1
|
Romanowicz A, Lukaszewicz-Zajac M, Mroczko B. Exploring Potential Biomarkers in Oesophageal Cancer: A Comprehensive Analysis. Int J Mol Sci 2024; 25:4253. [PMID: 38673838 PMCID: PMC11050399 DOI: 10.3390/ijms25084253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Oesophageal cancer (OC) is the sixth leading cause of cancer-related death worldwide. OC is highly aggressive, primarily due to its late stage of diagnosis and poor prognosis for patients' survival. Therefore, the establishment of new biomarkers that will be measured with non-invasive techniques at low cost is a critical issue in improving the diagnosis of OC. In this review, we summarize several original studies concerning the potential significance of selected chemokines and their receptors, including inflammatory proteins such as interleukin-6 (IL-6) and C-reactive protein (CRP), hematopoietic growth factors (HGFs), claudins (CLDNs), matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), adamalysines (ADAMs), as well as DNA- and RNA-based biomarkers, in OC. The presented results indicate the significant correlation between the CXCL12, CXCR4, CXCL8/CXCR2, M-CSF, MMP-2, MMP-9 ADAM17, ADAMTS-6, and CLDN7 levels and tumor stage, as well as the clinicopathological parameters of OC, such as the presence of lymph node and/or distant metastases. CXCL12, CXCL8/CXCR2, IL-6, TIMP-2, ADAM9, and ADAMTS-6 were prognostic factors for the overall survival of OC patients. Furthermore, IL-6, CXCR4, CXCL8, and MMP-9 indicate higher diagnostic utility based on the area under the ROC curve (AUC) than well-established OC tumor markers, whereas CLDN18.2 can be used in novel targeted therapies for OC patients.
Collapse
Affiliation(s)
- Adrianna Romanowicz
- Department of Biochemical Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15a, 15-269 Bialystok, Poland; (A.R.); (B.M.)
| | - Marta Lukaszewicz-Zajac
- Department of Biochemical Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15a, 15-269 Bialystok, Poland; (A.R.); (B.M.)
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15a, 15-269 Bialystok, Poland; (A.R.); (B.M.)
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15a, 15-269 Bialystok, Poland
| |
Collapse
|
2
|
Pawluczuk E, Łukaszewicz-Zając M, Mroczko B. The Comprehensive Analysis of Specific Proteins as Novel Biomarkers Involved in the Diagnosis and Progression of Gastric Cancer. Int J Mol Sci 2023; 24:ijms24108833. [PMID: 37240178 DOI: 10.3390/ijms24108833] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Gastric cancer (GC) cases are predicted to rise by 2040 to approximately 1.8 million cases, while GC-caused deaths to 1.3 million yearly worldwide. To change this prognosis, there is a need to improve the diagnosis of GC patients because this deadly malignancy is usually detected at an advanced stage. Therefore, new biomarkers of early GC are sorely needed. In the present paper, we summarized and referred to a number of original pieces of research concerning the clinical significance of specific proteins as potential biomarkers for GC in comparison to well-established tumor markers for this malignancy. It has been proved that selected chemokines and their specific receptors, vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR), specific proteins such as interleukin 6 (IL-6) and C-reactive protein (CRP), matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS), as well as DNA- and RNA-based biomarkers, and c-MET (tyrosine-protein kinase Met) play a role in the pathogenesis of GC. Based on the recent scientific literature, our review indicates that presented specific proteins are potential biomarkers in the diagnosis and progression of GC as well as might be used as prognostic factors of GC patients' survival.
Collapse
Affiliation(s)
- Elżbieta Pawluczuk
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Marta Łukaszewicz-Zając
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15a, 15-269 Bialystok, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15a, 15-269 Bialystok, Poland
| |
Collapse
|
3
|
Qiu H, Zhang X, Qi J, Zhang J, Tong Y, Li L, Fu L, Qin YR, Guan X, Zhang L. Identification and characterization of FGFR2+ hematopoietic stem cell-derived fibrocytes as precursors of cancer-associated fibroblasts induced by esophageal squamous cell carcinoma. J Exp Clin Cancer Res 2022; 41:240. [PMID: 35941662 PMCID: PMC9358838 DOI: 10.1186/s13046-022-02435-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/06/2022] [Indexed: 11/28/2022] Open
Abstract
Background Cancer-associated fibroblast (CAF) is an ideal target for cancer treatment. Recent studies have focused on eliminating CAFs and their effects by targeting their markers or blocking individual CAF-secreted factors. However, these strategies have been limited by their specificity for targeting CAFs and effectiveness in blocking widespread influence of CAFs. To optimize CAF-targeted therapeutic strategies, we tried to explore the molecular mechanisms of CAF generation in this study. Methods Using FGFR2 as a tracing marker, we identified a novel origin of CAFs in esophageal squamous cell carcinoma (ESCC). Furthermore, we successfully isolated CAF precursors from peripheral blood of ESCC patients and explored the mechanisms underlying their expansion, recruitment, and differentiation via RNA-sequencing and bioinformatics analysis. The mechanisms were further verified by using different models both in vitro and in vivo. Results We found that FGFR2+ hematopoietic stem cell (HSC)-derived fibrocytes could be induced by ESCC cells, recruited into tumor xenografts, and differentiated into functional CAFs. They were mobilized by cancer-secreted FGF2 and recruited into tumor sites via the CXCL12/CXCR4 axis. Moreover, they differentiated into CAFs through the activation of YAP-TEAD complex, which is triggered by directly contracting with tumor cells. FGF2 and CXCR4 neutralizing antibodies could effectively block the mobilization and recruitment process of FGFR2+ CAFs. The YAP-TEAD complex-based mechanism hold promise for locally activation of genetically encoded therapeutic payloads at tumor sites. Conclusions We identified a novel CAF origin and systematically studied the process of mobilization, recruitment, and maturation of CAFs in ESCC under the guidance of tumor cells. These findings give rise to new approaches that target CAFs before their incorporation into tumor stroma and use CAF-precursors as cellular vehicles to target tumor cells. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02435-w.
Collapse
|
4
|
Pawluczuk E, Łukaszewicz-Zając M, Gryko M, Kulczyńska-Przybik A, Mroczko B. Serum CXCL8 and Its Specific Receptor (CXCR2) in Gastric Cancer. Cancers (Basel) 2021; 13:cancers13205186. [PMID: 34680333 PMCID: PMC8534112 DOI: 10.3390/cancers13205186] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 12/30/2022] Open
Abstract
Gastric cancer (GC) is the second leading cause of cancer-related deaths worldwide. This malignancy is usually diagnosed at an advanced stage. Therefore, novel biomarkers useful in the early detection of GC are sorely needed. Some authors suggest the role of chemokines and their specific receptors in GC pathogenesis. The aim of the study was to investigate whether serum CXCL8 and its receptor (CXCR2) might be considered as potential candidates for biomarkers in the diagnosis and prognosis of GC. The study included 98 subjects: 64 GC patients and 34 healthy volunteers. CXCL8 and CXCR2 concentrations were assessed by the enzyme-linked immunosorbent assay (ELISA) method. Serum CXCL8 and CXCR2 concentrations were significantly higher in GC patients than in healthy controls, similar to the well-established tumor marker (CA19-9) and marker of inflammation (CRP). Diagnostic sensitivity of CXCL8 was the highest among all proteins tested and increased for the combined assessment with CA19-9. The area under the ROC curve for CXCL8 was higher than those for CXCR2 and classical tumor markers. Serum CXCL8 levels were indicated as a significant risk factor of GC occurrence. Our findings suggest that serum CXCL8 is a promising candidate for a biomarker in GC diagnosis and might be used as a significant predictor of GC risk.
Collapse
Affiliation(s)
- Elżbieta Pawluczuk
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.P.); (A.K.-P.)
| | - Marta Łukaszewicz-Zając
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland;
| | - Mariusz Gryko
- Second Department of General Surgery, Medical University of Bialystok, 15-274 Bialystok, Poland;
| | - Agnieszka Kulczyńska-Przybik
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.P.); (A.K.-P.)
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.P.); (A.K.-P.)
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland;
- Correspondence:
| |
Collapse
|
5
|
Yang B, Peng F, Zhang Y, Wang X, Wang S, Zheng Y, Zhang J, Zeng Y, Wang N, Peng C, Wang Z. Aiduqing formula suppresses breast cancer metastasis via inhibiting CXCL1-mediated autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153628. [PMID: 34247114 DOI: 10.1016/j.phymed.2021.153628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 05/25/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Metastasis is the most common lethal cause of breast cancer-related death. Recent studies have implied that autophagy is closely implicated in cancer metastasis. Therefore, it is of great significance to explore autophagy-related molecular targets involved in breast cancer metastasis and to develop therapeutic drugs. PURPOSE This study was designed to investigate the anti-metastatic effects and autophagy regulatory mechanisms of Aiduqing (ADQ) formula on breast cancer. STUDY DESIGN/METHODS Multiple cellular and molecular experiments were conducted to investigate the inhibitory effects of ADQ formula on autophagy and metastasis of breast cancer cells in vitro. Meanwhile, autophagic activator/inhibitor as well as CXCL1 overexpression or interference plasmids were used to investigate the underlying mechanisms of ADQ formula in modulating autophagy-mediated metastasis. Furthermore, the zebrafish xenotransplantation model and mouse xenografts were applied to validate the inhibitory effect of ADQ formula on autophagy-mediated metastasis in breast cancer in vivo. RESULTS ADQ formula significantly inhibited the proliferation, migration, invasion and autophagy but induced apoptosis of high-metastatic breast cancer cells in vitro. Similar results were also observed in starvation-induced breast cancer cells which exhibited elevated metastatic ability and autophagy activity. Mechanism investigations further approved that either CXCL1 overexpression or autophagic activator rapamycin can significantly abrogated the anti-metastatic effects of ADQ formula, suggesting that CXCL1-mediated autophagy may be the crucial pathway of ADQ formula in suppressing breast cancer metastasis. More importantly, ADQ formula suppressed breast cancer growth, autophagy, and metastasis in both the zebrafish xenotransplantation model and the mouse xenografts. CONCLUSION Our study not only revealed the novel function of CXCL1 in mediating autophagy-mediated metastasis but also suggested ADQ formula as a candidate drug for the treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Bowen Yang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Chinese Medicine, Chengdu, Sichuan, China; The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yu Zhang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xuan Wang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shengqi Wang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yifeng Zheng
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Juping Zhang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yihao Zeng
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Neng Wang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Chinese Medicine, Chengdu, Sichuan, China.
| | - Zhiyu Wang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Chinese Medicine, Chengdu, Sichuan, China; The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Goto M, Shibahara Y, Baciu C, Allison F, Yeung JC, Darling GE, Liu M. Prognostic Impact of CXCR7 and CXCL12 Expression in Patients with Esophageal Adenocarcinoma. Ann Surg Oncol 2021; 28:4943-4951. [PMID: 33709176 DOI: 10.1245/s10434-021-09775-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/10/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Chemokines are major regulators of cell trafficking and adhesion. The chemokine CXCL12 and its receptors, CXCR4 and CXCR7, have been reported as biomarkers in various cancers, including esophageal cancer; however, there are few studies in esophageal adenocarcinoma (EAC). In this study, we investigated the relationship between expression of CXCL12, CXCR4, and CXCR7, and prognosis in patients with EAC. METHODS This study examined 55 patients with EAC who were treated in Toronto General Hospital from 2001 to 2010. Tissue microarray immunohistochemistry was used to evaluate the expression of CXCL12, CXCR4, and CXCR7. Evaluation of immunohistochemistry was performed by a pathologist without knowledge of patients' information and results were compared with the patients' clinicopathological features and survival. RESULTS High CXCR7 expression was significantly associated with lymphatic invasion (present vs absent, P = 0.005) and higher number of lymph node metastases (pN0-1 vs pN2-3, P = 0.0014). Patients with high CXCR7 expression (n = 23) were associated with worse overall (OS) and disease-free survival (DFS) (P = 0.0221, P = 0.0090, respectively), and patients with high CXCL12 (n = 24) tended to have worse OS and DFS (P = 0.1091, P = 0.1477, respectively). High expression of both CXCR7 and CXCL12 was an independent prognostic factor for OS and DFS on multivariate analysis (HR = 0.3, 95% CI: 0.1-0.9, P = 0.0246, HR = 0.3, 95% CI: 0.1-0.8, P = 0.0134, respectively). CONCLUSIONS High CXCR7 expression was associated with poor prognosis in patients with EAC, and high expression of CXCR7 with its ligand CXCL12 had a stronger association with prognosis. Further study of this potential biomarker using whole tissue samples and a larger sample size is warranted.
Collapse
Affiliation(s)
- Masakazu Goto
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.,Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Yukiko Shibahara
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Pathology, University Health Network, Toronto, Canada
| | - Cristina Baciu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Frances Allison
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Jonathan C Yeung
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Gail E Darling
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada. .,Departments of Surgery, Medicine, and Physiology, Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Abstract
Esophageal cancer has recent shown a higher incidence but lower 5-year survival rate after normal clinical treatment in China. The aim of this study was to observe whether the inhibition of miR-196a affects esophageal cancer cell growth by modulating the nuclear factor-κB target gene and to detect the possible cooperative therapeutic effects on esophageal cancer by knocking down miR-196a expression combined with the specific inhibitor of nuclear factor-κB target genes. Thus, anti-miR-196a or sotrastaurin, a protein kinase C (PKC) inhibitor, were used to alter PKC expression. We found that miR-196a knockdown or PKC inhibition by sotrastaurin changed PKC expression which then reduced esophageal cancer cell proliferation and downregulated proliferating cell nuclear antigen expression via the classical B-cell receptor-PKC nuclear factor-κB pathway but not the alternative pathway; in addition, miR-196a inhibition can increase the caspase level and induce esophageal cancer cell apoptosis. Our current results provided the evidence that miR-196a was related to the classical nuclear factor-κB pathway, and these new findings proved the potential therapeutic effect of miR-196a in targeted therapy for clinical esophageal cancer patients.
Collapse
|
8
|
Liang GQ, Liu J, Zhou XX, Lin ZX, Chen T, Chen G, Wei H. Anti-CXCR4 Single-Chain Variable Fragment Antibodies Have Anti-Tumor Activity. Front Oncol 2021; 10:571194. [PMID: 33392074 PMCID: PMC7775505 DOI: 10.3389/fonc.2020.571194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022] Open
Abstract
Monoclonal antibodies (mAbs) are large and have limitations as cancer therapeutics. Human single-chain variable fragment (scFv) is a small antibody as a good alternative. It can easily enter cancer tissues, has no immunogenicity and can be produced in bacteria to decrease the cost. The chemokine receptor CXCR4 is overexpressed in different cancer cells. It plays an important role in tumor growth and metastasis. Its overexpression is associated with poor prognosis in cancer patients and is regarded as an attractive target for cancer treatment. In this study, a peptide on the CXCR4 extracellular loop 2 (ECL2) was used as an antigen for screening a human scFv antibody library by yeast two-hybrid method. Three anti-CXCR4 scFv antibodies were isolated. They could bind to CXCR4 protein and three cancer cell lines (DU145, PC3, and MDA-MB-231) and not to 293T and 3T3 cells as negative controls. These three scFvs could decrease the proliferation, migration, and invasion of these cancer cells and promote their apoptosis. The two scFvs were further examined in a mouse xenograft model, and they inhibited the tumor growth. Tumor immunohistochemistry also demonstrated that the two scFvs decreased cancer cell proliferation and tumor angiogenesis and increased their apoptosis. These results show that these anti-CXCR4 scFvs can decrease cancer cell proliferation and inhibit tumor growth in mice, and may provide therapy for various cancers.
Collapse
Affiliation(s)
- Guang-Quan Liang
- Department of Cell Biology and Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jing Liu
- Department of Cell Biology and Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiao-Xin Zhou
- Department of Cell Biology and Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ze-Xiong Lin
- Department of Cell Biology and Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Tao Chen
- Department of Cell Biology and Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Guo Chen
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Henry Wei
- Department of Cell Biology and Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Giannetta E, La Salvia A, Rizza L, Muscogiuri G, Campione S, Pozza C, Colao AALI, Faggiano A. Are Markers of Systemic Inflammatory Response Useful in the Management of Patients With Neuroendocrine Neoplasms? Front Endocrinol (Lausanne) 2021; 12:672499. [PMID: 34367064 PMCID: PMC8339959 DOI: 10.3389/fendo.2021.672499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/03/2021] [Indexed: 11/13/2022] Open
Abstract
Given the increasing incidence of neuroendocrine neoplasms (NENs) over the past few decades, a more comprehensive knowledge of their pathophysiological bases and the identification of innovative NEN biomarkers represents an urgent unmet need. There is still little advance in the early diagnosis and management of these tumors, due to the lack of sensible and specific markers with prognostic value and ability to early detect the response to treatment. Chronic systemic inflammation is a predisposing factor for multiple cancer hallmarks, as cancer proliferation, progression and immune-evading. Therefore, the relevance of inflammatory biomarkers has been identified as critical in several types of tumours, including NENs. A bidirectional relationship between chronic inflammation and development of NENs has been reported. Neuroendocrine cells can be over-stimulated by chronic inflammation, leading to hyperplasia and neoplastic transformation. As the modulation of inflammatory response represents a therapeutic target, inflammatory markers could represent a promising new key tool to be applied in the diagnosis, the prediction of response to treatment and also as prognostic biomarkers in NENs field. The present review provides an overview of the pre-clinical and clinical data relating the potentially usefulness of circulating inflammatory markers: neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), cytokines and tissue inflammatory markers (PD-1/PD-L1), in the management of NENs. (1) NLR and PLR have both demonstrated to be promising and simple to acquire biomarkers in patients with advanced cancer, including NEN. To date, in the context of NENs, the prognostic role of NLR and PLR has been confirmed in 15 and 4 studies, respectively. However, the threshold value, both for NLR and PLR, still remains not defined. (2) Cytokines seem to play a central role in NENs tumorigenesis. In particular, IL-8 levels seems to be a good predictive marker of response to anti-angiogenic treatments. (3) PD-1 and PD-L1 expression on tumour cells and on TILs, have demonstrated to be promising predictive and prognostic biomarkers in NENs. Unfortunately, these two markers have not been validated so far and further studies are needed to establish their indications and utility.
Collapse
Affiliation(s)
- Elisa Giannetta
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
- *Correspondence: Elisa Giannetta,
| | - Anna La Salvia
- Department of Oncology, University Hospital 12 de Octubre, Madrid, Spain
| | - Laura Rizza
- Endocrinology Unit, Department of Oncology and Medical Specialities, AO San Camillo-Forlanini, Rome, Italy
| | - Giovanna Muscogiuri
- Endocrinology Unit Department of Clinical Medicine and Surgery, University Federico II School of Medicine, Naples, Italy
| | - Severo Campione
- A. Cardarelli Hospital, Naples Department of Advanced Diagnostic-Therapeutic Technologies and Health Services Section of Anatomic Pathology, Naples, Italy
| | - Carlotta Pozza
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | | | - Antongiulio Faggiano
- Department of Clinical and Molecular Medicine, Endocrine-Metabolic Unit, Sant’Andrea University Hospital “Sapienza” University of Rome, Rome, Italy
| |
Collapse
|
10
|
The Role of Chemokines in the Development of Gastric Cancer - Diagnostic and Therapeutic Implications. Int J Mol Sci 2020; 21:ijms21228456. [PMID: 33182840 PMCID: PMC7697532 DOI: 10.3390/ijms21228456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is the fifth most common cancer worldwide and the second leading cause of cancer-related death. GC is usually diagnosed at an advanced stage due to late presentation of symptoms. Therefore, there is a need for establishing more sensitive and specific markers useful in early detection of the disease when a cancer is asymptomatic to improve the diagnostic and clinical decision-making process. Some researchers suggest that chemokines and their specific receptors play an important role in GC initiation and progression via promotion of angiogenesis, tumor transformation, invasion, survival and metastasis as well as protection from host response and inter-cell communication. Chemokines are small proteins produced by various cells such as endothelial cells, fibroblasts, leukocytes, and epithelial and tumor cells. According to our knowledge, the significance of chemokines and their specific receptors in diagnosing GC and evaluating its progression has not been fully elucidated. The present article offers a review of current knowledge on general characteristics of chemokines, specific receptors and their role in GC pathogenesis as well as their potential usefulness as novel biomarkers for GC.
Collapse
|
11
|
Yue Z, Ningning D, Lin Y, Jianming Y, Hongtu Z, Ligong Y, Feng L, Shuaibo W, Yousheng M. Correlation between CXCR4, CXCR5 and CCR7 expression and survival outcomes in patients with clinical T1N0M0 non-small cell lung cancer. Thorac Cancer 2020; 11:2955-2965. [PMID: 32896997 PMCID: PMC7529574 DOI: 10.1111/1759-7714.13645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related death. Even if early detection and treatment have proven to be effective, the survival outcomes are still poor. METHODS Tissue samples and clinicopathological data of 244 patients with clinical T1N0M0 NSCLC were collected. We investigated CXCR4, CXCR5 and CCR7 expression levels using the immunohistochemical method and analyzed their correlations with clinicopathological characteristics and survival outcomes. RESULTS Elevated expression levels of CXCR4, CXCR5 and CCR7 were found in tumor tissues (P < 0.001). The expression levels were remarkably different in histological type (CXCR4, P = 0.032; CXCR5, P < 0.001; CCR7, P < 0.001) and LVI (CXCR4, P = 0.017; CXCR5, P = 0.030; CCR7, P < 0.001). In addition, CXCR4 and CXCR5 expression were significantly different in tumor differentiation (CXCR4, P < 0.001; CXCR5, P < 0.001). Survival analysis showed that patients with positive CXCR4 expression had a significantly lower five-year DFS (P = 0.007) and a lower five-year OS (P = 0.010). Patients in the CXCR5 positive group had a significantly lower five-year DFS (P = 0.038) and a lower five-year OS (P = 0.220), which were statistically insignificant. However, five-year DFS and five-year OS of patients with positive CCR7 expression were significantly higher (DFS: P < 0.001; OS: P < 0.001). CXCR5 and CCR7 expression were found to be independent prognostic factors through multivariate analysis. CONCLUSIONS Expression levels of CXCR4, CXCR5 and CCR7 were significantly higher in tumor tissues, and expression of CXCR5 and CCR7 were independent prognostic factors for survival. Moreover, all three chemokines were correlated to the survival outcomes of patients with clinical T1N0M0 NSCLC, providing potential prognosticators and therapy targets for lung cancer treatment.
Collapse
Affiliation(s)
- Zhao Yue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ding Ningning
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yang Lin
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ying Jianming
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhang Hongtu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yuan Ligong
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Li Feng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Wang Shuaibo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Mao Yousheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
12
|
Zhou C, Fan N, Liu F, Fang N, Plum PS, Thieme R, Gockel I, Gromnitza S, Hillmer AM, Chon SH, Schlösser HA, Bruns CJ, Zhao Y. Linking Cancer Stem Cell Plasticity to Therapeutic Resistance-Mechanism and Novel Therapeutic Strategies in Esophageal Cancer. Cells 2020; 9:cells9061481. [PMID: 32560537 PMCID: PMC7349233 DOI: 10.3390/cells9061481] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer (EC) is an aggressive form of cancer, including squamous cell carcinoma (ESCC) and adenocarcinoma (EAC) as two predominant histological subtypes. Accumulating evidence supports the existence of cancer stem cells (CSCs) able to initiate and maintain EAC or ESCC. In this review, we aim to collect the current evidence on CSCs in esophageal cancer, including the biomarkers/characterization strategies of CSCs, heterogeneity of CSCs, and the key signaling pathways (Wnt/β-catenin, Notch, Hedgehog, YAP, JAK/STAT3) in modulating CSCs during esophageal cancer progression. Exploring the molecular mechanisms of therapy resistance in EC highlights DNA damage response (DDR), metabolic reprogramming, epithelial mesenchymal transition (EMT), and the role of the crosstalk of CSCs and their niche in the tumor progression. According to these molecular findings, potential therapeutic implications of targeting esophageal CSCs may provide novel strategies for the clinical management of esophageal cancer.
Collapse
Affiliation(s)
- Chenghui Zhou
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany; (C.Z.); (N.F.); (F.L.); (P.S.P.); (S.-H.C.); (H.A.S.); (C.J.B.)
| | - Ningbo Fan
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany; (C.Z.); (N.F.); (F.L.); (P.S.P.); (S.-H.C.); (H.A.S.); (C.J.B.)
| | - Fanyu Liu
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany; (C.Z.); (N.F.); (F.L.); (P.S.P.); (S.-H.C.); (H.A.S.); (C.J.B.)
- Interfaculty Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Nan Fang
- Singleron Biotechnologies, Yaogu Avenue 11, Nanjing 210000, China;
| | - Patrick S. Plum
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany; (C.Z.); (N.F.); (F.L.); (P.S.P.); (S.-H.C.); (H.A.S.); (C.J.B.)
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (S.G.); (A.M.H.)
| | - René Thieme
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, 4107 Leipzig, Germany; (R.T.); (I.G.)
| | - Ines Gockel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, 4107 Leipzig, Germany; (R.T.); (I.G.)
| | - Sascha Gromnitza
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (S.G.); (A.M.H.)
| | - Axel M. Hillmer
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (S.G.); (A.M.H.)
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany
| | - Seung-Hun Chon
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany; (C.Z.); (N.F.); (F.L.); (P.S.P.); (S.-H.C.); (H.A.S.); (C.J.B.)
| | - Hans A. Schlösser
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany; (C.Z.); (N.F.); (F.L.); (P.S.P.); (S.-H.C.); (H.A.S.); (C.J.B.)
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany
| | - Christiane J. Bruns
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany; (C.Z.); (N.F.); (F.L.); (P.S.P.); (S.-H.C.); (H.A.S.); (C.J.B.)
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany
| | - Yue Zhao
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany; (C.Z.); (N.F.); (F.L.); (P.S.P.); (S.-H.C.); (H.A.S.); (C.J.B.)
- Correspondence: ; Tel.: +49-221-4783-0601; Fax: +49-221-4783-0664
| |
Collapse
|
13
|
Hua Q, Gu X, Chen X, Song W, Wang A, Chu J. IL-8 is involved in radiation therapy resistance of esophageal squamous cell carcinoma via regulation of PCNA. Arch Biochem Biophys 2019; 676:108158. [DOI: 10.1016/j.abb.2019.108158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/04/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022]
|
14
|
Hussain M, Adah D, Tariq M, Lu Y, Zhang J, Liu J. CXCL13/CXCR5 signaling axis in cancer. Life Sci 2019; 227:175-186. [PMID: 31026453 DOI: 10.1016/j.lfs.2019.04.053] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/22/2019] [Accepted: 04/22/2019] [Indexed: 02/07/2023]
Abstract
The tumor microenvironment comprises stromal and tumor cells which interact with each other through complex cross-talks that are mediated by a variety of growth factors, cytokines, and chemokines. The chemokine ligand 13 (CXCL13) and its chemokine receptor 5 (CXCR5) are among the key chemotactic factors which play crucial roles in deriving cancer cell biology. CXCL13/CXCR5 signaling axis makes pivotal contributions to the development and progression of several human cancers. In this review, we discuss how CXCL13/CXCR5 signaling modulates cancer cell ability to grow, proliferate, invade, and metastasize. Furthermore, we also discuss the preliminary evidence on context-dependent functioning of this axis within the tumor-immune microenvironment, thus, highlighting its potential dichotomy with respect to anticancer immunity and cancer immune-evasion mechanisms. At the end, we briefly shed light on the therapeutic potential or implications of targeting CXCL13/CXCR5 axis within the tumor microenvironment.
Collapse
Affiliation(s)
- Muzammal Hussain
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Dickson Adah
- University of Chinese Academy of Sciences, Beijing 100049, PR China; State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Heath, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, PR China
| | - Muqddas Tariq
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yongzhi Lu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, PR China
| | - Jiancun Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, PR China.
| | - Jinsong Liu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, PR China.
| |
Collapse
|
15
|
Chen W, Zhang J, Fan HN, Zhu JS. Function and therapeutic advances of chemokine and its receptor in nonalcoholic fatty liver disease. Therap Adv Gastroenterol 2018; 11:1756284818815184. [PMID: 30574191 PMCID: PMC6295708 DOI: 10.1177/1756284818815184] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/24/2018] [Indexed: 02/04/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents a spectrum of hepatic pathology, ranging from simple accumulation of fat in its most benign form, steatohepatitis, to cirrhosis in its most advanced form. The prevalence of NAFLD is 20-30% in adults, and 10-20% of patients with NAFLD progress to nonalcoholic steatohepatitis (NASH) which is predicted to be the leading cause of liver transplantation over the next 10 years. Therefore, it is essential to explore effective diagnostic and treatment strategies for NAFLD patients. Chemokines are a family of small and highly conserved proteins (molecular weight ranging from 8 to 12 kDa) involved in regulating the migration and activities of hepatocytes, Kupffer cells (KCs), hepatic stellate cells (HSCs), endothelial cells and circulating immune cells. Accumulating data show that chemokine and its receptor act vital roles in the pathogenesis of NAFLD. Herein, we summarize the involvement of the chemokine and its receptor in the pathogenesis of NAFLD and explore the novel pharmacotherapeutic avenues for patients with NAFLD.
Collapse
Affiliation(s)
- Wei Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Hui-Ning Fan
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | | |
Collapse
|
16
|
Łukaszewicz-Zając M, Gryko M, Mroczko B. The role of selected chemokines and their specific receptors in pancreatic cancer. Int J Biol Markers 2018; 33:141-147. [PMID: 29799354 DOI: 10.1177/1724600817753094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pancreatic carcinoma is a highly malignant disease associated with an extremely poor prognosis, which is caused by late presentation, aggressive invasion and metastases, as well as the detection of pancreatic carcinoma in its advanced stages. Thus, better understanding of the tumour biology of this malignancy is sorely needed to improve the clinical outcome. A great challenge for the medical practice is finding a new biomarker of pancreatic carcinoma that will be helpful in diagnosis, in prognosis and in making clinical decisions, including the assessment of patients' response to therapy. It is suggested that selected chemokines and their specific receptors play an important role in tumour progression, such as tumour growth, angiogenesis, proliferation and development of metastasis. In the present review, general characteristics of chemokines and their specific receptors as well as the significance of these molecules in tumour development are described. The crucial issue of this review is to summarise the importance of various chemokines and their specific receptors in pancreatic carcinoma. Understanding the role of chemokines in the pathogenesis of pancreatic carcinoma is extremely important since these proteins may be used as a potential tool in the diagnosis and prognosis of pancreatic carcinoma patients.
Collapse
Affiliation(s)
- Marta Łukaszewicz-Zając
- 1 Department of Biochemical Diagnostics, Medical University of Bialystok, Bialystok - Poland
| | - Mariusz Gryko
- 2 Second Department of General Surgery, Medical University of Bialystok, Bialystok - Poland
| | - Barbara Mroczko
- 3 Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Bialystok - Poland
| |
Collapse
|
17
|
Liu J, Zheng X, Deng H, Xu B, Chen L, Wang Q, Zhou Q, Zhang D, Wu C, Jiang J. Expression of CCR6 in esophageal squamous cell carcinoma and its effects on epithelial-to-mesenchymal transition. Oncotarget 2017; 8:115244-115253. [PMID: 29383156 PMCID: PMC5777768 DOI: 10.18632/oncotarget.23318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/16/2017] [Indexed: 12/17/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most common esophageal cancer associated with poor prognosis. We detected the expression of C-C motif chemokine receptor 6 (CCR6) and epithelial-to-mesenchymal transition (EMT) markers in esophageal tissues/cells, and evaluated the effects of CCR6 on ESCC cells proliferation, migration and invasion in response to C-C motif chemokine ligand 20 (CCL20) treatment. Our data showed CCR6 was highly expressed in ESCC cell lines (ECA-109 and TE-1), whereas kept in a low expression in normal cell lines HEEC (P < 0.001). CCL20 stimulus induced a significant decrease in the proliferation ability of ESCC (P < 0.05). The healing speed of CCL20 group was significantly higher than control in ECA-109 (P < 0.01), whereas significantly lower in αCCR6+CCL20 group than CCL20 group (P < 0.05).The number of cells permeabling through the polycarbonate membrane in CCL20 group was higher than control (P < 0.01). The cell number in αCCR6+CCL20 group was significantly reduced compared to CCL20 group in ECA-109 (P < 0.05). Moreover, after CCL20 stimulated in ECA-109, both mRNA and protein level of E-cadherin significantly decreased compared to control, while Vimentin was significantly higher. In αCCR6+CCL20 group, mRNA and protein level of E-cadherin significantly increased compared to CCL20 group, while Vimentin was much lower than CCL20 group. There was no significant difference in TE-1. In summary, high expression of CCR6 existed in the lymph node metastasis and TNM stage of ESCC. CCR6 play an important role in the regulation of tumor cell proliferation, invasion and migration. CCR6 may participate in regulating the occurrence of EMT in ESCC.
Collapse
Affiliation(s)
- Jian Liu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China.,Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China.,Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Haifeng Deng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China.,Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Bin Xu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China.,Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China.,Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Qi Wang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China.,Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Qi Zhou
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Dachuan Zhang
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Changping Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China.,Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China.,Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| |
Collapse
|
18
|
Zhang H, Yue J, Jiang Z, Zhou R, Xie R, Xu Y, Wu S. CAF-secreted CXCL1 conferred radioresistance by regulating DNA damage response in a ROS-dependent manner in esophageal squamous cell carcinoma. Cell Death Dis 2017; 8:e2790. [PMID: 28518141 PMCID: PMC5520705 DOI: 10.1038/cddis.2017.180] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/17/2022]
Abstract
Five-year survival rate of esophageal squamous cell carcinoma (ESCC) patients treated with radiotherapy is <20%. Our study aimed to investigate whether cancer-associated fibroblasts (CAFs), one major component of tumor microenvironment, were involved in tumor radioresistance in ESCC. By use of human chemokine/cytokine array, human chemokine CXCL1 was found to be highly expressed in CAFs compared with that in matched normal fibroblasts. Inhibition of CXCL1 expression in CAFs significantly reversed CAF-conferred radioresistance in vitro and in vivo. CAF-secreted CXCL1 inhibited the expression of reactive oxygen species (ROS)-scavenging enzyme superoxide dismutase 1, leading to increased ROS accumulation following radiation, by which DNA damage repair was enhanced and the radioresistance was mediated. CAF-secreted CXCL1 mediated the radioresistance also by activation of Mek/Erk pathway. The cross talk of CAFs and ESCC cells induced CXCL1 expression in an autocrine/paracrine signaling loop, which further enhanced tumor radioresistance. Together, our study highlighted CAF-secreted CXCL1 as an attractive target to reverse tumor radioresistance and can be used as an independent prognostic factor of ESCC patients treated with chemoradiotherapy.
Collapse
Affiliation(s)
- Hongfang Zhang
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou 310002, China
| | - Jing Yue
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou 310002, China
| | - Zhenzhen Jiang
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou 310002, China
| | - Rongjing Zhou
- Department of Pathology, Hangzhou Cancer Hospital, Hangzhou 310002, China
| | - Ruifei Xie
- Department of Bio-informatics, Hangzhou Cancer Hospital, Hangzhou 310002, China
| | - Yiping Xu
- Department of Pathology, Hangzhou Cancer Hospital, Hangzhou 310002, China
| | - Shixiu Wu
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou 310002, China
| |
Collapse
|
19
|
Ma Y, Wang B, Guo Y, Zhang Y, Huang S, Bao X, Bai M. Inhibition of miR-196a affects esophageal cancer cell growth in vitro. Biomed Pharmacother 2016; 84:22-27. [DOI: 10.1016/j.biopha.2016.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/20/2016] [Accepted: 09/06/2016] [Indexed: 02/07/2023] Open
|
20
|
Dai Z, Wu J, Chen F, Cheng Q, Zhang M, Wang Y, Guo Y, Song T. CXCL5 promotes the proliferation and migration of glioma cells in autocrine- and paracrine-dependent manners. Oncol Rep 2016; 36:3303-3310. [PMID: 27748886 DOI: 10.3892/or.2016.5155] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/21/2016] [Indexed: 12/16/2022] Open
Abstract
CXCL5 and its receptor CXCR2 have been found to be involved in tumorigenesis and cancer progression. Recent studies have shown that CXCR2 is upregulated in glioma tissues, and associated with poor prognosis and recurrence. However, the role of CXCL5/CXCR2 signaling in mediating the malignant phenotypes of glioma cells, as well as the underlying mechanism, still remains unclear. In the present study, we found that CXCL5 was upregulated in glioma tissues compared to that noted in normal brain tissues. High CXCL5 levels were significantly associated with higher tumor grade, advanced clinical stage, and shorter survival time of glioma patients. In vitro studies indicated that the protein expression levels of CXCL5 and CXCR2 were markedly higher in human glioma cell lines (U87, U251, U373 and A172), when compared with those in normal human gliocyte HEB cells. Overexpression of CXLC5 significantly promoted the proliferation and migration of U87 cells, while knockdown of CXCL5 by small interfering RNA markedly inhibited U87 cell proliferation and migration. Moreover, both exogenous CXCL5 treatment and the conditioned medium of CXCL5-overexpressing HEB cells also enhanced the proliferation and migration of U87 cells. Molecular mechanism investigation revealed that CXLC5 activated the ERK, JNK, p38 MAPK signaling pathways, which play key roles in tumor growth and metastasis. According to these data, our study suggests that CXCL5 plays a promoting role in glioma in autocrine- and paracrine-dependent manners.
Collapse
Affiliation(s)
- Zhijie Dai
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Jun Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Fenghua Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Mingyu Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ying Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yong Guo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Tao Song
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
21
|
The Serum Concentrations of Chemokine CXCL12 and Its Specific Receptor CXCR4 in Patients with Esophageal Cancer. DISEASE MARKERS 2016; 2016:7963895. [PMID: 27041792 PMCID: PMC4794565 DOI: 10.1155/2016/7963895] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/08/2016] [Indexed: 12/20/2022]
Abstract
Objectives. Recent investigations have suggested that upregulated levels of inflammatory biomarkers, such as chemokines, may be associated with development of many malignancies, including esophageal cancer (EC). Based on our knowledge, this study is the first to assess the serum concentration of chemokine CXCL12 and its specific receptor CXCR4 in the diagnosis of EC patients. Material and Methods. The present study included 79 subjects: 49 patients with EC and 30 healthy volunteers. The serum concentrations of CXCL12 and CXCR4 and classical tumor markers such as carcinoembryonal antigen (CEA) and squamous cell cancer antigen (SCC-Ag) were measured using immunoenzyme assays, while C-reactive protein (CRP) levels were assessed by immunoturbidimetric method. Moreover, diagnostic criteria of all proteins tested and the survival of EC patients were assessed. Results. The serum concentrations of CXCL12 were significantly higher, while those of its receptor CXCR4 were significantly lower in EC patients compared to healthy controls. The diagnostic sensitivity, negative predictive value, and accuracy of CXCR4 were the highest among all analyzed proteins and increased for combined analysis with classical tumor markers and CRP levels. Conclusion. Our findings suggest that serum CXCR4 may improve the diagnosis of EC patients, especially in combination with classical tumor markers.
Collapse
|