proliferation and metastasis. As carcinogenic or tumor suppressor factors, microRNAs (miRNAs) regulate apoptosis of osteosarcoma cells by regulating apoptosis-related genes and apoptosis-related signaling pathways, such as mitochondrial apoptosis pathway, death receptor pathway, and endoplasmic reticulum pathway. Meanwhile as these abnormal miRNAs can be stored and transported by exosomes, detecting exosomes can be seen an effective method to diagnose osteosarcoma in the early stage. This review provides the current knowledge of miRNAs and their target genes related to the apoptosis of osteosarcoma, summarizes abnormal expression and regulation of miRNAs and signaling pathways in osteosarcoma and prospects the detection of exosome as a method for early diagnosis of osteosarcoma.
Collapse
Affiliation(s)
- Xueyang Cai
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou Province, China
| | - Wei Yin
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou Province, China
| | - Chao Tang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou Province, China
| | - Yubao Lu
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, Guangdong Province, China
| | - Yuqi He
- Trauma Surgery Department, Hannover Medical School (MHH), OE 6230 Carl-Neuberg-Straße 1, 30625, Hanover, Germany.
| |
Collapse
|
8
|
Re M, Tomasetti M, Monaco F, Amati M, Rubini C, Foschini MP, Sollini G, Gioacchini FM, Pasquini E, Santarelli L. NGS-based miRNome identifies miR-449 cluster as marker of malignant transformation of sinonasal inverted papilloma. Oral Oncol 2021; 122:105554. [PMID: 34653751 DOI: 10.1016/j.oraloncology.2021.105554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/14/2021] [Accepted: 09/25/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE identification of the miRNA expression profile in sinonasal inverted papilloma (SNIP) as a tool to evaluate the risk of transformation into sinonasal squamous cell carcinoma (SNSCC). MATERIALS AND METHODS paired tumour tissues and adjacent normal tissues were obtained from SNIP and SNSCC patients who had undergone surgical resection and used for next-generation sequencing (NGS)-based miRNome analysis. SNIP tissues with concomitant dysplasia (SNIP-DISP) were used as malignant transition samples. By comparing the deregulated miRNAs in SNIP and SNSCC, an miRNA cluster was identified and its physio- and clinical-pathological value was predicted. RESULTS NGS identified 54 miRNAs significantly down- and upregulated in SNIP. Among them, the miR-449 cluster was upregulated in SNIP and could differentiate the benign tumour from normal tissue. Notably, the miR-449 cluster was found to be significantly underexpressed in SNSCC, and the cluster markedly changed in SNIP during the malignant transition into SNSCC. miRNA enrichment analysis and GO analysis revealed that miR-449 is involved in apoptotic and cell proliferation pathways. CONCLUSIONS Our findings suggest that miR-449 may be involved in the molecular pathogenesis of SNIP and its malignant transformation into SNSCC. miR-449 might therefore be a useful tumour biomarker in patients with SNIP and may also have the potential to be used as a tool for detecting and monitoring the course of the possible malignant transformation.
Collapse
Affiliation(s)
- Massimo Re
- Department of Clinical and Molecular Sciences, Section of Otorhinolaryngology, Polytechnic University of Marche, Ancona, Italy.
| | - Marco Tomasetti
- Department of Clinical and Molecular Sciences, Section of Occupational Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Federica Monaco
- Department of Clinical and Molecular Sciences, Section of Occupational Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Monica Amati
- Department of Clinical and Molecular Sciences, Section of Occupational Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Corrado Rubini
- Department of Biomedical Sciences and Public Health, Section of Anatomical Pathology, Polytechnic University of Marche, Ancona, Italy
| | - Maria P Foschini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Section of Anatomic Pathology, Bellaria Hospital, Bologna, Italy
| | - Giacomo Sollini
- Surgical Department, ENT Metropolitan Unit, Bellaria & Budrio Hospital, Bologna, Italy
| | - Federico Maria Gioacchini
- Department of Clinical and Molecular Sciences, Section of Otorhinolaryngology, Polytechnic University of Marche, Ancona, Italy
| | - Ernesto Pasquini
- Surgical Department, ENT Metropolitan Unit, Bellaria & Budrio Hospital, Bologna, Italy
| | - Lory Santarelli
- Department of Clinical and Molecular Sciences, Section of Occupational Medicine, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
9
|
Re M, Tomasetti M, Monaco F, Amati M, Rubini C, Sollini G, Bajraktari A, Gioacchini FM, Santarelli L, Pasquini E. MiRNome analysis identifying miR-205 and miR-449a as biomarkers of disease progression in intestinal-type sinonasal adenocarcinoma. Head Neck 2021; 44:18-33. [PMID: 34647653 PMCID: PMC9292973 DOI: 10.1002/hed.26894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/02/2021] [Accepted: 09/30/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Patients with intestinal-type sinonasal adenocarcinoma (ITAC) have an unfavorable prognosis, and new diagnostic and therapeutic approaches are needed to improve clinical management. METHODS Next-generation sequencing-based miRNome analysis was performed on 43 ITAC patients who underwent surgical resection, and microRNA (miRNA) data were obtained from 35 cases. Four miRNAs were identified, and their expression levels were detected by reverse-transcription quantitative polymerase chain reaction and related to the relevant patient outcome. Overall survival and disease-free survival rates were evaluated through the Kaplan-Meier method and log-rank test, and multivariate analysis was performed by means of Cox proportional hazard analysis. RESULTS High levels of miR-205 and miR-34c/miR-449 cluster expression were associated with an increased recurrence risk and, therefore, a worse prognosis. Multivariate analysis confirmed that miR-205 and miR-449 were significant prognostic predictors. CONCLUSIONS A high expression of miR-205 and miR-449 is independent predictors of poor survival for ITAC patients.
Collapse
Affiliation(s)
- Massimo Re
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Marco Tomasetti
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Federica Monaco
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Monica Amati
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Corrado Rubini
- Department of Biomedical Sciences and Public Health, Anatomy Pathology and Histopathology Section, Polytechnic University of Marche, Ancona, Italy
| | | | - Arisa Bajraktari
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | | | - Lory Santarelli
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | | |
Collapse
|
10
|
Shen Y, Lin Y, Liu K, Chen J, Zhong J, Gao Y, Yuan C. XIST: A Meaningful Long Noncoding RNA in NSCLC Process. Curr Pharm Des 2021; 27:1407-1417. [PMID: 33267757 DOI: 10.2174/1381612826999201202102413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/01/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND A number of studies have proposed that lncRNA XIST plays a role in the development and chemosensitivity of NSCLC. Besides, XIST may become a potential therapeutic target for NSCLC patients. The aim of this review is to reveal the biological functions and exact mechanisms of XIST in NSCLC. METHODS In this review, relevant researches involving the relationship between XIST and NSCLC are collected through systematic retrieval of PubMed. RESULTS XIST is an oncogene in NSCLC and is abnormally upregulated in NSCLC tissues. Considerable evidence has shown that XIST plays a critical role in the proliferation, invasion, migration, apoptosis and chemosensitivity of NSCLC cells. XIST mainly functions as a ceRNA in the NSCLC process, while XIST also functions at transcriptional levels. CONCLUSION LncRNA XIST has the potential to become a novel biomolecular marker of NSCLC and a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Yujie Shen
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Yexiang Lin
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Kai Liu
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Jinlan Chen
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Juanjuan Zhong
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Yisong Gao
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
11
|
Ma Z, Li K, Chen P, Pan Q, Li X, Zhao G. MiR-134, Mediated by IRF1, Suppresses Tumorigenesis and Progression by Targeting VEGFA and MYCN in Osteosarcoma. Anticancer Agents Med Chem 2021; 20:1197-1208. [PMID: 32238141 DOI: 10.2174/1871520620666200402074752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/06/2020] [Accepted: 01/31/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Osteosarcoma (OS) is a prevalent primary bone malignancy and its distal metastasis remains the main cause of mortality in OS patients. MicroRNAs (miRNAs) play critical roles during cancer metastasis. OBJECTIVE Thus, elucidating the role of miRNA dysregulation in OS metastasis may provide novel therapeutic targets. METHODS The previous study found a low miR-134 expression level in the OS specimens compared with paracancer tissues. Overexpression of miR-134 stable cell lines was established. Cell viability assay, cell invasion and migration assay and apoptosis assay were performed to evaluate the role of miR-134 in OS in vitro. RESULTS We found that miR-134 overexpression inhibits cell proliferation, migration and invasion, and induces cell apoptosis in both MG63 and Saos-2 cell lines. Mechanistically, miR-134 targets the 3'-UTR of VEGFA and MYCN mRNA to silence its translation, which was confirmed by luciferase-reporter assay. The real-time PCR analysis illustrated that miR-134 overexpression decreases VEGFA and MYCN mRNA levels. Additionally, the overexpression of VEGFA or MYCN can partly attenuate the effects of miR-134 on OS cell migration and viability. Furthermore, the overexpression of miR-134 dramatically inhibits tumor growth in the human OS cell line xenograft mouse model in vivo. Moreover, bioinformatic and luciferase assays indicate that the expression of miR-134 is regulated by Interferon Regulatory Factor (IRF1), which binds to its promoter and activates miR-134 expression. CONCLUSION Our study demonstrates that IRF1 is a key player in the transcriptional control of miR-134, and it inhibits cell proliferation, invasion and migration in vitro and in vivo via targeting VEGFA and MYCN.
Collapse
Affiliation(s)
- Zhuo Ma
- China-Japan Union Hospital of Jilin University, Changchun City, Jilin Province, 130033, China
| | - Kai Li
- China-Japan Union Hospital of Jilin University, Changchun City, Jilin Province, 130033, China
| | - Peng Chen
- China-Japan Union Hospital of Jilin University, Changchun City, Jilin Province, 130033, China
| | - Qizheng Pan
- China-Japan Union Hospital of Jilin University, Changchun City, Jilin Province, 130033, China
| | - Xuyang Li
- China-Japan Union Hospital of Jilin University, Changchun City, Jilin Province, 130033, China
| | - Guoqing Zhao
- China-Japan Union Hospital of Jilin University, Changchun City, Jilin Province, 130033, China
| |
Collapse
|
12
|
Fu D, Chen Y, Xu D. Circulating miR-449a predicts survival outcome for colorectal cancer following curative resection: An observational study. Medicine (Baltimore) 2021; 100:e25022. [PMID: 33847612 PMCID: PMC8052019 DOI: 10.1097/md.0000000000025022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/10/2021] [Indexed: 01/04/2023] Open
Abstract
Previous studies showed that microRNA (miR)-449a may function as a tumor suppressor. However, the expression pattern and value of circulating miR-449a in colorectal cancer (CRC) remain unclear. Therefore, the purpose of this study was to measure circulating miR-449a level of CRC patients and evaluate its value for predicting prognosis.Plasma samples of 343 consecutive CRC patients and 162 healthy controls were obtained. Circulating miR-449a levels were measured by using real-time quantitative reverse transcription polymerase chain reactions. All enrolled patients were followed up in a regular interval after surgery. The clinical data and survival outcome of all 343 patients were collected. The correlation between circulating miR-449a level and survival outcomes was analyzed by univariate and multivariate analysis.Circulating miR-449a level in CRC patients was significantly decreased (P < .05) comparing with healthy controls. Low miR-449a was significantly associated with CEA and CA19-9 level (both P < .05). Furthermore, patients with a decreased miR-449a level had a lower 5-years overall survival (OS) rate than those with a high miR-449a (67.4% vs 76.9%, P = .03). Low circulating miR-449a level also been demonstrated as an independent risk factor for CRC in multivariate COX analysis (HR, 2.56; 95%CI: 1.15-8.63; P < .05).Circulating miR-449a was significantly decreased in CRC patients and closely related to poor prognosis, suggesting that miR-449a might can be used as a useful diagnostic and prognostic marker for CRC.
Collapse
Affiliation(s)
- Dengke Fu
- Department of Oncology, Chuiyangliu Hospital Affiliated to Tsinghua University
| | - Yang Chen
- Department of Oncology, Chuiyangliu Hospital Affiliated to Tsinghua University
| | - Dongkui Xu
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| |
Collapse
|
13
|
Shao S, Li S, Liu C, Zhang W, Zhang Z, Zhu S, Feng Y, Pan Y. Toosendanin induces apoptosis of MKN‑45 human gastric cancer cells partly through miR‑23a‑3p‑mediated downregulation of BCL2. Mol Med Rep 2020; 22:1793-1802. [PMID: 32582989 PMCID: PMC7411345 DOI: 10.3892/mmr.2020.11263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 05/22/2020] [Indexed: 12/17/2022] Open
Abstract
Toosendanin (TSN) is a tetracyclic triterpenoid extracted from Melia toosendan Sieb, et Zucc, which primarily grows in specific areas of China. Although toosendanin (TSN) exerts antitumoral effects on various human cancer cells, its influence on gastric cancer (GC) is remains to be elucidated. MicroRNAs (miRNAs/miRs) serve crucial roles in apoptosis and proliferation of cancer cells. miR-23a-3p has been shown to be associated with human GC; however, the specific function of miR-23a-3p in GC remains unclear. Therefore, the present study aimed to elucidate the role of miR-23a-3p in the regulation of GC cell proliferation and apoptosis induced in vitro by TSN treatment. Subsequently, apoptosis-related genes expression levels were quantified by reverse transcription-quantitative PCR and western blot analysis, respectively, and the target relationship between miR-23a-3p and BCL2 was determined by luciferase reporter gene analysis. Additionally, cell proliferation and apoptosis experiments were carried out. The results indicated that TSN inhibited proliferation and induced apoptosis in MKN-45 cells. Moreover, it upregulated the expression of miR-23a-3p. B-cell lymphoma-2 (BCL2) was identified as a potential target gene of miR-23a-3p, which was demonstrated to bind to the 3′-untranslated region of BCL2 mRNA, as detected by the luciferase reporter assay. Further studies revealed that BCL2 expression was downregulated following overexpression of miR-23a-3p. In addition, the overexpression of the miR-23a-3p inhibited proliferation, induced G1 arrest and increased apoptosis in MKN-45 cells. The results of the present study demonstrated that miR-23a-3p inhibited proliferation and induced apoptosis of GC cells, which may be attributable to its direct targeting of BCL2. These results may provide a novel insight into the apoptosis of GC cells, and may lead to investigations into the mechanisms of the effects of TSN.
Collapse
Affiliation(s)
- Shuli Shao
- Department of Life Science and Agroforestry, Qiqihar University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Shanshan Li
- Department of Life Science and Agroforestry, Qiqihar University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Chang Liu
- Department of Life Science and Agroforestry, Qiqihar University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Weiwei Zhang
- Department of Life Science and Agroforestry, Qiqihar University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Zhenzhu Zhang
- Department of Life Science and Agroforestry, Qiqihar University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Shaowei Zhu
- Department of Life Science and Agroforestry, Qiqihar University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Yunjianan Feng
- Department of Life Science and Agroforestry, Qiqihar University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Yang Pan
- Department of Life Science and Agroforestry, Qiqihar University, Qiqihar, Heilongjiang 161006, P.R. China
| |
Collapse
|
14
|
Otoukesh B, Abbasi M, Gorgani HOL, Farahini H, Moghtadaei M, Boddouhi B, Kaghazian P, Hosseinzadeh S, Alaee A. MicroRNAs signatures, bioinformatics analysis of miRNAs, miRNA mimics and antagonists, and miRNA therapeutics in osteosarcoma. Cancer Cell Int 2020; 20:254. [PMID: 32565738 PMCID: PMC7302353 DOI: 10.1186/s12935-020-01342-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) involved in key signaling pathways and aggressive phenotypes of osteosarcoma (OS) was discussed, including PI3K/AKT/MTOR, MTOR AND RAF-1 signaling, tumor suppressor P53- linked miRNAs, NOTCH- related miRNAs, miRNA -15/16 cluster, apoptosis related miRNAs, invasion-metastasis-related miRNAs, and 14Q32-associated miRNAs cluster. Herrin, we discussed insights into the targeted therapies including miRNAs (i.e., tumor-suppressive miRNAs and oncomiRNAs). Using bioinformatics tools, the interaction network of all OS-associated miRNAs and their targets was also depicted.
Collapse
Affiliation(s)
- Babak Otoukesh
- Orthopedic Surgery Fellowship in Département Hospitalo-Universitaire MAMUTH « Maladies musculo-squelettiques et innovations thérapeutiques » , Université Pierre et Marie-Curie, Sorbonne Université, Paris, France.,Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Mehdi Abbasi
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib-O-Lah Gorgani
- Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Hossein Farahini
- Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Mehdi Moghtadaei
- Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Bahram Boddouhi
- Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Peyman Kaghazian
- Department of Orthopedic and Traumatology, Universitätsklinikum Bonn, Bonn, Germany
| | - Shayan Hosseinzadeh
- Department of Orthopedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA USA
| | - Atefe Alaee
- Department of Information Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Tan YX, Hong Y, Jiang S, Lu MN, Li S, Chen B, Zhang L, Hu T, Mao R, Mei R, Xiyang YB. MicroRNA‑449a regulates the progression of brain aging by targeting SCN2B in SAMP8 mice. Int J Mol Med 2020; 45:1091-1102. [PMID: 32124967 PMCID: PMC7053848 DOI: 10.3892/ijmm.2020.4502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/29/2020] [Indexed: 12/23/2022] Open
Abstract
Our previous study demonstrated that the expression of sodium channel voltage-gated beta 2 (SCN2B) increased with aging in senescence-accelerated mouse prone 8 (SAMP8) mice, and was identified to be associated with a decline in learning and memory, while the underlying mechanism is unclear. In the present study, multiple differentially expressed miRNAs, which may be involved in the process of aging by regulating target genes, were identified in the prefrontal cortex and hippocampus of SAMP8 mice though miRNA microarray analysis. Using bioinformatics prediction, SCN2B was identified to be one of the potential target genes of miR-449a, which was downregulated in the hippocampus. Previous studies demonstrated that miR-449a is involved in the occurrence and progression of aging by regulating a variety of target genes. Therefore, it was hypothesized that miR-449a may be involved in the process of brain aging by targeting SCN2B. To verify this hypothesis, the following experiments were conducted: A reverse transcription-quantitative polymerase chain reaction assay revealed that the expression level of miR-449a was significantly decreased in the prefrontal cortex and hippocampus of 12-month old SAMP8 mice; a dual-luciferase reporter assay verified that miR-449a regulated SCN2B expression by binding to the 3′-UTR 'seed region'; an anti-Ago co-immunoprecipitation combined with Affymetrix micro-array analyses demonstrated that the target mRNA highly enriched with Ago-miRNPs was confirmed to be SCN2B. Finally, overexpression of miR-449a or inhibition of SCN2B promoted the extension of hippocampal neurons in vitro. The results of the present study suggested that miR-449a was downregulated in the prefrontal cortex and hippocampus of SAMP8 mice and may regulate the process of brain aging by targeting SCN2B.
Collapse
Affiliation(s)
- Ya-Xin Tan
- Institute of Neuroscience, Basic Medical College, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Ying Hong
- Department of Laboratory Medicine, The Third People's Hospital of Yunnan Province, Kunming, Yunnan 650011, P.R. China
| | - Shui Jiang
- Department of Laboratory Medicine, The Third People's Hospital of Yunnan Province, Kunming, Yunnan 650011, P.R. China
| | - Min-Nan Lu
- Science and Technology Achievement Incubation Center, Kunming, Yunnan 650500, P.R. China
| | - Shan Li
- Institute of Neuroscience, Basic Medical College, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Bo Chen
- Science and Technology Achievement Incubation Center, Kunming, Yunnan 650500, P.R. China
| | - Li Zhang
- Editorial Department of Journal of Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Tao Hu
- Department of Laboratory Medicine, The Third People's Hospital of Yunnan Province, Kunming, Yunnan 650011, P.R. China
| | - Rui Mao
- School of Stomatology, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Rong Mei
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Yan-Bin Xiyang
- Institute of Neuroscience, Basic Medical College, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
16
|
Viera GM, Salomao KB, de Sousa GR, Baroni M, Delsin LEA, Pezuk JA, Brassesco MS. miRNA signatures in childhood sarcomas and their clinical implications. Clin Transl Oncol 2019; 21:1583-1623. [PMID: 30949930 DOI: 10.1007/s12094-019-02104-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Abstract
Progresses in multimodal treatments have significantly improved the outcomes for childhood cancer. Nonetheless, for about one-third of patients with Ewing sarcoma, rhabdomyosarcoma, or osteosarcoma steady remission has remained intangible. Thus, new biomarkers to improve early diagnosis and the development of precision-targeted medicine remain imperative. Over the last decade, remarkable progress has been made in the basic understanding of miRNAs function and in interpreting the contribution of their dysregulation to cancer development and progression. On this basis, this review focuses on what has been learned about the pivotal roles of miRNAs in the regulation of key genes implicated in childhood sarcomas.
Collapse
Affiliation(s)
- G M Viera
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - K B Salomao
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - G R de Sousa
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - M Baroni
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - L E A Delsin
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - J A Pezuk
- Anhanguera University of Sao Paulo, UNIAN/SP, Sao Paulo, Brasil
| | - M S Brassesco
- Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brasil.
- Departamento de Biologia, FFCLRP-USP, Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirao Preto, SP, CEP 14040-901, Brazil.
| |
Collapse
|
17
|
Upadhyaya P, Di Serafino A, Sorino L, Ballerini P, Marchisio M, Pierdomenico L, Stuppia L, Antonucci I. Genetic and epigenetic modifications induced by chemotherapeutic drugs: human amniotic fluid stem cells as an in-vitro model. BMC Med Genomics 2019; 12:146. [PMID: 31660974 PMCID: PMC6816179 DOI: 10.1186/s12920-019-0595-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/26/2019] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Bleomycin, etoposide and cisplatin (BEP) are three chemotherapeutic agents widely used individually or in combination with each other or other chemotherapeutic agents in the treatment of various cancers. These chemotherapeutic agents are cytotoxic; hence, along with killing cancerous cells, they also damage stem cell pools in the body, which causes various negative effects on patients. The epigenetic changes due to the individual action of BEP on stem cells are largely unknown. METHODS Human amniotic fluid stem cells (hAFSCs) were treated with our in-vitro standardized dosages of BEP individually, for seven days. The cells were harvested after the treatment and extraction of DNA and RNA were performed. Real-time PCR and flow cytometry were conducted for cell markers analysis. The global DNA methylation was quantified using 5mC specific kit and promoter and CpG methylation % through bisulfite conversion and pyrosequencing. Micro- RNAs (miRNAs) were quantified with real-time qPCR. RESULTS The cytotoxic nature of BEP was observed even at low dosages throughout the experiment. We also investigated the change in the expression of various pluripotent and germline markers and found a significant change in the properties of the cells after the treatments. The methylation of DNA at global, promoter and individual CpG levels largely get fluctuated due to the BEP treatment. Several tested miRNAs showed differential expression. No positive correlation between mRNA and protein expression was observed for some markers. CONCLUSION Cytotoxic chemotherapeutic agents such as BEP were found to alter stem cell properties of hAFSCs. Different methylation profiles change dynamically, which may explain such changes in cellular properties. Data also suggests that the fate of hAFSCs after treatment may depend upon the interplay between the miRNAs. Finally, our results demonstrate that hAFSCs might prove to be a suitable in-vitro model of stem cells to predict genetic and epigenetic modification due to the action of various drugs.
Collapse
Affiliation(s)
- Prabin Upadhyaya
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, "G.d'Annunzio" University, Chieti-Pescara, Via dei Vestini 31, 66013, Chieti, Italy
| | - Alessandra Di Serafino
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, "G.d'Annunzio" University, Chieti-Pescara, Via dei Vestini 31, 66013, Chieti, Italy
| | - Luca Sorino
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, "G.d'Annunzio" University, Chieti-Pescara, Via dei Vestini 31, 66013, Chieti, Italy
| | - Patrizia Ballerini
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, "G.d'Annunzio" University, Chieti-Pescara, Via dei Vestini 31, 66013, Chieti, Italy
- Centre of Aging Science and Translational Medicine (Ce.S.I.-Me.T.), G. d'Annunzio University, Chieti-Pescara, Italy
| | - Marco Marchisio
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, "G.d'Annunzio" University, Chieti-Pescara, Via dei Vestini 31, 66013, Chieti, Italy
- Centre of Aging Science and Translational Medicine (Ce.S.I.-Me.T.), G. d'Annunzio University, Chieti-Pescara, Italy
| | - Laura Pierdomenico
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, "G.d'Annunzio" University, Chieti-Pescara, Via dei Vestini 31, 66013, Chieti, Italy
- Centre of Aging Science and Translational Medicine (Ce.S.I.-Me.T.), G. d'Annunzio University, Chieti-Pescara, Italy
| | - Liborio Stuppia
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, "G.d'Annunzio" University, Chieti-Pescara, Via dei Vestini 31, 66013, Chieti, Italy
- Centre of Aging Science and Translational Medicine (Ce.S.I.-Me.T.), G. d'Annunzio University, Chieti-Pescara, Italy
| | - Ivana Antonucci
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, "G.d'Annunzio" University, Chieti-Pescara, Via dei Vestini 31, 66013, Chieti, Italy.
- Centre of Aging Science and Translational Medicine (Ce.S.I.-Me.T.), G. d'Annunzio University, Chieti-Pescara, Italy.
| |
Collapse
|
18
|
Shreya S, Malavika D, Priya VR, Selvamurugan N. Regulation of Histone Deacetylases by MicroRNAs in Bone. Curr Protein Pept Sci 2019; 20:356-367. [PMID: 30381072 DOI: 10.2174/1389203720666181031143129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/15/2018] [Accepted: 10/19/2018] [Indexed: 02/08/2023]
Abstract
Formation of new bone by osteoblasts is mediated via the activation of signaling pathways, such as TGF-β, BMP, and Wnt. A number of transcription factors participate in the signaling cascades that are tightly regulated by other regulatory factors. Histone deacetylases (HDACs) are one such class of regulatory factors that play an essential role in influencing chromatin architecture and regulate the expression of the genes that play a role in osteoblast differentiation by the mechanism of deacetylation. Four classes of HDACs have been identified namely, class I, class II A, class II B, class III and class IV. MicroRNAs (miRNAs) are small fragments of non-coding RNAs typically 19-25 nucleotides long that target mRNAs to upregulate or downregulate gene expression at a post-transcriptional level. A number of miRNAs that target HDACs in bone have been recently reported. Hence, in this review, we elaborate on the various miRNAs that target the different classes of HDACs and impact of the same on osteogenesis.
Collapse
Affiliation(s)
- S Shreya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - D Malavika
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - V Raj Priya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| |
Collapse
|
19
|
He S, Wang Z, Tang H, Dong J, Qu Y, Lv J. MiR-217 Inhibits Proliferation, Migration, and Invasion by Targeting SIRT1 in Osteosarcoma. Cancer Biother Radiopharm 2019; 34:264-270. [PMID: 31070483 DOI: 10.1089/cbr.2017.2394] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose: Many studies have revealed that microRNAs (miRNAs) play crucial roles in cancer development and progression. miRNA-217 (miR-217) has been implicated in various cancers. However, the role of miR-217 in osteosarcoma (OS) remains unclear. In this study, the authors examined the role of miR-217 in development of OS. Materials and Methods: Using quantitative real-time PCR, they assessed expression levels of miR-217 in cultured cells and patient samples and examined the proliferation, migration, and invasion of cultured cells by MTT cell proliferation assays, cell scratch test, and cell transwell test. The proliferation, migration, and invasion were examined for MG63 and U2OS transfected by miR-217. Silent information regulator 2 homolog 1 (SIRT1) overexpression plasmid was designed. Results: Expression of miR-217 was downregulated in samples of OS tissue and cultured cells. Proliferation, migration, and invasion were inhibited by ectopic overexpression of miR-217. SIRT1 was identified as targets of miR-217. Expression levels of SIRT1 were inhibited by miR-217 expression in cultured cells, and the expression levels of miR-217 and SIRT1 were inversely correlated in patients with OS. Conclusion: MiR-217 acts as a tumor suppressor in the development of OS. The tumor-suppressive function of miR-217 in OS suggests inhibition of SIRT1.
Collapse
Affiliation(s)
- Shaoxuan He
- 1 Emergency Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhihua Wang
- 1 Emergency Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hao Tang
- 1 Emergency Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Junjie Dong
- 2 Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yongzhou Qu
- 1 Emergency Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jia Lv
- 1 Emergency Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
20
|
Wang Y, Li B, Zhang X. Scutellaria barbata D. Don (SBD) protects oxygen glucose deprivation/reperfusion-induced injuries of PC12 cells by up-regulating Nrf2. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1797-1807. [PMID: 31062620 DOI: 10.1080/21691401.2019.1610413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study aimed to investigate the potential effect of Scutellaria barbata D. Don (SBD) on oxygen glucose deprivation/reperfusion (OGD/R)-injured PC12 cells. PC12 cells were pretreated with various concentrations of 0.1-0.8 mg/ml SBD for indicated times (12-48 h) and then subjected to OGD/R injury. Cell viability, apoptosis and proliferation were detected using MTT assay, flow cytometry, Ki67 staining and western blot. Oxidative damage was assessed by detecting MDA content, SOD activity and GSH levels. The mitochondrial membrane potential (Δψm) was measured by Rh123 staining. Western blot was performed to assess the expression levels of Nrf2 and PI3K/AKT pathway-related proteins. We found that SBD pretreatment promoted cell viability and proliferation but inhibited apoptosis of OGD/R-injured PC12 cells in dosage- and time-dependent manner. Meanwhile, SBD attenuated oxidative damage and restored mitochondria dysfunction, as evidenced by the reduced MDA content, the increased SOD and GSH levels, and the increased Δψm. Furthermore, SBD induced the expression of Nrf2 in a PI3K/AKT-dependent signalling. Knockdown of Nrf2 blocked the protective effects of SBD on PC12 cells. In conclusion, this study demonstrates that SBD pretreatment protects PC12 cells against OGD/R-induced injury. The potential mechanism may be through up-regulating the expression of Nrf2 in a PI3K/AKT-dependent pathway.
Collapse
Affiliation(s)
- Yanhua Wang
- a Department of Critical Care Medicine , Jining No.1 People's Hospital , Jining , China.,b Affiliated Jining No.1 People's Hospital of Jining Medical University, Jining Medical University , Jining , China
| | - Bo Li
- a Department of Critical Care Medicine , Jining No.1 People's Hospital , Jining , China
| | - Xiaofen Zhang
- a Department of Critical Care Medicine , Jining No.1 People's Hospital , Jining , China
| |
Collapse
|
21
|
He M, Shen P, Qiu C, Wang J. miR-627-3p inhibits osteosarcoma cell proliferation and metastasis by targeting PTN. Aging (Albany NY) 2019; 11:5744-5756. [PMID: 31413208 PMCID: PMC6710034 DOI: 10.18632/aging.102157] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/03/2019] [Indexed: 12/24/2022]
Abstract
Dysregulation of microRNA (miRNA) has been observed in several types of tumors, including osteosarcoma. Biochip analysis was used to identify miRNAs differentially expressed in osteosarcoma tissues. The targeting sites of miR-627-3p were analyzed using miRDB software and fluorescein reporter gene. MTT and Transwell assays were used to analyze the effects of miR-627-3p on the growth and migration of osteosarcoma cells. Western blotting and real-time PCR were used to detect the effects of miR-627-3p on related proteins. In vivo experiments were conducted to verify the effect of miR-627-3p on osteosarcoma. We focused on miR-627-3p because it was the most significantly downregulated miRNA in our screening study. Through luciferase reporter assays, western blotting and real-time PCR we found that miR-627-3p directly targets PTN, and that expression levels of miR-627-3p and PTN are negatively correlated in osteosarcoma cells. Downregulation of miR-627-3p promoted osteosarcoma cell proliferation and metastasis, while its overexpression had the opposite effect. By targeting PTN, miR-627-3p also suppressed expression of Cyclin D1 and MMP2. MiR-627-3p inhibited osteosarcoma metastasis in vivo. Thus, miR-627-3p may be a useful therapeutic target for the treatment osteosarcoma or prevention of metastasis.
Collapse
Affiliation(s)
- Ming He
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Peng Shen
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Chuang Qiu
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Jiashi Wang
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
22
|
Liu C, Cai L, Li H. miR‑185 regulates the growth of osteosarcoma cells via targeting Hexokinase 2. Mol Med Rep 2019; 20:2774-2782. [PMID: 31524259 PMCID: PMC6691194 DOI: 10.3892/mmr.2019.10534] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/05/2019] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) have been proposed as potential prognostic and diagnostic biomarkers in numerous types of cancer, including osteosarcoma (OS), which is the most common bone malignancy. The present study revealed that the expression of miR‑185 was downregulated in OS tissues and cells. Overexpression of miR‑185 significantly suppressed the proliferation and migration of OS cells. To further investigate the functional roles of miR‑185 in OS, the downstream targets of miR‑185 were predicted using the microRNA.org database. The results revealed that in cancer cells, hexokinase 2 (HK2), the rate‑limiting enzyme of glycolysis, was a potential target of miR‑185. Molecular analysis indicated that miR‑185 binds to the 3'‑untranslated region of HK2 mRNA. Overexpressed miR‑185 downregulated the mRNA and protein levels of HK2 in OS cells. In addition, an inverse correlation between the expression of miR‑185 and HK2 was reported in OS. Consistent with the downregulation of HK2 induced by miR‑185, overexpression of HK2 in OS cells significantly attenuated the inhibitory effects of miR‑185 on glucose consumption and lactate production, while depletion of miR‑185 promoted the glycolysis of OS cells. Additionally, restoration of HK2 abolished the inhibitory effects of miR‑185 on the proliferation of OS cells. In summary, these results revealed that miR‑185 suppressed the glucose metabolism of OS cells; thus, miR‑185 may be considered as a promising therapeutic target for the treatment of OS.
Collapse
Affiliation(s)
- Chaojian Liu
- Department of Orthopedics, The Central Hospital of Chaozhou, Chaozhou, Guangdong 521011, P.R. China
| | - Lajia Cai
- Department of Orthopedics, The Central Hospital of Chaozhou, Chaozhou, Guangdong 521011, P.R. China
| | - Haomiao Li
- Department of Bone Oncology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
23
|
Meng H, Huang Q, Zhang X, Huang J, Shen R, Zhang B. MiR-449a regulates the cell migration and invasion of human non-small cell lung carcinoma by targeting ADAM10. Onco Targets Ther 2019; 12:3829-3838. [PMID: 31190882 PMCID: PMC6529029 DOI: 10.2147/ott.s190282] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/25/2019] [Indexed: 12/17/2022] Open
Abstract
Background: MicroRNAs (miRNAs) are non-coding small RNAs that have been shown to play a key role in the development of many tumors. However, its specific mechanism of action in non-small cell lung cancer (NSCLC) is not very clear. Purpose: This study was to identify the effect of miRNA-449a on NSCLC invasion and migration. Methods: We used quantitative real-time PCR experiments to demonstrate that miRNA-449a is down-regulated in NSCLC tissues and cell lines. We also used the Transwell assay to detect cell invasion and migration, and the Western Blot assay was used to detect protein expression. The dual luciferase assay was used to detect the targeting relationship between miR-449a and A Disintegrin And Metalloproteinases 10 (ADAM10). Results: Our experiments demonstrated that miRNA-449a was down-regulated in NSCLC tissues and cell lines. When miRNA-449a was up-regulated in NSCLC cells, the invasion and migration ability of the cells was weakened, and the expression of ADAM10 was decreased. After down-regulation of miRNA-449a, the cell's invasion and migration ability was enhanced, and the expression of ADAM10 was increased. Through dual luciferase assays, we also found that miRNA-449a can target ADAM10 to delay the progression of epithelial-mesenchymal transition (EMT) and inhibit invasion and migration. Conclusion: Our experiments demonstrated that miRNA-449a acted as a tumor suppressor gene through inhibiting the expression of ADAM10 in NSCLC.
Collapse
Affiliation(s)
- Haining Meng
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao 266021, People's Republic of China
| | - Qiao Huang
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao 266021, People's Republic of China
| | - Xijin Zhang
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao 266021, People's Republic of China
| | - Jiawei Huang
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao 266021, People's Republic of China
| | - Ruowu Shen
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao 266021, People's Republic of China
| | - Bei Zhang
- Department of Immunology, School of Basic Medical College, Qingdao University, Qingdao 266021, People's Republic of China
| |
Collapse
|
24
|
Zhang Y, Zhang C, Min D. Ailanthone up-regulates miR-449a to restrain acute myeloid leukemia cells growth, migration and invasion. Exp Mol Pathol 2019; 108:114-120. [PMID: 31002772 DOI: 10.1016/j.yexmp.2019.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/25/2019] [Accepted: 04/16/2019] [Indexed: 01/27/2023]
Abstract
BACKGROUND Ailanthone (AIL) is a quassinoid isolated from traditional Chinese herbal medicine Ailanthus altissima. The anti-tumor activities of AIL have been reported in various solid tumors. This study aimed to reveal the in vitro effect of AIL on acute myeloid leukemia (AML) cells. METHODS The effects of AIL on five AML cell lines (KG1, HL60, U-937, THP-1 and OCI-AML2) as well as myeloid progenitor cells were evaluated by performing CCK-8 assay, flow cytometry, Transwell assay and Western blotting. KG1 and HL60 cells were transfected with miR-449a inhibitor or its negative control, and then were treated by AIL. The above mentioned assays were performed again to study the involvement of miR-449a in AIL's function. RESULTS AIL dose-dependently inhibited the viability of AML cells and myeloid progenitor cells. The IC50 value of AIL towards KG1 and HL60 cells was 0.58 and 0.57 μM, respectively. AIL with concentration of 0.5 μM significantly induced the apoptosis of AML cells rather than myeloid progenitor cells. Meanwhile, 0.5 μM AIL significantly reduced migration and invasion of AML cells. miR-449a was highly expressed in response to the treatment of 0.5 μM AIL. Besides this, the anti-tumor activities of AIL in AML cells were attenuated by miR-449a silence. Further, the blockage of Notch and PI3K/AKT signaling pathways induced by AIL was reversed by miR-449a silence. CONCLUSION AIL restrained AML cells growth, migration and invasion through up-regulation of miR-449a, and deactivation of Notch and PI3K/AKT signaling pathways.
Collapse
MESH Headings
- Apoptosis/drug effects
- Cell Cycle/drug effects
- Cell Growth Processes/drug effects
- Cell Line, Tumor
- Cell Movement/drug effects
- Drugs, Chinese Herbal/pharmacology
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neoplasm Invasiveness
- Phosphatidylinositol 3-Kinases/metabolism
- Quassins/pharmacology
- Receptors, Notch/metabolism
- Signal Transduction/drug effects
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Yang Zhang
- Department of Hematology, Jining No.1 People's Hospital, Jining 272000, Shandong, China.; Affiliated Jining No.1 People's Hospital of Jining Medical University, Jining Medical University, Jining 272067, Shandong, China
| | - Chunzhi Zhang
- Department of Clinical Laboratory, Jining No.1 People's Hospital, Jining 272000, Shandong, China
| | - Dejin Min
- Department of Hepatobiliary Surgery, Jining No.1 People's Hospital, Jining 272000, Shandong, China.
| |
Collapse
|
25
|
Shekhar R, Priyanka P, Kumar P, Ghosh T, Khan MM, Nagarajan P, Saxena S. The microRNAs miR-449a and miR-424 suppress osteosarcoma by targeting cyclin A2 expression. J Biol Chem 2019; 294:4381-4400. [PMID: 30679313 DOI: 10.1074/jbc.ra118.005778] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 01/18/2019] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs of the miR-16 and miR-34 families have been reported to inhibit cell cycle progression, and their loss has been linked to oncogenic transformation. Utilizing a high-throughput, genome-wide screen for miRNAs and mRNAs that are differentially regulated in osteosarcoma (OS) cell lines, we report that miR-449a and miR-424, belonging to the miR-34 and miR-16 families, respectively, target the major S/G2 phase cyclin, cyclin A2 (CCNA2), in a bipartite manner. We found that the 3'-UTR of CCNA2 is recognized by miR-449a, whereas the CCNA2 coding region is targeted by miR-424. Of note, we observed loss of both miR-449a and miR-424 in OS, resulting in derepression of CCNA2 and appearance of aggressive cancer phenotypes. Ectopic expression of miR-449a and miR-424 significantly decreased cyclin A2 levels and inhibited proliferation rate, migratory potential, and colony-forming ability of OS cells. To further probe the roles of miR-449a and miR-424 in OS, we developed an OS mouse model by intraosseous injection of U2OS cells into the tibia bone of NOD-scid mice, which indicated that miR-449a and miR-424 co-expression suppresses tumor growth. On the basis of this discovery, we analyzed the gene expression of human OS biopsy samples, revealing that miR-449a and miR-424 are both down-regulated, whereas cyclin A2 is significantly up-regulated in these OS samples. In summary, the findings in our study highlight that cyclin A2 repression by miRNAs of the miR-16 and miR-34 families is lost in aggressive OS.
Collapse
Affiliation(s)
- Ritu Shekhar
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Priyanka Priyanka
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Praveen Kumar
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Tanushree Ghosh
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Md Muntaz Khan
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Perumal Nagarajan
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Sandeep Saxena
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
26
|
Xie L, Yao Z, Zhang Y, Li D, Hu F, Liao Y, Zhou L, Zhou Y, Huang Z, He Z, Han L, Yang Y, Yang Z. Deep RNA sequencing reveals the dynamic regulation of miRNA, lncRNAs, and mRNAs in osteosarcoma tumorigenesis and pulmonary metastasis. Cell Death Dis 2018; 9:772. [PMID: 29991755 PMCID: PMC6039476 DOI: 10.1038/s41419-018-0813-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 02/06/2023]
Abstract
Osteosarcoma (OS) is the most common pediatric malignant bone tumor, and occurrence of pulmonary metastasis generally causes a rapid and fatal outcome. Here we aimed to provide clues for exploring the mechanism of tumorigenesis and pulmonary metastasis for OS by comprehensive analysis of microRNA (miRNA), long non-coding RNA (lncRNA), and mRNA expression in primary OS and OS pulmonary metastasis. In this study, deep sequencing with samples from primary OS (n = 3), pulmonary metastatic OS (n = 3), and normal controls (n = 3) was conducted and differentially expressed miRNAs (DEmiRNAs), lncRNAs (DElncRNAs), and mRNAs (DEmRNAs) between primary OS and normal controls as well as pulmonary metastatic and primary OS were identified. A total of 65 DEmiRNAs, 233 DElncRNAs, and 1405 DEmRNAs were obtained between primary OS and normal controls; 48 DEmiRNAs, 50 DElncRNAs, and 307 DEmRNAs were obtained between pulmonary metastatic and primary OS. Then, the target DEmRNAs and DElncRNAs regulated by the same DEmiRNAs were searched and the OS tumorigenesis-related and OS pulmonary metastasis-related competing endogenous RNA (ceRNA) networks were constructed, respectively. Based on these ceRNA networks and Venn diagram analysis, we obtained 3 DEmiRNAs, 15 DElncRNAs, and 100 DEmRNAs, and eight target pairs including miR-223-5p/(CLSTN2, AC009951.1, LINC01705, AC090673.1), miR-378b/(ALX4, IGSF3, SULF1), and miR-323b-3p/TGFBR3 were involved in both tumorigenesis and pulmonary metastasis of OS. The TGF-β superfamily co-receptor TGFBR3, which is regulated by miR-323b-3p, acts as a tumor suppressor in OS tumorigenesis and acts as a tumor promoter in pulmonary metastatic OS via activation of the epithelial-mesenchymal transition (EMT) program.In conclusion, the OS transcriptome (miRNA, lncRNA, and mRNA) is dynamically regulated. These analyses might provide new clues to uncover the molecular mechanisms and signaling networks that contribute to OS progression, toward patient-tailored and novel-targeted treatments.
Collapse
MESH Headings
- Adolescent
- Adult
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Computational Biology
- Female
- Gene Expression Regulation, Neoplastic/genetics
- Gene Expression Regulation, Neoplastic/physiology
- High-Throughput Nucleotide Sequencing/methods
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Male
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Osteosarcoma/genetics
- Osteosarcoma/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Analysis, RNA/methods
- Young Adult
Collapse
Affiliation(s)
- Lin Xie
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Zhihong Yao
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Ya Zhang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Dongqi Li
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Fengdi Hu
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Yedan Liao
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Ling Zhou
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Yonghong Zhou
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Zeyong Huang
- Medical School, Kunming University of Science and Technology, Kunming, 650504, Yunnan, China
| | - Zewei He
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Lei Han
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Yihao Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Zuozhang Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China.
| |
Collapse
|
27
|
Chang J, Yao M, Li Y, Zhao D, Hu S, Cui X, Liu G, Shi Q, Wang Y, Yang Y. MicroRNAs for osteosarcoma in the mouse: a meta-analysis. Oncotarget 2018; 7:85650-85674. [PMID: 27852052 PMCID: PMC5356766 DOI: 10.18632/oncotarget.13333] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 09/25/2016] [Indexed: 01/18/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone carcinoma with high morbidity that happens mainly in children and young adults. As the key components of gene-regulatory networks, microRNAs (miRNAs) control many critical pathophysiological processes, including initiation and progression of cancers. The objective of this study is to summarize and evaluate the potential of miRNAs as targets for prevention and treatment of OS in mouse models, and to explore the methodological quality of current studies. We searched PubMed, Web of Science, Embase, Wan Fang Database, VIP Database, China Knowledge Resource Integrated Database, and Chinese BioMedical since their beginning date to 10 May 2016. Two reviewers separately screened the controlled studies, which estimate the effects of miRNAs on osteosarcoma in mice. A pair-wise analysis was performed. Thirty six studies with enough randomization were selected and included in the meta-analysis. We found that blocking oncogenic or restoring decreased miRNAs in cancer cells could significantly suppress the progression of OS in vivo, as assessed by tumor volume and tumor weight. This meta-analysis suggests that miRNAs are potential therapeutic targets for OS and correction of the altered expression of miRNAs significantly suppresses the progression of OS in mouse models, however, the overall methodological quality of studies included here was low, and more animal studies with the rigourous design must be carried out before a miRNA-based treatment could be translated from animal studies to clinical trials.
Collapse
Affiliation(s)
- Junli Chang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Yao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yimian Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongfeng Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shaopu Hu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuejun Cui
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gang Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanping Yang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
28
|
Kim YH, Goh TS, Lee CS, Oh SO, Kim JI, Jeung SH, Pak K. Prognostic value of microRNAs in osteosarcoma: A meta-analysis. Oncotarget 2018; 8:8726-8737. [PMID: 28060730 PMCID: PMC5352436 DOI: 10.18632/oncotarget.14429] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/01/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Osteosarcoma is the most common primary bone malignancy. We meta-analyzed the prognostic value of altered miRNAs in patients with osteosarcoma. METHODS Sources from MEDLINE (from inception to August 2016) and EMBASE (from inception to August 2016) were searched. Studies of osteosarcoma with results of miRNA and studies that reported survival data were included and two authors performed the data extraction independently. Any discrepancies were resolved by a consensus. The outcome was overall survival and event-free survival assessed using hazard ratios (HRs). RESULTS After reviewing the full text of 65 articles, 25 studies including 2,278 patients were eligible in this study. The pooled HR for deaths was 1.40 (95% confidence interval [CI] 1.01-1.94, p=0.04) with random-effects model (χ2=113.08, p<0.00001, I2=79%) for patients of osteosarcoma with lower expression of miRNA. However, the pooled HR for events was not significant (HR 0.97, 0.63-1.48, p=0.87, χ2=72.65, p<0.00001, I2=79%). In pathway analysis of miRNAs, miRNA449a, 199-5p, 542-5p have common target genes. CONCLUSIONS Expression level of miRNA in patients of osteosarcoma is important as a prognostic factor.
Collapse
Affiliation(s)
- Yun Hak Kim
- BEER, Busan Society of Evidence-Based Medicine and Research, Busan, Republic of Korea.,Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Tae Sik Goh
- BEER, Busan Society of Evidence-Based Medicine and Research, Busan, Republic of Korea.,Department of Orthopaedic Surgery and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Chi-Seung Lee
- Biomedical Research Institute, Pusan National University Hospital and School of Medicine, Pusan National University, Busan, Republic of Korea
| | - Sae Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Jeung Il Kim
- Department of Orthopaedic Surgery and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Seung Hyeon Jeung
- Department of Orthopaedic Surgery and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Kyoungjune Pak
- BEER, Busan Society of Evidence-Based Medicine and Research, Busan, Republic of Korea.,Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| |
Collapse
|
29
|
Abstract
MicroRNAs (miRNAs) have been reported to be associated with cancer progression and carcinogenesis. They are small, highly conserved, noncoding RNA molecules consisting of 19-25 nucleotides. By binding to complementary binding sites within the 3'-untranslated region of target mRNAs, miRNAs inhibit the translation of mRNAs or promote their degradation. miRNAs play critical roles in cancer initiation and development by functioning either as oncogenes or as tumor suppressors. Similarly, several studies have shown that miRNAs are involved in regulating various biological processes, including apoptosis, proliferation, cellular differentiation, signal transduction, and carcinogenesis. Among miRNAs, one that may be of particular interest in cancer biology is miR-449a, which has been reported to inhibit tumor growth, invasion, and metastasis, and to promote apoptosis and differentiation through the transforming growth factor-β activated kinase 1, NOTCH, nuclear factor-κB/P65/vascular endothelial growth factor, retinoblastoma-E2F, mitogen-activated protein kinase signaling pathways, WNT-β-catenin signaling, tumor protein P53, and androgen receptor signaling pathways. The miR-449 cluster is located in the second intron of CDC20B on chromosome 5q11.2, a region that has been identified as a susceptibility locus in cancer, and the abnormal expression of miR-449a may be related to the occurrence and development of tumors. As one example, miR-449a has been reported to be involved in the development of carcinoma and may be a potential prognostic indicator. On the basis of the putative pathogenetic relationships between cancer and miR-449a, we consider that miR-449a has the potential to serve as a therapeutic agent for the treatment of some types of cancer. In this review, the role of miR-449a in tumorigenesis and its mechanism of action are explored. Furthermore, its potential as a therapeutic agent in cancer treatment is considered.
Collapse
|
30
|
Deng N, Li L, Gao J, Zhou J, Wang Y, Wang C, Liu Y. Hsa_circ_0009910 promotes carcinogenesis by promoting the expression of miR-449a target IL6R in osteosarcoma. Biochem Biophys Res Commun 2018; 495:189-196. [DOI: 10.1016/j.bbrc.2017.11.028] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 11/04/2017] [Indexed: 01/22/2023]
|
31
|
miR-195-5p Suppresses the Proliferation, Migration, and Invasion of Oral Squamous Cell Carcinoma by Targeting TRIM14. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7378148. [PMID: 29204446 PMCID: PMC5674489 DOI: 10.1155/2017/7378148] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/10/2017] [Accepted: 09/18/2017] [Indexed: 01/02/2023]
Abstract
MicroRNAs (miRNAs) play an essential role in tumor biological processes through interacting with specific gene targets. The involvement of miR-195-5p in cell proliferation, invasion, and migration has been demonstrated in several cancer cell lines, while its function in oral squamous cell carcinoma (OSCC) remains unclear. Here we find that miR-195-5p expression is lower in OSCC than in nontumor tissues, while its overexpression in cell lines can lead to the promotion of apoptosis and the reduction of cell growth, migration, and invasion. Moreover, we identify the tripartite motif-containing protein (TRIM14) as a target of miR-195-5p. Therefore, we reason that the tumor suppressor role of miR-195-5p in OSCC is dependent on the interaction with TRIM14.
Collapse
|
32
|
Abstract
Human cancers are characterized by a number of hallmarks, including sustained proliferative signaling, evasion of growth suppressors, activated invasion and metastasis, replicative immortality, angiogenesis, resistance to cell death, and evasion of immune destruction. As microRNAs (miRNAs) are deregulated in virtually all human cancers, they show involvement in each of the cancer hallmarks as well. In this chapter, we describe the involvement of miRNAs in cancer from a cancer hallmarks and targeted therapeutics point of view. As no miRNA-based cancer therapeutics are available to date, and the only clinical trial on miRNA-based cancer therapeutics (MRX34) was terminated prematurely due to serious adverse events, we are focusing on protein-coding miRNA targets for which targeted therapeutics in oncology are already approved by the FDA. For each of the cancer hallmarks, we selected major protein-coding players and describe the miRNAs that target them.
Collapse
Affiliation(s)
| | - George A Calin
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
33
|
Sharma A, Cinti C, Capobianco E. Multitype Network-Guided Target Controllability in Phenotypically Characterized Osteosarcoma: Role of Tumor Microenvironment. Front Immunol 2017; 8:918. [PMID: 28824643 PMCID: PMC5536125 DOI: 10.3389/fimmu.2017.00918] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022] Open
Abstract
This study highlights the relevance of network-guided controllability analysis as a precision oncology tool. Target controllability through networks is potentially relevant to cancer research for the identification of therapeutic targets. With reference to a recent study on multiple phenotypes from 22 osteosarcoma (OS) cell lines characterized both in vitro and in vivo, we found that a variety of critical proteins in OS regulation circuits were in part phenotype specific and in part shared. To generalize our inference approach and match cancer phenotypic heterogeneity, we employed multitype networks and identified targets in correspondence with protein sub-complexes. Therefore, we established the relevance for diagnostic and therapeutic purposes of inspecting interactive targets, namely those enriched by significant connectivity patterns in protein sub-complexes. Emerging targets appeared with reference to the OS microenvironment, and relatively to small leucine-rich proteoglycan members and D-type cyclins, among other collagen, laminin, and keratin proteins. These described were evidences shared across all phenotypes; instead, specific evidences were provided by critical proteins including IGFBP7 and PDGFRA in the invasive phenotype, and FGFR3 and THBS1 in the colony forming phenotype.
Collapse
Affiliation(s)
- Ankush Sharma
- Experimental Oncology Unit, UOS - Institute of Clinical Physiology, CNR, Siena, Italy.,Center for Computational Science, University of Miami, Miami, FL, United States
| | - Caterina Cinti
- Experimental Oncology Unit, UOS - Institute of Clinical Physiology, CNR, Siena, Italy
| | - Enrico Capobianco
- Center for Computational Science, University of Miami, Miami, FL, United States.,Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
34
|
Cheng D, Qiu X, Zhuang M, Zhu C, Zou H, Liu Z. MicroRNAs with prognostic significance in osteosarcoma: a systemic review and meta-analysis. Oncotarget 2017; 8:81062-81074. [PMID: 29113367 PMCID: PMC5655262 DOI: 10.18632/oncotarget.19009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022] Open
Abstract
Introduction This study aimed to elucidate the prognostic value of microRNAs (miRNAs) in patients with osteosarcoma. Materials and Methods Studies were recruited by searching PubMed, Embase, the Cochrane Library, China National Knowledge Infrastructure, and Wanfang data-bases (final search update conducted January 2017). Eligible studies were identified and the quality was assessed using multiple search strategies. Results A total of 55 articles that investigated the correlation between miRNA expression and either patient survival or disease recurrence in osteosarcoma was initially identified. Among these, 30 studies were included in the meta-analysis. The results of our meta-analysis revealed that elevated levels of miR-21, miR-214, miR-29, miR-9 and miR-148a were associated with poor prognosis in osteosarcoma. Additionally, downregulated miR-382, miR26a, miR-126, miR-195 and miR-124 expression indicated poor prognosis in osteosarcoma. Conclusions miRNAs may act as independent prognostic factors in patients with osteosarcoma and are useful in stratifying risk.
Collapse
Affiliation(s)
- Dong Cheng
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Xubin Qiu
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Ming Zhuang
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Chenlei Zhu
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Hongjun Zou
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Zhiwei Liu
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| |
Collapse
|
35
|
Zhang YL, Li XB, Hou YX, Fang NZ, You JC, Zhou QH. The lncRNA XIST exhibits oncogenic properties via regulation of miR-449a and Bcl-2 in human non-small cell lung cancer. Acta Pharmacol Sin 2017; 38:371-381. [PMID: 28248928 DOI: 10.1038/aps.2016.133] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 10/13/2016] [Indexed: 02/05/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are associated with the occurrence, development and prognoses of non-small cell lung cancer (NSCLC). In the present study, we investigated the functional mechanisms of the lncRNA XIST in two human NSCLC cell lines, A549 and NCI-H1299. In all the 5 NSCLC cell lines (NL9980, NCI-H1299, NCI-H460, SPC-A-1 and A549) tested, the expression levels of XIST were significantly elevated, as compared with those in normal human bronchial epithelial cell line BEAS-2B. In A549 and NCI-H1299 cells, knockdown of XIST by siRNA significantly inhibited the cell proliferation, migration and invasion, and promoted cell apoptosis. Furthermore, XIST knockdown elevated the expression of E-cadherin, and suppressed the expression of Bcl-2. Moreover, knockdown of XIST significantly suppressed the tumor growth in NSCLC A549 xenograft mouse model. Bioinformatic analysis and luciferase reporter assays revealed that XIST was negatively regulated by miR-449a. We further identified reciprocal repression between XIST and miR-449a, which eventually influenced the expression of Bcl-2: XIST functioned as a miRNA sponge of miR-449a, which was a negative regulator of Bcl-2. These data show that expression of the lncRNA XIST is associated with an increased growth rate and metastatic potential in NSCLC A549 and NCI-H1299 cells partially through miR-449a, and suggest that XIST may be a potential prognostic factor and therapeutic target for patients with NSCLC.
Collapse
|
36
|
Zhang YL, Li XB, Hou YX, Fang NZ, You JC, Zhou QH. The lncRNA XIST exhibits oncogenic properties via regulation of miR-449a and Bcl-2 in human non-small cell lung cancer. Acta Pharmacol Sin 2017. [DOI: 10.1038/aps.2016.132x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
37
|
Professor HUANG Sheng-Kai. Acta Pharmacol Sin 2016; 37:1645. [PMID: 27904161 DOI: 10.1038/aps.2016.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
38
|
Li Y, Jiang T, Shao L, Liu Y, Zheng C, Zhong Y, Zhang J, Chang Q. Mir-449a, a potential diagnostic biomarker for WNT group of medulloblastoma. J Neurooncol 2016; 129:423-431. [PMID: 27406588 DOI: 10.1007/s11060-016-2213-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/06/2016] [Indexed: 01/20/2023]
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in childhood. The 5 year disease-free survival rate is rather low. There is a consensus that MB can be divided into at least four clinically, transcriptionally, and genetically distinct molecular variants, being designated as wingless (WNT), sonic hedgehog (SHH), Group 3 and Group 4. It poses a great challenge to the design of therapeutic strategy for MB patients. Intensive clinical intervention, including high dose radiotherapy, is commonly used in treatment of high risk MB, most of which are considered to be Group 3 patients. But such intensive therapy should be avoided to protect neurologic function of patients in the lower risk WNT group. In present study, MB subgroup assignment in formalin-fixed paraffin embedded (FFPE) specimens from 45 Chinese patients were performed by Nanostring platform using 22 well-known signature genes. Based on comparative expression profiles of miRNA real-time PCR microarray in MB cells with and without treatment of demethylation reagent, as well as MSP assay, miR-449a was demonstrated to be significantly silenced by aberrant DNA methylation in tumor cells. Real-time PCR showed that expression level of miR-449a in WNT group was significantly different from other subgroups, although it was down-regulated in most of the MB samples. In conclusion, current study demonstrates for the first time the feasibility of using the Nanostring assay for subgrouping of MBs in Chinese patients. In addition, MiR-449a, a candidate tumor suppressor regulated by hypermethylation, is a novel potential diagnostic marker for WNT group of MBs.
Collapse
Affiliation(s)
- Yongxiao Li
- Department of Pathology, Peking University School of Basic Medical Science, Peking University Third Hospital, Peking Univeristy Health Science Center, Xue Yuan Road 38#, Beijing, 100191, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
| | - Liwei Shao
- Department of Pathology, Peking University School of Basic Medical Science, Peking University Third Hospital, Peking Univeristy Health Science Center, Xue Yuan Road 38#, Beijing, 100191, China
| | - Yan Liu
- Department of Pathology, Peking University School of Basic Medical Science, Peking University Third Hospital, Peking Univeristy Health Science Center, Xue Yuan Road 38#, Beijing, 100191, China
| | - Chen Zheng
- Department of Pathology, Peking University School of Basic Medical Science, Peking University Third Hospital, Peking Univeristy Health Science Center, Xue Yuan Road 38#, Beijing, 100191, China
| | - Yanfeng Zhong
- Department of Pathology, Peking University School of Basic Medical Science, Peking University Third Hospital, Peking Univeristy Health Science Center, Xue Yuan Road 38#, Beijing, 100191, China
| | - Jing Zhang
- Department of Pathology, Peking University School of Basic Medical Science, Peking University Third Hospital, Peking Univeristy Health Science Center, Xue Yuan Road 38#, Beijing, 100191, China
- Department of Neuropathology, University of Washington, Seattle, WA, USA
| | - Qing Chang
- Department of Pathology, Peking University School of Basic Medical Science, Peking University Third Hospital, Peking Univeristy Health Science Center, Xue Yuan Road 38#, Beijing, 100191, China.
| |
Collapse
|
39
|
Wu S, Du X, Wu M, Du H, Shi X, Zhang T. MicroRNA-409-3p inhibits osteosarcoma cell migration and invasion by targeting catenin-δ1. Gene 2016; 584:83-89. [PMID: 26992637 DOI: 10.1016/j.gene.2016.03.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/03/2016] [Accepted: 03/14/2016] [Indexed: 12/18/2022]
Abstract
Osteosarcoma is the most common primary bone cancer which is associated with early metastatic potential and poor prognosis. However, the molecular mechanisms underlying osteosarcoma progression are not well characterized. Here, we investigated the role of miR-409-3p in osteosarcoma metastasis. Osteosarcoma tissue showed decreased expression of miR-409-3p compared to adjacent non-tumorous tissue. The expression level of miR-409-3p was negatively correlated with osteosarcoma metastasis. Overexpression of miR-409-3p in osteosarcoma cells (U2OS) inhibited cell migration and invasion. Bioinformatics analysis showed that catenin-δ1 (CTNND1, p120-catenin) is a direct target of miR-409-3p. Overexpression of miR-409-3p repressed the expression of catenin-δ1 in U2OS cells at both mRNA and protein levels. Meanwhile, miR-409-3p repressed the activity of luciferase reporter containing the 3'-untranslated region (3'UTR) of CTNND1 gene. Furthermore, expression of catenin-δ1 rescued the inhibitory effect of miR-409-3p on cell migration and invasion. Altogether, these results indicated that miR-409-3p targets catenin-δ1 to repress osteosarcoma metastasis.
Collapse
Affiliation(s)
- Shifeng Wu
- Department of Orthopedics, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Xinjie Du
- Department of Gynecology, Women and Children's Health Care Hospital of Linyi, Linyi, Shandong 276003, China
| | - Manwu Wu
- Shaoxing Women and Children's Hospital, Shaoxing, Zhejiang 312000, China
| | - Hechun Du
- Shaoxing Women and Children's Hospital, Shaoxing, Zhejiang 312000, China
| | - Xiaoliang Shi
- Shaoxing Women and Children's Hospital, Shaoxing, Zhejiang 312000, China
| | - Tao Zhang
- Shaoxing Women and Children's Hospital, Shaoxing, Zhejiang 312000, China.
| |
Collapse
|
40
|
Pandey A, Jauhari A, Singh T, Singh P, Singh N, Srivastava AK, Khan F, Pant AB, Parmar D, Yadav S. Transactivation of P53 by cypermethrin induced miR-200 and apoptosis in neuronal cells. Toxicol Res (Camb) 2015. [DOI: 10.1039/c5tx00200a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cypermethrin, a pyrethroid pesticide, has been shown to induce neurotoxicity in adult mammals. However, studies are also needed to explore its toxicity in developing brains and understand its mechanism of action in neurons.
Collapse
Affiliation(s)
- Ankita Pandey
- CSIR-Indian Institute of Toxicology Research
- Lucknow-226001
- India
- Department of Biochemistry
- Jamia Hamdard University
| | - Abhishek Jauhari
- CSIR-Indian Institute of Toxicology Research
- Lucknow-226001
- India
- Academy of Scientific and Innovative Research (AcSIR)
- New Delhi
| | - Tanisha Singh
- CSIR-Indian Institute of Toxicology Research
- Lucknow-226001
- India
| | - Parul Singh
- CSIR-Indian Institute of Toxicology Research
- Lucknow-226001
- India
| | - Nishant Singh
- CSIR-Indian Institute of Toxicology Research
- Lucknow-226001
- India
| | - Ankur Kumar Srivastava
- CSIR-Indian Institute of Toxicology Research
- Lucknow-226001
- India
- Academy of Scientific and Innovative Research (AcSIR)
- New Delhi
| | - Farah Khan
- Department of Biochemistry
- Jamia Hamdard University
- New Delhi-110062
- India
| | | | - Devendra Parmar
- CSIR-Indian Institute of Toxicology Research
- Lucknow-226001
- India
| | - Sanjay Yadav
- CSIR-Indian Institute of Toxicology Research
- Lucknow-226001
- India
| |
Collapse
|
41
|
Sampson VB, Yoo S, Kumar A, Vetter NS, Kolb EA. MicroRNAs and Potential Targets in Osteosarcoma: Review. Front Pediatr 2015; 3:69. [PMID: 26380245 PMCID: PMC4547013 DOI: 10.3389/fped.2015.00069] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/20/2015] [Indexed: 12/13/2022] Open
Abstract
Osteosarcoma is the most common bone cancer in children and young adults. Surgery and multi-agent chemotherapy are the standard treatment regimens for this disease. New therapies are being investigated to improve overall survival in patients. Molecular targets that actively modulate cell processes, such as cell-cycle control, cell proliferation, metabolism, and apoptosis, have been studied, but it remains a challenge to develop novel, effective-targeted therapies to treat this heterogeneous and complex disease. MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in regulating cell processes including growth, development, and disease. miRNAs function as oncogenes or tumor suppressors to regulate gene and protein expression. Several studies have demonstrated the involvement of miRNAs in the pathogenesis of osteosarcoma with the potential for development in disease diagnostics and therapeutics. In this review, we discuss the current knowledge on the role of miRNAs and their target genes and evaluate their potential use as therapeutic agents in osteosarcoma. We also summarize the efficacy of inhibition of oncogenic miRNAs or expression of tumor suppressor miRNAs in preclinical models of osteosarcoma. Recent progress on systemic delivery as well as current applications for miRNAs as therapeutic agents has seen the advancement of miR-34a in clinical trials for adult patients with non-resectable primary liver cancer or metastatic cancer with liver involvement. We suggest a global approach to the understanding of the pathogenesis of osteosarcoma may identify candidate miRNAs as promising biomarkers for this rare disease.
Collapse
Affiliation(s)
- Valerie B Sampson
- Nemours Center for Cancer and Blood Disorders, Alfred I. duPont Hospital for Children , Wilmington, DE , USA
| | - Soonmoon Yoo
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children , Wilmington, DE , USA
| | - Asmita Kumar
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children , Wilmington, DE , USA
| | - Nancy S Vetter
- Nemours Center for Cancer and Blood Disorders, Alfred I. duPont Hospital for Children , Wilmington, DE , USA
| | - E Anders Kolb
- Nemours Center for Cancer and Blood Disorders, Alfred I. duPont Hospital for Children , Wilmington, DE , USA
| |
Collapse
|