1
|
El-Masry TA, El-Nagar MMF, Oriquat GA, Alotaibi BS, Saad HM, El Zahaby EI, Ibrahim HA. Therapeutic efficiency of Tamoxifen/Orlistat nanocrystals against solid ehrlich carcinoma via targeting TXNIP/HIF1-α/MMP-9/P27 and BAX/Bcl2/P53 signaling pathways. Biomed Pharmacother 2024; 180:117429. [PMID: 39293373 DOI: 10.1016/j.biopha.2024.117429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Orlistat (Orli) is an anti-obesity medication that has been approved by the US Food and Drug Administration. It has relatively limited oral bioavailability with promising inhibitory effects on cell proliferation as well as reducing the growth of tumors. AIMS This investigation was done to evaluate the potential protective effect of Tamoxifen/Orlistat nanocrystals alone or in combination against Solid Ehrlich Carcinoma (SEC) and to clarify the possible underlying influences. MATERIALS AND METHODS The liquid antisolvent precipitation technique (bottom-up technology) was utilized to manufacture Orlistat Nanocrystals. To explore potential causes for the anti-tumor action, female Swiss Albino mice bearing SEC were randomly assigned into five equal groups (n = 6). Group 1: Tumor control group, group 2: Tam group: tamoxifen (0.01 g/kg, IP), group 3: Free-Orli group: orlistat (0.24 g/kg, IP), group 4: Nano-Orli: orlistat nanocrystals (0.24 g/kg, IP), group 5: Tam-Nano-Orli: Both doses of Tam and Nano-Orli. All treatments were administered for 16 days. KEY FINDINGS The untreated mice showed development in the tumor volume and weight. As well as histopathology results from these mice revealed many tumor large cells as well as solid sheets of malignant cells. Also, untreated mice showed raised VEGF and TGF-1beta content. Moreover, results of gene expression in the SEC-bearing mice noted upregulation in HIF-1α, MMP-9, Bcl-2, and P27 gene expression and downregulation of TXNIP, BAX, and P53 gene expression. On the other hand, administrated TAM, Free-Orli, Nano-Orli, and a combination of Tam-Nano-Orli distinctly suppressed the tumor effects on estimated parameters with special reference to Tam-Nano-Orli. SIGNIFICANCE The developed Tamoxifen/Orlistat nanocrystals combination could be considered a promising approach to augment antitumor effects.
Collapse
Affiliation(s)
- Thanaa A El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Maysa M F El-Nagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Ghaleb Ali Oriquat
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan.
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Cairo 51511, Egypt.
| | - Enas I El Zahaby
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 35712, Egypt.
| | - Hanaa A Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
2
|
Elzanaty KA, Omran GA, Elmahallawy EK, Albrakati A, Saleh AA, Dahran N, Alhegaili AS, Salahuddin A, Abd-El-Azim H, Noreldin A, Okda TM. Design and Optimization of Sesamol Nanosuspensions to Potentiate the Anti-Tumor Activity of Epirubicin against Ehrlich Solid Carcinoma-Bearing Mice. Pharmaceutics 2024; 16:937. [PMID: 39065634 PMCID: PMC11279961 DOI: 10.3390/pharmaceutics16070937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
There is a growing interest in discovering natural sources of anti-cancer drugs. Sesamol (SES) is a phenolic compound with antitumor effects. The present study aimed to investigate the anticancer properties of SES and its nano-suspensions (SES-NS) combined with Epirubicin (EPI) in breast cancer (BC) using mice bearing a solid Ehrlich tumor. The study involved 35 female albino mice and investigated the effects of SES and EPI on tumor growth, proliferation, apoptosis, autophagy, angiogenesis, and oxidative stress. Methods including ELISA, qRT-PCR, and immunohistochemistry were utilized. The findings revealed reductions in tumor growth and proliferation using SES either alone or combined and evidenced by decreased AKT (AKT Serine/Threonine kinase1) levels, angiogenesis indicated by lower levels of VEGFR (vascular endothelial growth factor), and apoptosis demonstrated by elevated caspase3 and BAX levels. Furthermore, autophagy increased and was indicated by increased levels of beclin1 and lc3, along with decreased oxidative stress as evidenced by elevated TAC (total antioxidant capacity) and reduced MDA (malondialdehyde) levels. Interestingly, SES-NS demonstrated more significant effects at lower doses. In summary, this study underscores the potential of SES as a promising agent for BC treatment. Moreover, SES-NS potentiated the beneficial effects of EPI while mitigating its adverse effects.
Collapse
Affiliation(s)
- Kholoud A. Elzanaty
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt (T.M.O.)
| | - Gamal A. Omran
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt (T.M.O.)
| | - Ehab Kotb Elmahallawy
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, Universidad de Córdoba, 14071 Córdoba, Spain
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ayman A. Saleh
- Department of Pathology, College of Medicine, University of Hail, Hail 55428, Saudi Arabia;
| | - Naief Dahran
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Alaa S. Alhegaili
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ahmad Salahuddin
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt (T.M.O.)
- Department of Biochemistry, College of Pharmacy, Al-Ayen Iraqi University, Nasiriyah 64001, Iraq
| | - Heba Abd-El-Azim
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt;
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ahmed Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Tarek M. Okda
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt (T.M.O.)
| |
Collapse
|
3
|
Khamis AA, Ali EMM, Salim EI, El-Moneim MAA. Synergistic effects of bee venom, hesperidin, and piperine with tamoxifen on apoptotic and angiogenesis biomarker molecules against xerographic MCF-7 injected rats. Sci Rep 2024; 14:1510. [PMID: 38233443 PMCID: PMC10794414 DOI: 10.1038/s41598-023-50729-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/23/2023] [Indexed: 01/19/2024] Open
Abstract
Breast cancer ranks as the second leading most significant of mortality for women. Studies have demonstrated the potential benefits of natural compounds in cancer treatment and prevention, either in isolation or in conjunction with chemotherapy. In order to improve Tamoxifen's therapeutic efficacy in in-vivo studies, our research sought to determine the effects of hesperidin, piperine, and bee venom as natural compounds, as well as their combination effect with or without Tamoxifen. First, 132 female albino rats were equally divided into six groups and five subgroups, and breast cancer was induced in the selected groups by xenografting of MCF7 cells. Second, the effect of single and best ratio combinations treatment from previous in vitro studies were selected. Next, tumorous mammary glands were collected for apoptotic and antiapoptotic biomarkers and cell cycle analysis. Single or combined natural products with or without Tamoxifen revealed a significant up-regulation in apoptotic genes Bax and Casp3 and a downregulation of antiapoptotic and angiogenesis genes Bcl-2 and VEGF genes. We found that cell cycle arrest in the G0/G1 phase was exclusively caused by Tamoxifen and/ or hesperidin. However, the cell cycle arrest in the G2/M phase is a result of the combination of piperine and bee venom, with or without Tamoxifen by using the flow cytometric technique. Our research concludes that bee venom, hesperidin, and piperine can synergistically enhance to increase Tamoxifen's efficiency in the management of breast cancer.
Collapse
Affiliation(s)
- Abeer A Khamis
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Ehab M M Ali
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Elsayed I Salim
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mohamed A Abd El-Moneim
- Biochemistry Department, Faculty of Dentistry, Sinai University, Al-Arish, North Sinai, Egypt
| |
Collapse
|
4
|
Alamoudi JA, El-Masry TA, Nasr M, Ibrahim IT, Ibrahim HA, Saad HM, El-Nagar MMF, Alshawwa SZ, Alrashidi A, El Zahaby EI. Fabrication of Nanocrystals for Enhanced Distribution of a Fatty Acid Synthase Inhibitor (Orlistat) as a Promising Method to Relieve Solid Ehrlich Carcinoma-Induced Hepatic Damage in Mice. Pharmaceuticals (Basel) 2024; 17:96. [PMID: 38256929 PMCID: PMC10820129 DOI: 10.3390/ph17010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Orlistat (ORL) is an effective irreversible inhibitor of the lipase enzyme, and it possesses anticancer effects and limited aqueous solubility. This study was designed to improve the aqueous solubility, oral absorption, and tissue distribution of ORL via the formulation of nanocrystals (NCs). METHODS ORL-NC was prepared using the liquid antisolvent precipitation method (bottom-up technology), and it demonstrated significantly improved solubility compared with that of the blank crystals (ORL-BCs) and untreated ORL powder. The biodistribution and relative bioavailability of ORL-NC were investigated via the radiolabeling technique using Technetium-99m (99mTc). Female Swiss albino mice were used to examine the antitumor activity of ORL-NC against solid Ehrlich carcinoma (SEC)-induced hepatic damage in mice. RESULTS The prepared NCs improved ORL's solubility, bioavailability, and tissue distribution, with evidence of 258.70% relative bioavailability. In the in vivo study, the ORL-NC treatment caused a reduction in all tested liver functions (total and direct bilirubin, AST, ALT, and ALP) and improved modifications in liver sections that were marked using hematoxylin and eosin staining (H&E) and immunohistochemical staining (Ki-67 and ER-α) compared with untreated SEC mice. CONCLUSIONS The developed ORL-NC could be considered a promising formulation approach to enhance the oral absorption tissue distribution of ORL and suppress the liver damage caused by SEC.
Collapse
Affiliation(s)
- Jawaher Abdullah Alamoudi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (J.A.A.); (S.Z.A.); (A.A.)
| | - Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (T.A.E.-M.); (H.A.I.)
| | - Mohamed Nasr
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 35712, Egypt; (M.N.); (E.I.E.Z.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11790, Egypt
| | - Ismail T. Ibrahim
- Labeled Compounds Department, Hot Laboratory Centre, Egyptian Atomic Energy Authority, Cairo 13759, Egypt;
- Department of Pharmacy, Al-Huda University College, Anbar 31001, Iraq
| | - Hanaa A. Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (T.A.E.-M.); (H.A.I.)
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Cairo 51511, Egypt;
| | - Maysa M. F. El-Nagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (T.A.E.-M.); (H.A.I.)
| | - Samar Zuhair Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (J.A.A.); (S.Z.A.); (A.A.)
| | - Amal Alrashidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (J.A.A.); (S.Z.A.); (A.A.)
| | - Enas I. El Zahaby
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 35712, Egypt; (M.N.); (E.I.E.Z.)
| |
Collapse
|
5
|
Rahmani AH, Babiker AY, Anwar S. Hesperidin, a Bioflavonoid in Cancer Therapy: A Review for a Mechanism of Action through the Modulation of Cell Signaling Pathways. Molecules 2023; 28:5152. [PMID: 37446814 DOI: 10.3390/molecules28135152] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer represents one of the most frequent causes of death in the world. The current therapeutic options, including radiation therapy and chemotherapy, have various adverse effects on patients' health. In this vista, the bioactive ingredient of natural products plays a vital role in disease management via the inhibition and activation of biological processes such as oxidative stress, inflammation, and cell signaling molecules. Although natural products are not a substitute for medicine, they can be effective adjuvants or a type of supporting therapy. Hesperidin, a flavonoid commonly found in citrus fruits, with its potential antioxidant, anti-inflammatory, and hepatoprotective properties, and cardio-preventive factor for disease prevention, is well-known. Furthermore, its anticancer potential has been suggested to be a promising alternative in cancer treatment or management through the modulation of signal transduction pathways, which includes apoptosis, cell cycle, angiogenesis, ERK/MAPK, signal transducer, and the activator of transcription and other cell signaling molecules. Moreover, its role in the synergistic effects with anticancer drugs and other natural compounds has been described properly. The present article describes how hesperidin affects various cancers by modulating the various cell signaling pathways.
Collapse
Affiliation(s)
- Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Ali Yousif Babiker
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Shehwaz Anwar
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| |
Collapse
|
6
|
Zidan A, El Saadany AA, El Maghraby GM, Abdin AA, Hedya SE. Potential cardioprotective and anticancer effects of carvedilol either free or as loaded nanoparticles with or without doxorubicin in solid Ehrlich carcinoma-bearing mice. Toxicol Appl Pharmacol 2023; 465:116448. [PMID: 36921847 DOI: 10.1016/j.taap.2023.116448] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
AIM The aim of this study was to investigate the potential cardioprotective and anti-cancer effects of carvedilol (CAR) either free or as loaded nano-formulated with or without doxorubicin (DOX) in solid Ehrlich carcinoma (SEC)-bearing mice. It focused on assessment of cardiac damage, drug resistance, apoptosis, oxidative stress status, angiogenesis and proliferation. METHODS CAR was loaded into poly-D,L lactic-co-glycolic acid)PLGA(or Niosomes. SEC was induced in female albino mice as an experimental model of breast cancer. Seventy-two mice were randomly divided into 9 equal groups (Normal control, Untreated-SEC, SEC + DOX, SEC + CAR-free, SEC + CAR-PLGA, SEC + CAR-Niosomes, SEC + DOX + CAR-free, SEC + DOX + CAR-PLGA and SEC + DOX + CAR-Niosomes). Tumor volume and survival rate were recorded. On day 28 from tumor inoculation, mice were sacrificed, and blood samples were collected for determination of serum lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB). One part from tumor tissues was prepared for assessment of multidrug resistance protein-1 (MDR-1), caspase-3, reduced glutathione (GSH) and malondialdehyde (MDA), while the other part was processed for histopathological examination and immunohistochemical expression of vascular endothelial growth factor (VEGF) and Ki-67. RESULTS There was non-significant difference between CAR-free, CAR-PLGA and CAR-Niosomes as anticancer either alone or when combined with DOX. However, CAR-free demonstrated potential cardioprotective effects against cardiac damage mediated by cancer or DOX that have been enhanced using CAR-PLGA or CAR-Niosomes, but that of Niosomes outperformed them both. CONCLUSION CAR could be used as an adjuvant therapy with DOX, especially when nanoformualted with PLGA and even better with Niosomes, without compromising its cytotoxicity against cancer cells and preventing its cardiotoxic impacts.
Collapse
Affiliation(s)
- Amr Zidan
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt.
| | - Amira A El Saadany
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt
| | - Gamal M El Maghraby
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Egypt
| | - Amany A Abdin
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt
| | - Sabeha E Hedya
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt
| |
Collapse
|
7
|
El-Ashmawy NE, Khedr EG, Khedr NF, El-Adawy SA. Suppression of epithelial-mesenchymal transition and SIRT1/AKT signaling pathway in breast cancer by montelukast. Int Immunopharmacol 2023; 119:110148. [PMID: 37044036 DOI: 10.1016/j.intimp.2023.110148] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Breast cancer is usually associated with metastatic features, poor prognosis, and high mortality. The epithelial-mesenchymal transition (EMT) process has been implicated in the initiation and metastasis of breast cancer. OBJECTIVE The study aimed to investigate the possible role of montelukast (Mont), the cysteinyl leukotriene receptor (CystLT1R) antagonist, in mitigating EMT in triple-negative breast cancer (TNBC) (in vitro study) and solid Ehrlich carcinoma (SEC) bearing mice (in vivo study) as well as to clarify the underlying molecular mechanisms in the presence and absence of sirtuin-1 inhibitor (sirtinol; Sirt). METHODS TNBC MDA-MB-231 cells were treated with either 5 μM Mont or 25 μM Sirt or both for 48 h. Alternatively, SEC cells were inoculated in mice to induce breast cancer. After 12 days, the mice were divided into four groups: Untreated SEC group (vehicle), Sirt group (1 mg/kg), Mont group (10 mg/kg), and cotreatment Sirt/Mont group. The mice groups received the assigned treatment for the consequent 16 days. RESULTS Mont and/or Sirt decreased cell proliferation, migration and suppressed EMT in both in vitro and in vivo experiments. All treatments downregulated sirtuin-1 and vimentin expression but upregulated E-cadherin expression. Furthermore, all treatments retarded angiogenesis as evidenced by decreased VEGF expression. These findings were associated with suppressing active protein kinase B (p-AKT). CONCLUSION Cotreatment with Sirt and Mont proved more effective anti-tumor activity in TNBC cell line and in SEC bearing mice than either treatment alone, which could be attributed to the inhibition of sirtuin-1 and AKT- activated pathways, with the subsequent inhibition of EMT.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, 31527, Egypt
| | - Eman G Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, 31527, Egypt
| | - Naglaa F Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, 31527, Egypt
| | - Samar A El-Adawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, 31527, Egypt.
| |
Collapse
|
8
|
Gullilat H, Kumari R, Chandan G, Saini AK, Malik T, Saini RV. Immunomodulatory potential of the ethyl acetate fraction of Pinus roxburghii from the Himalayan region of India towards Ehrlich ascites carcinoma. SOUTH AFRICAN JOURNAL OF BOTANY 2022; 149:878-886. [DOI: 10.1016/j.sajb.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
|
9
|
El Wahed SA, Hassabou NF, Hamouda MA. Anticancer Potential of Hesperidin against HEp-2 Laryngeal Carcinoma Cell Line in Comparison to Doxorubicin. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND: Doxorubicin (DOX) is a drug that is frequently used to treat a variety of cancers. Unfortunately, in many situations, it is ineffective, and raising the dosage is restricted due to systemic toxicity. An important strategy to minimize the toxic effects of the above cited drug is to use co-adjuvant. A citrus flavonoid hesperidin (Hesp) has emerged as promising anticancer natural product and proved to be potent antioxidant agent. It suppresses cancer cell replicating by triggering apoptosis and cell cycle arrest.
AIM: The study’s goal was to investigate anticarcinogenic effects of Hesp in comparison with DOX against HEp-2 laryngeal carcinoma cell line.
MATERIALS AND METHODS: Five groups of HEp-2 cell line were included, two groups were subjected to Hesp and the other two groups were subjected to DOX, which was used as a reference drug, in addition to a control untreated group. Expression of Bcl-2 and p53 genes was evaluated. Furthermore, the cell cycle arrest and apoptotic induction were assessed.
RESULTS: Hesp exerted anti-proliferative effects against HEp-2 cells which increase in time dependent manner. Gene profile analysis revealed highly statistically significant decrease of anti-apoptotic Bcl-2 expression and highly statistically significant increase of tumor suppressor gene p53 expression (p ˂ 0.01 and p ˂ 0.0001, respectively) for both tested drugs.
CONCLUSIONS: Hesp proved potential anticancer effects with reducing cancer cell viability in HEp-2 cell line through cell cycle arrest and apoptotic mechanism. It could be used as a prodrug or coadjuvant in treatment of oral cancer.
Collapse
|
10
|
Anti-neoplastic action of Cimetidine/Vitamin C on histamine and the PI3K/AKT/mTOR pathway in Ehrlich breast cancer. Sci Rep 2022; 12:11514. [PMID: 35798765 PMCID: PMC9262990 DOI: 10.1038/s41598-022-15551-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/24/2022] [Indexed: 11/09/2022] Open
Abstract
The main focus of our study is to assess the anti-cancer activity of cimetidine and vitamin C via combating the tumor supportive role of mast cell mediators (histamine, VEGF, and TNF-α) within the tumor microenvironment and their effect on the protein kinase A(PKA)/insulin receptor substrate-1(IRS-1)/phosphatidylinositol-3-kinase (PI3K)/serine/threonine kinase-1 (AKT)/mammalian target of rapamycin (mTOR) cue in Ehrlich induced breast cancer in mice. In vitro study was carried out to evaluate the anti-proliferative activity and combination index (CI) of the combined drugs. Moreover, the Ehrlich model was induced in mice via subcutaneous injection of Ehrlich ascites carcinoma cells (EAC) in the mammary fat pad, and then they were left for 9 days to develop obvious solid breast tumor. The combination therapy possessed the best anti-proliferative effect, and a CI < 1 in the MCF7 cell line indicates a synergistic type of drug interaction. Regarding the in vivo study, the combination abated the elevation in the tumor volume, and serum tumor marker carcinoembryonic antigen (CEA) level. The serum vascular endothelial growth factor (VEGF) level and immunohistochemical staining for CD34 as markers of angiogenesis were mitigated. Additionally, it reverted the state of oxidative stress and inflammation. Meanwhile, it caused an increment in apoptosis, which prevents tumor survival. Furthermore, it tackled the elevated histamine and cyclic adenosine monophosphate (cAMP) levels, preventing the activation of the (PKA/IRS-1/PI3K/AKT/mTOR) cue. Finally, we concluded that the synergistic combination provided a promising anti-neoplastic effect via reducing the angiogenesis, oxidative stress, increasing apoptosis,as well as inhibiting the activation of PI3K/AKT/mTOR cue, and suggesting its use as a treatment option for breast cancer.
Collapse
|
11
|
Formulation and Characterization of Doxycycline-Loaded Polymeric Nanoparticles for Testing Antitumor/Antiangiogenic Action in Experimental Colon Cancer in Mice. NANOMATERIALS 2022; 12:nano12050857. [PMID: 35269343 PMCID: PMC8912660 DOI: 10.3390/nano12050857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023]
Abstract
Nanotherapeutics can enhance the characteristics of drugs, such as rapid systemic clearance and systemic toxicities. Polymeric nanoparticles (PRNPs) depend on dispersion of a drug in an amorphous state in a polymer matrix. PRNPs are capable of delivering drugs and improving their safety. The primary goal of this study is to formulate doxycycline-loaded PRNPs by applying the nanoprecipitation method. Eudragit S100 (ES100) (for DOX-PRNP1) and hydroxypropyl methyl cellulose phthalate HP55 (for DOX-PRNP2) were tested as the drug carrying polymers and the DOX-PRNP2 showed better characteristics and drug release % and was hence selected to be tested in the biological study. Six different experimental groups were formed from sixty male albino mice. 1,2,-Dimethylhydrazine was used for 16 weeks to induce experimental colon cancer. We compared the oral administration of DOX-PRNP2 in doses of 5 and 10 mg/kg with the free drug. Results indicated that DOX-PRNP2 had greater antitumor activity, as evidenced by an improved histopathological picture for colon specimens as well as a decrease in the tumor scores. In addition, when compared to free DOX, the DOX-PRNP2 reduced the angiogenic indicators VEGD and CD31 to a greater extent. Collectively, the findings demonstrated that formulating DOX in PRNPs was useful in enhancing antitumor activity and can be used in other models of cancers to verify their efficacy and compatibility with our study.
Collapse
|
12
|
Saleh N, Allam T, Korany RMS, Abdelfattah AM, Omran AM, Abd Eldaim MA, Hassan AM, El-Borai NB. Protective and Therapeutic Efficacy of Hesperidin versus Cisplatin against Ehrlich Ascites Carcinoma-Induced Renal Damage in Mice. Pharmaceuticals (Basel) 2022; 15:ph15030294. [PMID: 35337092 PMCID: PMC8953897 DOI: 10.3390/ph15030294] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 01/07/2023] Open
Abstract
This study evaluates the antitumor efficacy of hesperidin (Hesp) versus cisplatin (Cis) in Ehrlich ascites carcinoma (EAC)-bearing mice, as well as its protective effect against Cis-triggered nephrotoxicity. Seventy female mice were allocated into control, Hesp, EAC, Hesp-protected, Hesp-treated, Cis-treated, and Cis+Hesp-treated groups. The inoculation of mice with EAC cells significantly reduced the mean survival time, while significantly increased the body weight, abdominal circumference, ascitic fluid volume, viable tumor cell count, and serum carcinoembryonic antigen, urea and creatinine levels, besides various hematological changes. Additionally, kidney tissue of EAC-bearing mice showed a significant increase in the malondialdehyde level, significant decreases in the reduced glutathione content and catalase activity, marked pathological alterations, and a strong Ki-67 expression with a weak caspase-3 expression in neoplastic cells infiltrating the renal capsule. Conversely, the administration of Hesp and/or Cis to the EAC-bearing mice induced, to various degrees, antitumor responses and alleviated the cytotoxic effects of EAC. In addition to the potent antitumor effect of the concomitant administration of Hesp and Cis, Hesp minimized the renal adverse side effects of Cis. In conclusion, Hesp may open new avenues for safe and effective cancer therapy and could be valuable for enhancing the antitumor potency and minimizing the renal adverse side effects of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Nahed Saleh
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Menoufia, Egypt; (N.S.); (T.A.); (A.M.A.); (A.M.O.)
| | - Tamer Allam
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Menoufia, Egypt; (N.S.); (T.A.); (A.M.A.); (A.M.O.)
| | - Reda M. S. Korany
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Abdelfattah M. Abdelfattah
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Menoufia, Egypt; (N.S.); (T.A.); (A.M.A.); (A.M.O.)
| | - Ahmed M. Omran
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Menoufia, Egypt; (N.S.); (T.A.); (A.M.A.); (A.M.O.)
| | - Mabrouk Attia Abd Eldaim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Menoufia University, Sheben El-Kom 32511, Egypt
- Correspondence: (M.A.A.E.); or (N.B.E.-B.); Tel./Fax: +20-1-1748-4718 (M.A.A.E.); +20-4-8260-3215 or +20-10-0736-5569 (N.B.E.-B.)
| | - Aziza M. Hassan
- Department of Biotechnology, Collage of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Nermeen Borai El-Borai
- Department of Forensic Medicine & Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Menoufia, Egypt
- Correspondence: (M.A.A.E.); or (N.B.E.-B.); Tel./Fax: +20-1-1748-4718 (M.A.A.E.); +20-4-8260-3215 or +20-10-0736-5569 (N.B.E.-B.)
| |
Collapse
|
13
|
Li W, Swiderski K, Murphy KT, Lynch GS. Role for Plant-Derived Antioxidants in Attenuating Cancer Cachexia. Antioxidants (Basel) 2022; 11:183. [PMID: 35204066 PMCID: PMC8868096 DOI: 10.3390/antiox11020183] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer cachexia is the progressive muscle wasting and weakness experienced by many cancer patients. It can compromise the response to gold standard cancer therapies, impair functional capacity and reduce overall quality of life. Cancer cachexia accounts for nearly one-third of all cancer-related deaths and has no effective treatment. The pathogenesis of cancer cachexia and its progression is multifactorial and includes increased oxidative stress derived from both the tumor and the host immune response. Antioxidants have therapeutic potential to attenuate cancer-related muscle loss, with polyphenols, a group of plant-derived antioxidants, being the most widely investigated. This review describes the potential of these plant-derived antioxidants for treating cancer cachexia.
Collapse
Affiliation(s)
| | | | | | - Gordon S. Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia; (W.L.); (K.S.); (K.T.M.)
| |
Collapse
|
14
|
Atteia HH, Arafa MH, Mohammad NS, Amin DM, Sakr AT. Thymoquinone upregulates miR-125a-5p, attenuates STAT3 activation, and potentiates doxorubicin antitumor activity in murine solid Ehrlich carcinoma. J Biochem Mol Toxicol 2021; 35:e22924. [PMID: 34605108 DOI: 10.1002/jbt.22924] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 08/21/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022]
Abstract
In breast cancer, there has been evidence of atypical activation of signal transduction and activators of transcription 3 (STAT3). Thymoquinone (TQ) exerts its anti-neoplastic effect through diverse mechanisms, including STAT3 inhibition. The tumor suppressor, microRNA-125a-5p was reported to be downregulated in various breast cancer cells. Therefore, we investigated the influence of TQ and/or doxorubicin on microRNA-125a-5p and its correlation with STAT3 activation as well as tumor growth in mice bearing solid Ehrlich tumors. We found that TQ markedly suppressed inducible and constitutive phosphorylation of STAT3 in tumor tissue without affecting STAT5. Moreover, it attenuated tumor growth, downregulated STAT3 downstream target proteins, and increased the apoptotic activities of caspase-3 and -9. Interestingly, TQ-elicited synergism of doxorubicin anti-neoplastic activity was coupled with upregulation of tumoral microRNA-125a-5p. Taken together, the current findings raise the potential of TQ as a promising chemomodulatory adjuvant to augment mammary carcinoma sensitivity to doxorubicin.
Collapse
Affiliation(s)
- Hebatallah H Atteia
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Manar H Arafa
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nanies S Mohammad
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Dalia M Amin
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amr T Sakr
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City (USC), Menoufia, Egypt
| |
Collapse
|
15
|
Teaima MH, Badawi NM, Attia DA, El-Nabarawi MA, Elmazar MM, Mousa SA. Efficacy of pomegranate extract loaded solid lipid nanoparticles transdermal emulgel against Ehrlich ascites carcinoma. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 39:102466. [PMID: 34587542 DOI: 10.1016/j.nano.2021.102466] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/02/2021] [Indexed: 01/16/2023]
Abstract
The purpose of this work was to incorporate an optimized pomegranate extract loaded solid lipid nanoparticles (PE-SLNs) formula in a transdermal emulgel to evaluate its anticancer effect. The prepared emulgel formulae were evaluated for their physicochemical properties. An ex vivo permeation study was done through mouse skin and the kinetic parameters were determined. Kinetic data showed that the ex vivo permeation of PE from SLNs transdermal emulgel through mouse skin followed non-Fickian diffusion transport. Further, in vivo study was done by applying the optimized PE-SLNs transdermal emulgel on mice skin bearing a solid form of Ehrlich ascites carcinoma (EAC) as well as free PE, control, placebo, and standard groups for comparison. In addition, histopathological examinations of the samples obtained from the EAC mice model were performed. The results proved that application of the selected PE-SLNs emulgel formulation on the mice skin bearing solid tumor revealed statistically significant anticancer effects.
Collapse
Affiliation(s)
- Mahmoud H Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Cairo University, Cairo, Egypt
| | - Noha M Badawi
- Department of Pharmaceutics, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Dalia A Attia
- Department of Pharmaceutics, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | | | - Mohey M Elmazar
- Department of Pharmacology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA.
| |
Collapse
|
16
|
Badawy AA, Othman RQA, El-Magd MA. Effect of combined therapy with camel milk-derived exosomes, tamoxifen, and hesperidin on breast cancer. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00163-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Al-Shahari EA, El Barky AR, Mohamed TM, Alm-Eldeen AA. Doxorubicin, L-arginine, or their combination as a prophylactic agent against hepatic carcinoma in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37661-37671. [PMID: 33721166 DOI: 10.1007/s11356-021-13177-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the ten most commonly diagnosed cancers. Doxorubicin is an antibiotic used in cancer treatment protocols that has several side effects. L-Arginine is a non-essential amino acid that is used as immune system activation and antitumor drugs. Therefore, the current study was designed to compare using doxorubicin, L-arginine, or their combination as a prophylactic agent against hepatic carcinoma induced by hepatocellular carcinoma cells (HepG2) injection in mice. The mice were divided into five groups: normal mice and mice that received HepG2, doxorubicin and HepG2, L-arginine and HepG2, and doxorubicin, L-Arginine, and HepG2, respectively. Liver function test as, aspartate transaminase (AST) and alanine transaminase (ALT), and alpha-fetoprotein (AFP), caspase 3, interleukin 6 (IL-6), tumor necrotic factor (TNF), lipid peroxidation (NDA), and some antioxidant parameters were determined. A significant increase in AST and ALT, α-fetoprotein, TNF-α, and cytokines IL6 and MDA and a significant decrease in the serum caspase and liver catalase were determined in HepG2-injected mice. Moreover, some large hyperchromatic heptocytes were observed and the percentage of the positive area/field of HepPar-1, the most specific HCC marker, was 9.56%. Interestingly, mice that received doxorubicin, L-arginine, or their combination showed an improvement in some of the previous parameters. The improvement was more prominent with L-arginine administration.
Collapse
Affiliation(s)
- Eman A Al-Shahari
- Department of Biology, Faculty of Science and Arts, King Khaled University, Abha, Saudi Arabia
- Department of Biology, Faculty of Science, Ibb University, Ibb, Yemen
| | - Amira Ragab El Barky
- Biochemistry Unit, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Tarek M Mohamed
- Biochemistry Unit, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | | |
Collapse
|
18
|
Tioconazole and Chloroquine Act Synergistically to Combat Doxorubicin-Induced Toxicity via Inactivation of PI3K/AKT/mTOR Signaling Mediated ROS-Dependent Apoptosis and Autophagic Flux Inhibition in MCF-7 Breast Cancer Cells. Pharmaceuticals (Basel) 2021; 14:ph14030254. [PMID: 33799790 PMCID: PMC7998405 DOI: 10.3390/ph14030254] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is a complex devastating disease with enormous treatment challenges, including chemo- and radiotherapeutic resistance. Combination therapy demonstrated a promising strategy to target hard-to-treat cancers and sensitize cancer cells to conventional anti-cancer drugs such as doxorubicin. This study aimed to establish molecular profiling and therapeutic efficacy assessment of chloroquine and/or tioconazole (TIC) combination with doxorubicin (DOX) as anew combination model in MCF-7 breast cancer. The drugs are tested against apoptotic/autophagic pathways and related redox status. Molecular docking revealed that chloroquine (CQ) and TIC could be potential PI3K and ATG4B pathway inhibitors. Combination therapy significantly inhibited cancer cell viability, PI3K/AkT/mTOR pathway, and tumor-supporting autophagic flux, however, induced apoptotic pathways and altered nuclear genotoxic feature. Our data revealed that the combination cocktail therapy markedly inhibited tumor proliferation marker (KI-67) and cell growth, along with the accumulation of autophagosomes and elevation of LC3-II and p62 levels indicated autophagic flux blockage and increased apoptosis. Additionally, CQ and/or TIC combination therapy with DOX exerts its activity on the redox balance of cancer cells mediated ROS-dependent apoptosis induction achieved by GPX3 suppression. Besides, Autophagy inhibition causes moderately upregulation in ATGs 5,7 redundant proteins strengthened combinations induced apoptosis, whereas inhibition of PI3K/AKT/mTOR pathway with Beclin-1 upregulation leading to cytodestructive autophagy with overcome drug resistance effectively in curing cancer. Notably, the tumor growth inhibition and various antioxidant effects were observed in vivo. These results suggest CQ and/or TIC combination with DOX could act as effective cocktail therapy targeting autophagy and PI3K/AKT/mTOR pathways in MCF-7 breast cancer cells and hence, sensitizes cancer cells to doxorubicin treatment and combat its toxicity.
Collapse
|
19
|
Hermawan A, Khumaira A, Ikawati M, Putri H, Jenie RI, Angraini SM, Muflikhasari HA. Identification of key genes of hesperidin in inhibition of breast cancer stem cells by functional network analysis. Comput Biol Chem 2020; 90:107427. [PMID: 33360419 DOI: 10.1016/j.compbiolchem.2020.107427] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 10/08/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
Breast cancer therapy with classical chemotherapy is unable to eradicate breast cancer stem cells (BCSCs). Loss of p53 function causes growth and differentiation in cancer stem cells (CSCs); therefore, p53-targeted compounds can be developed for BCSCs-targeted drugs. Previously, hesperidin (HES), a citrus flavonoid, showed anticancer activities and increased efficacy of chemotherapy in several types of cancer in vitro and in vivo. This study was aimed to explore the key protein and molecular mechanism of hesperidin in the inhibition of BCSCs using bioinformatics and in vitro study. Bioinformatics analysis revealed about 75 potential therapeutic target proteins of HES in BCSCs (TH), in which TP53 was the only direct target protein (DTP) with a high degree score. Furthermore, the results of GO enrichment analysis showed that TH was taken part in the biological process of regulation of apoptosis and cell cycle. The KEGG pathway enrichment analysis also showed that TH is involved in several pathways, including cell cycle, p53 signaling pathway. In vitro experiment results showed that HES inhibited cell proliferation, mammosphere, and a colony formation, and migration in on MCF-7 3D cells (mammospheres). HES induced G0/G1 cell cycle arrest and apoptosis in MCF-7 cells 3D. In addition, HES treatment reduced the mRNA level of p21 but increased the mRNA level of cyclin D1 and p53 in the mammosphere. HES inhibits BCSCs in mammospheres. More importantly, this study highlighted p53 as a key protein in inhibition of BCSCs by HES. Future studies on the molecular mechanism are needed to validate the results of this study.
Collapse
Affiliation(s)
- Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia.
| | - Annisa Khumaira
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia; Study Program of Biotechnology, Faculty of Sciences and Technology, Universitas Aisyiah Yogyakarta, Jalan Ringroad Barat No.63, Mlangi Nogotirto, Gamping, Nogotirto, Sleman, Yogyakarta, 55592, Indonesia
| | - Muthi Ikawati
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia
| | - Herwandhani Putri
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia
| | - Riris Istighfari Jenie
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia
| | - Sonia Meta Angraini
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia
| | - Haruma Anggraini Muflikhasari
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia
| |
Collapse
|
20
|
Ferreira de Oliveira JMP, Santos C, Fernandes E. Therapeutic potential of hesperidin and its aglycone hesperetin: Cell cycle regulation and apoptosis induction in cancer models. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 73:152887. [PMID: 30975541 DOI: 10.1016/j.phymed.2019.152887] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/20/2019] [Accepted: 03/09/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The ability of cancer cells to divide without restriction and to escape programmed cell death is a feature of the proliferative state. Citrus flavanones are flavonoids with potential multiple anticancer actions, from antioxidant and chemopreventive, to anti-inflammatory, anti-angiogenic, cytostatic and cytotoxic in different cancer models. PURPOSE This review aims to summarize the current knowledge on the antiproliferative actions of the citrus flavanones hesperidin (HSD) and hesperetin (HST), with emphasis on cell cycle arrest and apoptosis. METHODS Cochrane Library, Scopus, Pubmed and Web of Science collection databases were queried for publications reporting antiproliferative effects of HSD and HST in cancer models. RESULTS HSD and HST have been proven to delay cell proliferation in several cancer models. Depending on the compound, dose and cell line studied, different effects have been reported. Cell cycle arrest associated with cytostatic effects has been reported in cells with increased levels of p53 and also cyclin-dependent kinase inhibitors, as well as decreased levels of specific cyclins and cyclin-dependent kinases. Moreover, apoptotic effects have been found to be associated with altered ratios of pro-/antiapoptotic proteins, caspase activation, c-Jun N-terminal kinase (JNK) pathway activation and caspase-independent pathways. CONCLUSION Available scientific literature data indicate complex effects, dependent on cell lines and exposure conditions, suggesting that HSD and HST doses need to be optimized according to the cellular and organismal context. The establishment of the main antiproliferative mechanisms is of utmost importance for a possible therapeutic benefit of citrus flavanones in the context of cancer.
Collapse
Affiliation(s)
- José Miguel P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313 Porto, Portugal.
| | - Conceição Santos
- Integrated Biology and Biotechnology Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre, 4169-007 Porto, Portugal; LAQV, REQUIMTE, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal.
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
21
|
El-Sisi AE, Sokkar SS, Ibrahim HA, Hamed MF, Abu-Risha SE. Targeting MDR-1 gene expression, BAX/BCL2, caspase-3, and Ki-67 by nanoencapsulated imatinib and hesperidin to enhance anticancer activity and ameliorate cardiotoxicity. Fundam Clin Pharmacol 2020; 34:458-475. [PMID: 32080901 DOI: 10.1111/fcp.12549] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 02/08/2020] [Accepted: 02/19/2020] [Indexed: 12/21/2022]
Abstract
There is a great demand to introduce new approaches into cancer treatment field due to incidence of increased breast cancer all over the world. The current study was designed to evaluate the role of imatinib mesylate (IM) and/or hesperidin (HES) nanoparticles alone or in combination in enhancing the anticancer activity and to investigate the ability of nanoencapsulation to reduce cardiotoxicity of IM in solid Ehrlich carcinoma (SEC)-bearing mice. IM and HES were loaded into PLGA (poly(lactic-co-glycolic acid) polymer. SEC was induced in female albino mice as a model for experimentally induced breast cancer. Mice were randomly divided into eight groups (n = 10). On day 28 from tumor inoculation, mice were sacrificed and blood samples were collected in heparinized tubes for hematological studies, biochemical determination of lactate dehydrogenase (LDH), and glutamic oxaloacetic transaminase (SGOT) levels. In addition, tumor and cardiac tissues were utilized for histopathological examination as well as determination of MDR-1 gene expression. Immunohistochemical staining of BAX and BCL-2 was done. Nano IM- and/or Nano HES-treated groups showed a significant reduction in tumor volume, weight, hematological, cardiac markers, and tumor MDR-1 gene downregulation compared to free conventional treated groups. In conclusion, the use of HES as an adjuvant therapy with IM could improve its cytotoxic effects and limit its cardiac toxicity. Furthermore, nanoencapsulation of IM and/or HES with PLGA polymer showed a remarkable anticancer activity.
Collapse
Affiliation(s)
- Alaa E El-Sisi
- Pharmacology and Toxicology department, College of Pharmacy, University of Tanta, Tanta, Egypt
| | - Samia S Sokkar
- Pharmacology and Toxicology department, College of Pharmacy, University of Tanta, Tanta, Egypt
| | - Hanaa A Ibrahim
- Pharmacology and Toxicology department, College of Pharmacy, University of Tanta, Tanta, Egypt
| | - Mohamed F Hamed
- Department of Pathology, College of Veterinary Medicine, University of El-Mansoura, Mansoura, Egypt
| | - Sally E Abu-Risha
- Pharmacology and Toxicology department, College of Pharmacy, University of Tanta, Tanta, Egypt
| |
Collapse
|
22
|
Enhanced anticancer activity of combined treatment of imatinib and dipyridamole in solid Ehrlich carcinoma-bearing mice. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1113-1129. [PMID: 31950222 DOI: 10.1007/s00210-019-01803-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/22/2019] [Indexed: 12/27/2022]
Abstract
The current study was designed to evaluate potential enhancement of the anticancer activity of imatinib mesylate (IM) with dipyridamole (DIP) and to investigate the underlying mechanisms of the combined therapy (IM/DIP) to reduce hepatotoxicity of IM in solid Ehrlich carcinoma (SEC)-bearing mice. SEC was induced in female albino mice as a model for experimentally induced breast cancer. Mice were randomly divided into seven groups (n = 10): SEC vehicle, IM50 (50 mg/kg), IM100 (100 mg/kg), DIP (35 mg/kg), a combination of IM50/DIP and IM100/DIP. On day 28th, mice were sacrificed and blood samples were collected for hematological studies. Biochemical determination of liver markers was evaluated. Glutamic oxaloacetic transaminase (SGOT), glutamic pyruvic transaminase (SGPT) and alkaline phosphatase (ALP) levels were assessed. In addition, MDR-1 gene expression and immunohistochemical staining of BAX and BCL-2 was done. Also, in vitro experiment for determination of IC50 of different treatments and combination index (CI) were assessed in both MCF-7 and HCT-116 cell lines. IM- and/or DIP-treated groups showed a significant reduction in tumor volume, weight, and serum levels of SGOT, SGPT, and AIP compared to vehicle group. In addition, reduction of VEGF, Ki67, and adenosine contents was also reported by treated groups. Also, IM/DIP combination showed lower IC50 than monotherapy. Combination index is less than 1 for IM/DIP combination in both cell lines. DIP as an adjuvant therapy potentiated the cytotoxic effect of IM, ameliorated its hepatic toxicity, and showed synergistic effect with IM in vitro cell lines. Furthermore, the resistance against IM therapy may be overcome by the use of DIP independent on mdr-1 gene expression.
Collapse
|
23
|
Chen X, Peng X, Luo Y, You J, Yin D, Xu Q, He H, He M. Quercetin protects cardiomyocytes against doxorubicin-induced toxicity by suppressing oxidative stress and improving mitochondrial function via 14-3-3γ. Toxicol Mech Methods 2019; 29:344-354. [PMID: 30636491 DOI: 10.1080/15376516.2018.1564948] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiotoxicity limits the clinical applications of doxorubicin (Dox), which mechanism might be excess generation of intracellular ROS. Quercetin (Que) is a flavonoid that possesses anti-oxidative activities, exerts myocardial protection. We hypothesized that the cardioprotection against Dox injury of Que involved 14-3-3γ, and mitochondria. To investigate the hypothesis, we treated primary cardiomyocytes with Dox and determined the effects of Que pretreatment with or without 14-3-3γ knockdown. We analyzed various cellular and molecular indexes. Our data showed that Que attenuated Dox-induced toxicity in cardiomyocytes by upregulating 14-3-3γ expression. Que pretreatment increased cell viability, SOD, catalase, and GPx activities, GSH levels, MMP and the GSH/GSSG ratio; decreased LDH and caspase-3 activities, MDA and ROS levels, mPTP opening and the percentage of apoptotic cells. However, Que's cardioprotection were attenuated by knocking down 14-3-3γ expression using pAD/14-3-3γ-shRNA. In conclusion, Que protects cardiomyocytes against Dox injury by suppressing oxidative stress and improving mitochondrial function via 14-3-3γ.
Collapse
Affiliation(s)
- Xuanying Chen
- a Department of Pharmacy, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Xiaoping Peng
- b Jiangxi Provincial Institute of Hypertension, The First Affiliated Hospital, Nanchang University , Nanchang , China
| | - Yong Luo
- c Jiangxi Provincial Key Laboratory of Women's Reproductive Health , Jiangxi Provincial Maternal and Child Health Hospital , Nanchang , China
| | - Jiegen You
- d Jiangxi Academy of Medical Science, Nanchang University , Nanchang , China
| | - Dong Yin
- e Jiangxi Provincial Key Laboratory of Molecular Medicine , The Second Affiliated Hospital, Nanchang University , Nanchang , China
| | - Qiang Xu
- f Drug Clinical Trial Institution, Jiangxi Province Tumor Hospital , Nanchang , China
| | - Huan He
- g Jiangxi Provincial Key Laboratory of Basic Pharmacology , Nanchang University School of Pharmaceutical Science , Nanchang , China
| | - Ming He
- b Jiangxi Provincial Institute of Hypertension, The First Affiliated Hospital, Nanchang University , Nanchang , China
| |
Collapse
|
24
|
Zidan AAA, El-Ashmawy NE, Khedr EG, Ebeid EZM, Salem ML, Mosalam EM. Loading of doxorubicin and thymoquinone with F2 gel nanofibers improves the antitumor activity and ameliorates doxorubicin-associated nephrotoxicity. Life Sci 2018; 207:461-470. [PMID: 29885348 DOI: 10.1016/j.lfs.2018.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/05/2018] [Indexed: 02/07/2023]
Abstract
AIMS This study aimed to elucidate the benefits of nanoformulation of doxorubicin (DOX) and thymoquinone (TQ) loaded with nanofibers of poly-N-acetyl glucosamine (pGlcNAc), which is known as F2 gel, over their conventional free forms. Moreover, evaluate the role of TQ in improving chemotherapeutic effect and ameliorating nephrotoxicity of DOX. MAIN METHODS The drugs were loaded into F2 gel followed by measurement of physicochemical characterization. Next, MCF-7 and HEPG2 cells were treated with the prepared formulations and assessed for apoptosis alongside with cellular proliferation. Furthermore, we experimentally induced Heps liver carcinoma in mice and at the end of the treatment, mice were sacrificed and serum samples were used to assess nephrotoxicity markers; blood urea nitrogen (BUN) and creatinine. Additionally, renal tissue was used for determination of oxidative markers and antioxidant enzymes; whereas, tumor tissue was utilized to measure nuclear factor kappa B (NF-κB) and caspase 3. KEY FINDINGS Nanoformulation showed dramatic increase in apoptosis, caspase 3, and antioxidant enzymes; in contrast to, dramatic fall in cell viability, tumor volume, oxidative and nephrotoxicity markers, and NF-κB compared to corresponding free therapies. Combined therapy was superior in conserving the measured parameters compared to other treated groups. SIGNIFICANCE F2 gel loaded with DOX and TQ revealed enhanced antitumor activity with minimal toxicity. Moreover, using TQ as an adjuvant with DOX could augment its cytotoxicity and ameliorate nephrotoxicity.
Collapse
Affiliation(s)
- Abdel-Aziz A Zidan
- Zoology Department, Faculty of Science, Damanhour University, Egypt; Center of Excellence in cancer Research (CECR), Tanta University, Tanta, Egypt.
| | | | - Eman G Khedr
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Egypt
| | - El-Zeiny M Ebeid
- Physical Chemistry Department, Faculty of Science, Tanta University, Egypt
| | - Mohamed L Salem
- Immunology and Biotechnology Unit, Zoology Department, Faculty of Science, Tanta University, Egypt
| | - Esraa M Mosalam
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, Egypt
| |
Collapse
|
25
|
Donia TI, Gerges MN, Mohamed TM. Amelioration effect of Egyptian sweet orange hesperidin on Ehrlich ascites carcinoma (EAC) bearing mice. Chem Biol Interact 2018; 285:76-84. [DOI: 10.1016/j.cbi.2018.02.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/19/2017] [Accepted: 02/22/2018] [Indexed: 11/24/2022]
|
26
|
El-Ashmawy NE, Khedr NF, El-Bahrawy HA, Abo Mansour HE. Ginger extract adjuvant to doxorubicin in mammary carcinoma: study of some molecular mechanisms. Eur J Nutr 2018; 57:981-989. [PMID: 28229277 DOI: 10.1007/s00394-017-1382-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/24/2017] [Indexed: 12/27/2022]
Abstract
PURPOSE The present study aimed to investigate the molecular mechanisms underlying the anticancer properties of ginger extract (GE) in mice bearing solid Ehrlich carcinoma (SEC) and to evaluate the use of GE in combination with doxorubicin (DOX) as a complementary therapy against SEC. METHODS SEC was induced in 60 female mice. Mice were divided into four equal groups: SEC, GE, DOX and GE + DOX. GE (100 mg/kg orally day after day) and DOX (4 mg/kg i.p. for 4 cycles every 5 days) were given to mice starting on day 12 of inoculation. On the 28th day, blood samples were collected, mice were scarified, tumor volume was measured, and tumor tissues were excised. RESULTS The anti-cancer effect of GE was mediated by activation of adenosine monophosphate protein kinase (AMPK) and down-regulation of cyclin D1 gene expression. GE also showed pro-apoptotic properties as evidenced by elevation of the P53 and suppression of nuclear factor-kappa B (NF-κB) content in tumor tissue. Co-administration of GE alongside DOX markedly increased survival rate, decreased tumor volume, and increased the level of phosphorylated AMPK (PAMPK) and improved related pathways compared to DOX group. In addition, the histopathological results demonstrated enhanced apoptosis and absence of multinucleated cells in tumor tissue of GE + DOX group. CONCLUSION AMPK pathway and cyclin D1 gene expression could be a molecular therapeutic target for the anticancer effect of GE in mice bearing SEC. Combining GE and DOX revealed a greater efficacy as anticancer therapeutic regimen.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/chemistry
- AMP-Activated Protein Kinases/metabolism
- Animals
- Antibiotics, Antineoplastic/therapeutic use
- Antineoplastic Agents, Phytogenic/therapeutic use
- Apoptosis/drug effects
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/metabolism
- Carcinoma, Ehrlich Tumor/diet therapy
- Carcinoma, Ehrlich Tumor/drug therapy
- Carcinoma, Ehrlich Tumor/metabolism
- Carcinoma, Ehrlich Tumor/pathology
- Combined Modality Therapy
- Cyclin D1/antagonists & inhibitors
- Cyclin D1/genetics
- Cyclin D1/metabolism
- Dietary Supplements
- Doxorubicin/therapeutic use
- Enzyme Activation/drug effects
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Zingiber officinale/chemistry
- Mammary Glands, Animal/drug effects
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Experimental/diet therapy
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice
- Necrosis
- Neoplasm Proteins/agonists
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Plant Extracts/therapeutic use
- Rhizome/chemistry
- Survival Analysis
- Tumor Burden/drug effects
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, 31527, Tanta, Egypt
| | - Naglaa F Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, 31527, Tanta, Egypt
| | - Hoda A El-Bahrawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, 31527, Tanta, Egypt
| | - Hend E Abo Mansour
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, 31527, Tanta, Egypt.
| |
Collapse
|
27
|
Khalil RM, Abdo WS, Saad A, Khedr EG. Muscle proteolytic system modulation through the effect of taurine on mice bearing muscular atrophy. Mol Cell Biochem 2017; 444:161-168. [DOI: 10.1007/s11010-017-3240-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/24/2017] [Indexed: 10/18/2022]
|
28
|
El-Ashmawy NE, Khedr EG, Ebeid EZM, Salem ML, Zidan AAA, Mosalam EM. Enhanced anticancer effect and reduced toxicity of doxorubicin in combination with thymoquinone released from poly-N-acetyl glucosamine nanomatrix in mice bearing solid Ehrlish carcinoma. Eur J Pharm Sci 2017; 109:525-532. [PMID: 28890201 DOI: 10.1016/j.ejps.2017.09.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/04/2017] [Accepted: 09/06/2017] [Indexed: 02/07/2023]
Abstract
The incidence of breast cancer remarkably increases all over the world. Therefore, there is a great demand to introduce new approaches into cancer treatment field. The current study was designated to evaluate the role of doxorubicin (DOX) and/or thymoquinone (TQ) nanomatrix in potentiating the cytotoxicity of either drug, and to investigate the ability of TQ to reduce cardiotoxicity of DOX in solid Ehrlich carcinoma (SEC)-bearing mice. DOX and TQ were loaded into F2 gel, which is a fully-acetylated poly-N-acetyl glucosamine nanofiber. SEC was induced in female albino mice as a model for experimentally induced breast cancer. Mice were randomly divided into eight groups (n=10): normal control, tumor control, F2 gel, free DOX, DOX+F2 gel, free TQ, TQ+F2 gel, and DOX+TQ+F2 gel. On day 28th from tumor inoculation, mice were sacrificed and blood samples were collected for measurement of the cardiac markers; lactate dehydrogenase (LDH) and creatine kinase (CK-MB). In addition, cardiac tissue was utilized for determination of lipid peroxide, and tumor tissue was used for measurement of anti-apoptotic protein Bcl-2 as well as gene expression of the tumor suppressor gene P53. DOX and/or TQ showed a significant reduction in tumor volume, cardiac markers, tumor Bcl-2, and P53 upregulation compared to free conventional therapies. Co-treatment with DOX+TQ+F2 gel was superior to all other groups in exerting beneficial effects. Use of TQ as an adjuvant therapy with DOX could improve its cytotoxic effects and limit its cardiac toxicity. Furthermore, loading of DOX and/or TQ into F2 gel showed a remarkable anti-cancer activity.
Collapse
MESH Headings
- Acetylglucosamine/administration & dosage
- Animals
- Antibiotics, Antineoplastic/administration & dosage
- Benzoquinones/administration & dosage
- Carcinoma, Ehrlich Tumor/drug therapy
- Carcinoma, Ehrlich Tumor/metabolism
- Carcinoma, Ehrlich Tumor/pathology
- Chemotherapy, Adjuvant
- Creatine Kinase/blood
- Creatine Kinase, MB Form/blood
- Doxorubicin/administration & dosage
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, p53
- L-Lactate Dehydrogenase/blood
- Malondialdehyde/metabolism
- Mice
- Microscopy, Electron, Transmission
- Myocardium/metabolism
- Nanostructures/administration & dosage
- Nanostructures/ultrastructure
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Tumor Burden/drug effects
Collapse
Affiliation(s)
| | - Eman G Khedr
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Egypt
| | - El-Zeiny M Ebeid
- Physical Chemistry Department, Faculty of Science, Tanta University, Egypt
| | - Mohamed L Salem
- Immunology and Biotechnology Unit, Zoology Department, Faculty of Science Tanta University, Egypt
| | | | - Esraa M Mosalam
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, Egypt.
| |
Collapse
|
29
|
Khairy Abd M, Abu-Bakr H A. Radiosensitizing Efficacy of Diosmin- Hesperidin Complex Against Ehrlich Solid Carcinoma in Mice, A Potential Role of Histone Deacetylase and Pro-angiogenic Chaperones Targeting. INTERNATIONAL JOURNAL OF CANCER RESEARCH 2017; 13:59-70. [DOI: 10.3923/ijcr.2017.59.70] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
30
|
El-Ashmawy NE, Khedr NF, El-Bahrawy HA, Abo Mansour HE. Metformin augments doxorubicin cytotoxicity in mammary carcinoma through activation of adenosine monophosphate protein kinase pathway. Tumour Biol 2017; 39:1010428317692235. [PMID: 28459206 DOI: 10.1177/1010428317692235] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Since the incidence of breast cancer increases dramatically all over the world, the search for effective treatment is an urgent need. Metformin has demonstrated anti-tumorigenic effect both in vivo and in vitro in different cancer types. This work was designed to examine on molecular level the mode of action of metformin in mice bearing solid Ehrlich carcinoma and to evaluate the use of metformin in conjunction with doxorubicin as a combined therapy against solid Ehrlich carcinoma. Ehrlich ascites carcinoma cells were inoculated in 60 female mice as a model of breast cancer. The mice were divided into four equal groups: Control tumor, metformin, doxorubicin, and co-treatment. Metformin (15 mg/kg) and doxorubicin (4 mg/kg) were given intraperitoneally (i.p.) for four cycles every 5 days starting on day 12 of inoculation. The anti-tumorigenic effect of metformin was mediated by enhancement of adenosine monophosphate protein kinase activity and elevation of P53 protein as well as the suppression of nuclear factor-kappa B, DNA contents, and cyclin D1 gene expression. Metformin and doxorubicin mono-treatments exhibited opposing action regarding cyclin D1 gene expression, phosphorylated adenosine monophosphate protein kinase, and nuclear factor-kappa B levels. Co-treatment markedly decreased tumor volume, increased survival rate, and improved other parameters compared to doxorubicin group. In parallel, the histopathological findings demonstrated enhanced apoptosis and absence of necrosis in tumor tissue of co-treatment group. Metformin proved chemotherapeutic effect which could be mediated by the activation of adenosine monophosphate protein kinase and related pathways. Combining metformin and doxorubicin, which exhibited different mechanisms of action, produced greater efficacy as anticancer therapeutic regimen.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Naglaa F Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hoda A El-Bahrawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hend E Abo Mansour
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
31
|
Abushouk AI, Ismail A, Salem AMA, Afifi AM, Abdel-Daim MM. Cardioprotective mechanisms of phytochemicals against doxorubicin-induced cardiotoxicity. Biomed Pharmacother 2017; 90:935-946. [PMID: 28460429 DOI: 10.1016/j.biopha.2017.04.033] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/03/2017] [Accepted: 04/10/2017] [Indexed: 12/14/2022] Open
Abstract
Doxorubicin (DOX) is an anthracycline antibiotic, which is effectively used in the treatment of different malignancies, such as leukemias and lymphomas. Its most serious side effect is dose-dependent cardiotoxicity, which occurs through inducing oxidative stress apoptosis. Due to the myelosuppressive effect of dexrazoxane, a commonly-used drug to alleviate DOX-induced cardiotoxicity, researchers investigated the potential of phytochemicals for prophylaxis and treatment of this condition. Phytochemicals are plant chemicals that have protective or disease preventive properties. Preclinical trials have shown antioxidant properties for several plant extracts, such as those of Aerva lanata, Aronia melanocarpa, Astragalus polysaccharide, and Bombyx mori plants. Other plant extracts showed an ability to inhibit apoptosis, such as those of Astragalus polysaccharide, Azadirachta indica, Bombyx mori, and Allium stavium plants. Unlike synthetic agents, phytochemicals do not impair the clinical activity of DOX and they are particularly safe for long-term use. In this review, we summarized the results of preclinical trials that investigated the cardioprotective effects of phytochemicals against DOX-induced cardiotoxicity. Future human trials are required to translate these cardioprotective mechanisms into practical clinical implications.
Collapse
Affiliation(s)
| | - Ammar Ismail
- NovaMed Medical Research Association, Cairo, Egypt; Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Amr Muhammad Abdo Salem
- Faculty of Medicine, Ain Shams University, Cairo, Egypt; NovaMed Medical Research Association, Cairo, Egypt
| | - Ahmed M Afifi
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt; Pharmacology Department, Dr. D.Y. Patil Medical College, Pune, Maharashtra, India.
| |
Collapse
|
32
|
Yehia R, Hathout RM, Attia DA, Elmazar MM, Mortada ND. Anti-tumor efficacy of an integrated methyl dihydrojasmonate transdermal microemulsion system targeting breast cancer cells: In vitro and in vivo studies. Colloids Surf B Biointerfaces 2017; 155:512-521. [PMID: 28486181 DOI: 10.1016/j.colsurfb.2017.04.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 01/10/2023]
Abstract
Targeting solid tumors transdermally is an emerging approach that is currently under intense investigation. In this context, microemulsions are reported as one of the most favored carriers for successful transdermal drug delivery. Thereby, these nano-carriers were utilized in this study for the delivery of a phytochemical, namely methyl dihydrojasmonate (MDHJ), which has previously demonstrated an anticancer effect. Accordingly, pseudoternary phase diagrams were constructed using several combinations of oils, surfactants and co-surfactants and following the water titration method. Two systems were selected and an experimental design (Simplex Lattice Mixture Design) was utilized to select formulations for further investigation through an ex vivo permeation study through mouse skin. Transdermal fluxes were determined reaching a value of 0.07μlcm-2h-1. Cytotoxicity studies were carried out where the selected superlative formulation was further investigated on MCF-7 cell lines and scored an IC50 of 42.2μl/ml (equivalent to 8.3μl/ml drug). Further, in vivo investigations were performed using Ehlirch solid carcinoma and histopathological examination of the tumor cells evaluating the tumor volume differences, tumor inhibition percentages and the necrotic effect of the formulation compared to control, placebo and pure drug. The obtained results showed significant anticancer effects of the selected formulation when applied on the tumor bearing mice skin.
Collapse
Affiliation(s)
- Rania Yehia
- Department of Pharmaceutics and Industrial Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Dalia A Attia
- Department of Pharmaceutics and Industrial Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Mohamed M Elmazar
- Department of Pharmacology and Toxicology, The British University in Egypt (BUE), Cairo, Egypt
| | - Nahed D Mortada
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
33
|
Ansar S, Abudawood M, Hamed SS, Aleem MM. Exposure to Zinc Oxide Nanoparticles Induces Neurotoxicity and Proinflammatory Response: Amelioration by Hesperidin. Biol Trace Elem Res 2017; 175:360-366. [PMID: 27300038 DOI: 10.1007/s12011-016-0770-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 05/30/2016] [Indexed: 01/22/2023]
Abstract
Zinc oxide nanoparticles (ZnONPs) are widely used in food packaging and may enter the body directly if exposed. Hereby, in this study, the oral administration was selected as the route of exposure for rats to nanoparticles and the effect of hesperidin (HSP, 100 mg/kg bwt) was evaluated on ZnONP (600 mg/kg bwt)-induced neurotoxicity in rats. ZnONPs were characterized using transmission electron microscopy. Neurotoxicity was observed as seen by elevation in serum inflammatory markers including tumor necrosis factor alpha (TNF-α), interleukin 1 (IL-1β), interleukin-6 (IL-6), C-reactive protein (CRP), and activities of catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione (GSH) content in rat brains. Pretreatment of rats with HSP in ZnONP-treated group elevated activities of antioxidant enzymes. HSP also caused decrease in TNF-α, IL-1β, IL-6, and CRP levels which was higher in the ZnONP-treated group. The results suggest that HSP augments antioxidant defense with anti-inflammatory response against ZnONP-induced neurotoxicity. The increased antioxidant enzymes enhance the antioxidant potential to reduce oxidative stress.
Collapse
Affiliation(s)
- Sabah Ansar
- Clinical Laboratory Sciences, Applied Medical Science, King Saud University, Riyadh, Saudi Arabia.
| | - Manal Abudawood
- Clinical Laboratory Sciences, Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Sherifa Shaker Hamed
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Zoology Department, Faculty of Science, University of Alexandria, Moharram Bey, Alexandria, 21511, Egypt
| | - Mukhtar M Aleem
- Chemistry and Biochemistry Department, University of California, Santa Cruz, CA, USA
| |
Collapse
|
34
|
Synthesis, characterization and augmented anticancer potential of PEG-betulinic acid conjugate. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 73:616-626. [PMID: 28183653 DOI: 10.1016/j.msec.2016.12.109] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/30/2016] [Accepted: 12/20/2016] [Indexed: 02/07/2023]
Abstract
Betulinic acid (BA), a pentacyclic lupine-type triterpene, is reported to inhibit cell growth in a variety of cancers. However, its efficacy is limited by its poor aqueous solubility and relatively short half-life. In this study, BA-monomethoxy polyethylene glycol (mPEG) conjugate was synthesized by covalent coupling the C-28 carboxylic acid position of BA with amine groups of mPEG, in order to improve its solubility and anticancer efficacy. mPEG-BA conjugate was characterized using various analytical techniques including NMR, FT-IR and MALDI-MS. The mPEG-BA conjugate was cytotoxic, demonstrated internalization and induced cell apoptosis in Hep3B and Huh7 hepatic cancer cells. The western-blot analysis revealed, marked decrease in Bcl-2/Bax ratio, and increase in cleaved-PARP and cleaved-caspase-3 expressions. In vivo studies in Ehrlich ascites tumor (EAT) model following intravenous administration demonstrated significant reduction in tumor volume in case of PEGylated BA as compare to native BA. Furthermore, PEGylated BA treated EAT mice showed no biochemical and histological toxicities. These findings demonstrate the potential of PEGylated BA in cancer therapy, with improved water solubility and efficacy.
Collapse
|
35
|
Cardioprotective Potentials of Plant-Derived Small Molecules against Doxorubicin Associated Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5724973. [PMID: 27313831 PMCID: PMC4893565 DOI: 10.1155/2016/5724973] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/02/2016] [Accepted: 04/20/2016] [Indexed: 12/17/2022]
Abstract
Doxorubicin (DOX) is a potent and widely used anthracycline antibiotic for the treatment of several malignancies. Unfortunately, the clinical utility of DOX is often restricted due to the elicitation of organ toxicity. Particularly, the increased risk for the development of dilated cardiomyopathy by DOX among the cancer survivors warrants major attention from the physicians as well as researchers to develop adjuvant agents to neutralize the noxious effects of DOX on the healthy myocardium. Despite these pitfalls, the use of traditional cytotoxic drugs continues to be the mainstay treatment for several types of cancer. Recently, phytochemicals have gained attention for their anticancer, chemopreventive, and cardioprotective activities. The ideal cardioprotective agents should not compromise the clinical efficacy of DOX and should be devoid of cumulative or irreversible toxicity on the naïve tissues. Furthermore, adjuvants possessing synergistic anticancer activity and quelling of chemoresistance would significantly enhance the clinical utility in combating DOX-induced cardiotoxicity. The present review renders an overview of cardioprotective effects of plant-derived small molecules and their purported mechanisms against DOX-induced cardiotoxicity. Phytochemicals serve as the reservoirs of pharmacophore which can be utilized as templates for developing safe and potential novel cardioprotective agents in combating DOX-induced cardiotoxicity.
Collapse
|