1
|
Wylaź M, Kaczmarska A, Pajor D, Hryniewicki M, Gil D, Dulińska-Litewka J. Exploring the role of PI3K/AKT/mTOR inhibitors in hormone-related cancers: A focus on breast and prostate cancer. Biomed Pharmacother 2023; 168:115676. [PMID: 37832401 DOI: 10.1016/j.biopha.2023.115676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Breast cancer (BC) and prostate cancer (PC) are at the top of the list when it comes to the most common types of cancers worldwide. The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway is important, in that it strongly influences the development and progression of these tumors. Previous studies have emphasized the key role of inhibitors of the PIK3/AKT/mTOR signaling pathway in the treatment of BC and PC, and it remains to be a crucial method of treatment. In this review, the inhibitors of these signaling pathways are compared, as well as their effectiveness in therapy and potential as therapeutic agents. The use of these inhibitors as polytherapy is evaluated, especially with the use of hormonal therapy, which has shown promising results.
Collapse
Affiliation(s)
- Mateusz Wylaź
- Student Scientific Group at Jagiellonian University Medical College, Faculty of Medicine, Medical Biochemistry, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland
| | - Anna Kaczmarska
- Student Scientific Group at Jagiellonian University Medical College, Faculty of Medicine, Medical Biochemistry, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland
| | - Dawid Pajor
- Student Scientific Group at Jagiellonian University Medical College, Faculty of Medicine, Medical Biochemistry, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland
| | - Matthew Hryniewicki
- Student Scientific Group at Jagiellonian University Medical College, Faculty of Medicine, Medical Biochemistry, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland
| | - Dorota Gil
- Chair of Medical Biochemistry, Jagiellonian University Medical College, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland
| | - Joanna Dulińska-Litewka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland.
| |
Collapse
|
2
|
Montiel-Dávalos A, Ayala Y, Hernández G. The dark side of mRNA translation and the translation machinery in glioblastoma. Front Cell Dev Biol 2023; 11:1086964. [PMID: 36994107 PMCID: PMC10042294 DOI: 10.3389/fcell.2023.1086964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
Among the different types of cancer affecting the central nervous system (CNS), glioblastoma (GB) is classified by the World Health Organization (WHO) as the most common and aggressive CNS cancer in adults. GB incidence is more frequent among persons aged 45–55 years old. GB treatments are based on tumor resection, radiation, and chemotherapies. The current development of novel molecular biomarkers (MB) has led to a more accurate prediction of GB progression. Moreover, clinical, epidemiological, and experimental studies have established genetic variants consistently associated with the risk of suffering GB. However, despite the advances in these fields, the survival expectancy of GB patients is still shorter than 2 years. Thus, fundamental processes inducing tumor onset and progression remain to be elucidated. In recent years, mRNA translation has been in the spotlight, as its dysregulation is emerging as a key cause of GB. In particular, the initiation phase of translation is most involved in this process. Among the crucial events, the machinery performing this phase undergoes a reconfiguration under the hypoxic conditions in the tumor microenvironment. In addition, ribosomal proteins (RPs) have been reported to play translation-independent roles in GB development. This review focuses on the research elucidating the tight relationship between translation initiation, the translation machinery, and GB. We also summarize the state-of-the-art drugs targeting the translation machinery to improve patients’ survival. Overall, the recent advances in this field are shedding new light on the dark side of translation in GB.
Collapse
|
3
|
Colapietro A, Yang P, Rossetti A, Mancini A, Vitale F, Chakraborty S, Martellucci S, Marampon F, Mattei V, Gravina GL, Iorio R, Newman RA, Festuccia C. The Botanical Drug PBI-05204, a Supercritical CO2 Extract of Nerium Oleander, Is Synergistic With Radiotherapy in Models of Human Glioblastoma. Front Pharmacol 2022; 13:852941. [PMID: 35401175 PMCID: PMC8984197 DOI: 10.3389/fphar.2022.852941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/02/2022] [Indexed: 01/17/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common as well as one of the most malignant types of brain cancer. Despite progress in development of novel therapies for the treatment of GBM, it remains largely incurable with a poor prognosis and a very low life expectancy. Recent studies have shown that oleandrin, a unique cardiac glycoside from Nerium oleander, as well as a defined extract (PBI-05204) that contains this molecule, inhibit growth of human glioblastoma, and modulate glioblastoma patient-derived stem cell-renewal properties. Here we demonstrate that PBI-05204 treatment leads to an increase in vitro in the sensitivity of GBM cells to radiation in which the main mechanisms are the transition from autophagy to apoptosis, enhanced DNA damage and reduced DNA repair after radiotherapy (RT) administration. The combination of PBI-05204 with RT was associated with reduced tumor progression evidenced by both subcutaneous as well as orthotopic implanted GBM tumors. Collectively, these results reveal that PBI-05204 enhances antitumor activity of RT in preclinical/murine models of human GBM. Given the fact that PBI-05204 has already been examined in Phase I and II clinical trials for cancer patients, its efficacy when combined with standard-of-care radiotherapy regimens in GBM should be explored.
Collapse
Affiliation(s)
- Alessandro Colapietro
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Peiying Yang
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alessandra Rossetti
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Andrea Mancini
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Flora Vitale
- Laboratory of Neurophysiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Sharmistha Chakraborty
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Stefano Martellucci
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Rieti, Italy
- Laboratory of Experimental Medicine and Environmental Pathology, University Hub “Sabina Universitas”, Rieti, Italy
| | - Francesco Marampon
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Rieti, Italy
| | - Giovanni Luca Gravina
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
- Division of Radiation Oncology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Roberto Iorio
- Laboratory of Biology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Robert A. Newman
- Phoenix Biotechnology, Inc., San Antonio, TX, United States
- *Correspondence: Robert A. Newman, ; Claudio Festuccia,
| | - Claudio Festuccia
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
- *Correspondence: Robert A. Newman, ; Claudio Festuccia,
| |
Collapse
|
4
|
Arora M, Kutinová Canová N, Farghali H. mTOR as an eligible molecular target for possible pharmacological treatment of nonalcoholic steatohepatitis. Eur J Pharmacol 2022; 921:174857. [PMID: 35219732 DOI: 10.1016/j.ejphar.2022.174857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/07/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022]
|
5
|
Wang Y, Tortorella M. Molecular design of dual inhibitors of PI3K and potential molecular target of cancer for its treatment: A review. Eur J Med Chem 2022; 228:114039. [PMID: 34894440 DOI: 10.1016/j.ejmech.2021.114039] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/23/2021] [Accepted: 12/02/2021] [Indexed: 12/31/2022]
Abstract
Aberrant activation of the phosphoinositide 3-kinase (PI3K) signaling network is a key event in many human cancers and therefore enormous efforts have been made in the development of PI3K inhibitors. However, due to intrinsic and acquired resistance as well as poor drug tolerance, limited therapeutic efficacy has been achieved with these agents. In view of the fact that PI3K inhibitors can show synergistic antitumor effects with other cancer agents, namely mammalian target of rapamycin (mTOR) inhibitors, histone deacetylase (HDAC) inhibitors and mitogen-activated protein kinase (MEK) inhibitors, dual inhibition of both targets by a single-molecule is regarded as a promising complementary or alternative therapeutic strategy to overcome the drawbacks of just PI3K monotherapy. In this review, we discuss the theoretical foundation for designing PI3K-based dual-target inhibitors and summarize the structure-activity relationships and clinical progress of these dual-binding agents.
Collapse
Affiliation(s)
- Yuanze Wang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health - Guangdong Laboratory), Guangzhou, 510530, PR China.
| | - Micky Tortorella
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health - Guangdong Laboratory), Guangzhou, 510530, PR China
| |
Collapse
|
6
|
Liu H, Qiu W, Sun T, Wang L, Du C, Hu Y, Liu W, Feng F, Chen Y, Sun H. Therapeutic strtegies of glioblastoma (GBM): The current advances in the molecular targets and bioactive small molecule compounds. Acta Pharm Sin B 2021; 12:1781-1804. [PMID: 35847506 PMCID: PMC9279645 DOI: 10.1016/j.apsb.2021.12.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/02/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common aggressive malignant tumor in brain neuroepithelial tumors and remains incurable. A variety of treatment options are currently being explored to improve patient survival, including small molecule inhibitors, viral therapies, cancer vaccines, and monoclonal antibodies. Among them, the unique advantages of small molecule inhibitors have made them a focus of attention in the drug discovery of glioblastoma. Currently, the most used chemotherapeutic agents are small molecule inhibitors that target key dysregulated signaling pathways in glioblastoma, including receptor tyrosine kinase, PI3K/AKT/mTOR pathway, DNA damage response, TP53 and cell cycle inhibitors. This review analyzes the therapeutic benefit and clinical development of novel small molecule inhibitors discovered as promising anti-glioblastoma agents by the related targets of these major pathways. Meanwhile, the recent advances in temozolomide resistance and drug combination are also reviewed. In the last part, due to the constant clinical failure of targeted therapies, this paper reviewed the research progress of other therapeutic methods for glioblastoma, to provide patients and readers with a more comprehensive understanding of the treatment landscape of glioblastoma.
Collapse
|
7
|
Inhibitors of the PI3K/Akt/mTOR Pathway in Prostate Cancer Chemoprevention and Intervention. Pharmaceutics 2021; 13:pharmaceutics13081195. [PMID: 34452154 PMCID: PMC8400324 DOI: 10.3390/pharmaceutics13081195] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/serine-threonine kinase (Akt)/mammalian target of the rapamycin (mTOR)-signaling pathway has been suggested to have connections with the malignant transformation, growth, proliferation, and metastasis of various cancers and solid tumors. Relevant connections between the PI3K/Akt/mTOR pathway, cell survival, and prostate cancer (PC) provide a great therapeutic target for PC prevention or treatment. Recent studies have focused on small-molecule mTOR inhibitors or their usage in coordination with other therapeutics for PC treatment that are currently undergoing clinical testing. In this study, the function of the PI3K/Akt/mTOR pathway, the consequence of its dysregulation, and the development of mTOR inhibitors, either as an individual substance or in combination with other agents, and their clinical implications are discussed. The rationale for targeting the PI3K/Akt/mTOR pathway, and specifically the application and potential utility of natural agents involved in PC treatment is described. In addition to the small-molecule mTOR inhibitors, there are evidence that several natural agents are able to target the PI3K/Akt/mTOR pathway in prostatic neoplasms. These natural mTOR inhibitors can interfere with the PI3K/Akt/mTOR pathway through multiple mechanisms; however, inhibition of Akt and suppression of mTOR 1 activity are two major therapeutic approaches. Combination therapy improves the efficacy of these inhibitors to either suppress the PC progression or circumvent the resistance by cancer cells.
Collapse
|
8
|
He H, Shao X, Li Y, Gihu R, Xie H, Zhou J, Yan H. Targeting Signaling Pathway Networks in Several Malignant Tumors: Progresses and Challenges. Front Pharmacol 2021; 12:675675. [PMID: 34135756 PMCID: PMC8203325 DOI: 10.3389/fphar.2021.675675] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/18/2021] [Indexed: 12/22/2022] Open
Abstract
Malignant tumors remain the health problem of highest concern among people worldwide due to its high mortality and recurrence. Lung, gastric, liver, colon, and breast cancers are among the top five malignant tumors in terms of morbidity and mortality. In cancer biology, aberrant signaling pathway regulation is a prevalent theme that drives the generation, metastasis, invasion, and other processes of all malignant tumors. The Wnt/β-catenin, PI3K/AKT/mTOR, Notch and NF-kB pathways are widely concerned and signal crosstalks exist in the five solid tumors. This review provides an innovative summary of the recent progress in research on these signaling pathways, the underlying mechanism of the molecules involved in these pathways, and the important role of some miRNAs in tumor-related signaling pathways. It also presents a brief review of the antitumor molecular drugs that target these signaling pathways. This review may provide a theoretical basis for the study of the molecular biological mechanism of malignant tumors and vital information for the development of new treatment strategies with a focus on efficacy and the reduction of side effects.
Collapse
Affiliation(s)
- Hongdan He
- Qinghai Tibet Plateau Research Institute, Southwest Minzu University, Chengdu, China
| | - Xiaoni Shao
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| | - Yanan Li
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| | - Ribu Gihu
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| | - Haochen Xie
- Qinghai Tibet Plateau Research Institute, Southwest Minzu University, Chengdu, China
| | - Junfu Zhou
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| | - Hengxiu Yan
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| |
Collapse
|
9
|
Turnham DJ, Bullock N, Dass MS, Staffurth JN, Pearson HB. The PTEN Conundrum: How to Target PTEN-Deficient Prostate Cancer. Cells 2020; 9:E2342. [PMID: 33105713 PMCID: PMC7690430 DOI: 10.3390/cells9112342] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Loss of the tumor suppressor phosphatase and tensin homologue deleted on chromosome 10 (PTEN), which negatively regulates the PI3K-AKT-mTOR pathway, is strongly linked to advanced prostate cancer progression and poor clinical outcome. Accordingly, several therapeutic approaches are currently being explored to combat PTEN-deficient tumors. These include classical inhibition of the PI3K-AKT-mTOR signaling network, as well as new approaches that restore PTEN function, or target PTEN regulation of chromosome stability, DNA damage repair and the tumor microenvironment. While targeting PTEN-deficient prostate cancer remains a clinical challenge, new advances in the field of precision medicine indicate that PTEN loss provides a valuable biomarker to stratify prostate cancer patients for treatments, which may improve overall outcome. Here, we discuss the clinical implications of PTEN loss in the management of prostate cancer and review recent therapeutic advances in targeting PTEN-deficient prostate cancer. Deepening our understanding of how PTEN loss contributes to prostate cancer growth and therapeutic resistance will inform the design of future clinical studies and precision-medicine strategies that will ultimately improve patient care.
Collapse
Affiliation(s)
- Daniel J. Turnham
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
| | - Nicholas Bullock
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
| | - Manisha S. Dass
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
| | - John N. Staffurth
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
| | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
| |
Collapse
|
10
|
Chen Y, Zhou X. Research progress of mTOR inhibitors. Eur J Med Chem 2020; 208:112820. [PMID: 32966896 DOI: 10.1016/j.ejmech.2020.112820] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/16/2020] [Accepted: 09/03/2020] [Indexed: 12/25/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a highly conserved Serine/Threonine (Ser/Thr) protein kinase, which belongs to phosphatidylinositol-3-kinase-related kinase (PIKK) protein family. mTOR exists as two types of protein complex: mTORC1 and mTORC2, which act as central controller regulating processes of cell metabolism, growth, proliferation, survival and autophagy. The mTOR inhibitors block mTOR signaling pathway, producing anti-inflammatory, anti-proliferative, autophagy and apoptosis induction effects, thus mTOR inhibitors are mainly used in cancer therapy. At present, mTOR inhibitors are divided into four categories: Antibiotic allosteric mTOR inhibitors (first generation), ATP-competitive mTOR inhibitors (second generation), mTOR/PI3K dual inhibitors (second generation) and other new mTOR inhibitors (third generation). In this article, these four categories of mTOR inhibitors and their structures, properties and some clinical researches will be introduced. Among them, we focus on the structure of mTOR inhibitors and try to analyze the structure-activity relationship. mTOR inhibitors are classified according to their chemical structure and their contents are introduced systematically. Moreover, some natural products that have direct or indirect mTOR inhibitory activities are introduced together. In this article, we analyzed the target, binding mode and structure-activity relationship of each generation of mTOR inhibitors and proposed two hypothetic scaffolds (the inverted-Y-shape scaffold and the C-shape scaffold) for the second generation of mTOR inhibitors. These findings may provide some help or reference for drug designing, drug modification or the future development of mTOR inhibitor.
Collapse
Affiliation(s)
- Yifan Chen
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Xiaoping Zhou
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
11
|
Discovery of 4-phenyl-2H-benzo[b][1,4]oxazin-3(4H)-one derivatives as potent and orally active PI3K/mTOR dual inhibitors. Eur J Med Chem 2019; 178:667-686. [DOI: 10.1016/j.ejmech.2019.06.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 01/29/2023]
|
12
|
Batsios G, Viswanath P, Subramani E, Najac C, Gillespie AM, Santos RD, Molloy AR, Pieper RO, Ronen SM. PI3K/mTOR inhibition of IDH1 mutant glioma leads to reduced 2HG production that is associated with increased survival. Sci Rep 2019; 9:10521. [PMID: 31324855 PMCID: PMC6642106 DOI: 10.1038/s41598-019-47021-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 07/09/2019] [Indexed: 02/08/2023] Open
Abstract
70-90% of low-grade gliomas and secondary glioblastomas are characterized by mutations in isocitrate dehydrogenase 1 (IDHmut). IDHmut produces the oncometabolite 2-hydroxyglutarate (2HG), which drives tumorigenesis in these tumors. The phosphoinositide-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway represents an attractive therapeutic target for IDHmut gliomas, but noninvasive indicators of drug target modulation are lacking. The goal of this study was therefore to identify magnetic resonance spectroscopy (MRS)-detectable metabolic biomarkers associated with IDHmut glioma response to the dual PI3K/(mTOR) inhibitor XL765. 1H-MRS of two cell lines genetically modified to express IDHmut showed that XL765 induced a significant reduction in several intracellular metabolites including 2HG. Importantly, examination of an orthotopic IDHmut tumor model showed that enhanced animal survival following XL765 treatment was associated with a significant in vivo 1H-MRS detectable reduction in 2HG but not with significant inhibition in tumor growth. Further validation is required, but our results indicate that 2HG could serve as a potential noninvasive MRS-detectable metabolic biomarker of IDHmut glioma response to PI3K/mTOR inhibition.
Collapse
Affiliation(s)
- Georgios Batsios
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States
| | - Elavarasan Subramani
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States
| | - Chloe Najac
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States
| | - Romelyn Delos Santos
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States
| | - Abigail R Molloy
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States
| | - Russell O Pieper
- Department of Neurological Surgery, Helen Diller Research Center, 1450 3rd Street, University of California, 94143, San Francisco, CA, United States
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States. .,Brain Tumor Research Center, Helen Diller Family Cancer Research Building, 1450 3rd Street, University of California, 94158, San Francisco, CA, United States.
| |
Collapse
|
13
|
Wang W, Liao L, Wang Y, Li H, Suo Z, Long K, Tang P. Preclinical evaluation of novel PI3K/mTOR dual inhibitor SN202 as potential anti-renal cancer agent. Cancer Biol Ther 2018; 19:1015-1022. [PMID: 29799306 DOI: 10.1080/15384047.2018.1470733] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
ABSTRACT The PI3K/mTOR pathway is one of the most frequently aberrantly activated pathways in human malignancies, such as renal cell carcinoma (RCC), and contributes to resistance to antitumor therapies. Thus, PI3K/mTOR is an attractive target for the development of antitumor agents. In this study, we evaluated the preclinical effects of a novel inhibitor SN202. We examined Akt/mTOR activities in renal cancer cells after SN202 treatment. The preclinical effects of SN202 on tumor growth were evaluated in renal cancer cells in vitro and in murine xenografts in vivo. SN202 inhibits PI3Kα, PI3Kγ, and mTOR, the corresponding IC50 values were 3.2, 3.3, and 1.2 nM, respectively. In A498, 786-0, and ACHN renal cancer cell lines, SN202 inhibits cell proliferation in a dose-dependent manner and significantly inhibits 786-0 cell growth. Western blot analysis revealed that SN202 decreases the phosphorylation of PI3K downstream signaling molecules, Akt and S6K, in 786-0 renal cancer cells. Furthermore, oral administration of SN202 results in significant inhibition in human renal carcinoma xenografts in nude mice and favourable pharmacokinetic properties in rats. These results suggest that SN202 might be a promising therapeutic agent against RCC as a dual PI3K/mTOR inhibitor.
Collapse
Affiliation(s)
- Wan Wang
- a College of Chemical Engineering, Sichuan University , Chengdu , PR China
| | - Lidong Liao
- b Sichuan Sinovation Bio-technology Co., LTD , Chengdu , PR China
| | - Yujun Wang
- b Sichuan Sinovation Bio-technology Co., LTD , Chengdu , PR China
| | - Hui Li
- a College of Chemical Engineering, Sichuan University , Chengdu , PR China
| | - Zili Suo
- a College of Chemical Engineering, Sichuan University , Chengdu , PR China
| | - Kai Long
- b Sichuan Sinovation Bio-technology Co., LTD , Chengdu , PR China
| | - Peixiao Tang
- a College of Chemical Engineering, Sichuan University , Chengdu , PR China
| |
Collapse
|
14
|
Mancini A, Colapietro A, Pompili S, Del Fattore A, Delle Monache S, Biordi LA, Angelucci A, Mattei V, Liang C, Gravina GL, Festuccia C. Dual PI3 K/mTOR inhibition reduces prostate cancer bone engraftment altering tumor-induced bone remodeling. Tumour Biol 2018; 40:1010428318771773. [PMID: 29687745 DOI: 10.1177/1010428318771773] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Morbidity in advanced prostate cancer patients is largely associated with bone metastatic events. The development of novel therapeutic strategies is imperative in order to effectively treat this incurable stage of the malignancy. In this context, Akt signaling pathway represents a promising therapeutic target able to counteract biochemical recurrence and metastatic progression in prostate cancer. We explored the therapeutic potential of a novel dual PI3 K/mTOR inhibitor, X480, to inhibit tumor growth and bone colonization using different in vivo prostate cancer models including the subcutaneous injection of aggressive and bone metastatic (PC3) and non-bone metastatic (22rv1) cell lines and preclinical models known to generate bone lesions. We observed that X480 both inhibited the primary growth of subcutaneous tumors generated by PC3 and 22rv1 cells and reduced bone spreading of PCb2, a high osteotropic PC3 cell derivative. In metastatic bone, X480 inhibited significantly the growth and osteolytic activity of PC3 cells as observed by intratibial injection model. X480 also increased the bone disease-free survival compared to untreated animals. In vitro experiments demonstrated that X480 was effective in counteracting osteoclastogenesis whereas it stimulated osteoblast activity. Our report provides novel information on the potential activity of PI3 K/Akt inhibitors on the formation and progression of prostate cancer bone metastases and supports a biological rationale for the use of these inhibitors in castrate-resistant prostate cancer patients at high risk of developing clinically evident bone lesions.
Collapse
Affiliation(s)
- Andrea Mancini
- 1 Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Alessandro Colapietro
- 1 Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Simona Pompili
- 2 Department of Biotechnological and Applied Clinical Sciences, Human Anatomy, University of L'Aquila, L'Aquila, Italy
| | | | - Simona Delle Monache
- 4 Department of Biotechnological and Applied Clinical Sciences, Laboratory of Applied Biology, University of L'Aquila, L'Aquila, Italy
| | - Leda Assunta Biordi
- 5 Department of Biotechnological and Applied Clinical Sciences, Laboratory of Experimental Oncology, University of L'Aquila, L'Aquila, Italy
| | - Adriano Angelucci
- 6 Department of Biotechnological and Applied Clinical Sciences, Laboratory of General Pathology, University of L'Aquila, L'Aquila, Italy
| | - Vincenzo Mattei
- 7 Laboratory of Experimental Medicine and Environmental Pathology, Rieti University Hub "Sabina Universitas," Rieti, Italy
| | | | - Giovanni Luca Gravina
- 9 Department of Biotechnological and Applied Clinical Sciences, Division of Radiology Oncology; University of L'Aquila, L'Aquila, Italy
| | - Claudio Festuccia
- 1 Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
15
|
Potent and selective aldo-keto reductase 1C3 (AKR1C3) inhibitors based on the benzoisoxazole moiety: application of a bioisosteric scaffold hopping approach to flufenamic acid. Eur J Med Chem 2018; 150:930-945. [DOI: 10.1016/j.ejmech.2018.03.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 11/19/2022]
|
16
|
Gravina GL, Mancini A, Mattei C, Vitale F, Marampon F, Colapietro A, Rossi G, Ventura L, Vetuschi A, Di Cesare E, Fox JA, Festuccia C. Enhancement of radiosensitivity by the novel anticancer quinolone derivative vosaroxin in preclinical glioblastoma models. Oncotarget 2018; 8:29865-29886. [PMID: 28415741 PMCID: PMC5444710 DOI: 10.18632/oncotarget.16168] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/03/2017] [Indexed: 12/24/2022] Open
Abstract
Purpose Glioblastoma multiforme (GBM) is the most aggressive brain tumor. The activity of vosaroxin, a first-in-class anticancer quinolone derivative that intercalates DNA and inhibits topoisomerase II, was investigated in GBM preclinical models as a single agent and combined with radiotherapy (RT). Results Vosaroxin showed antitumor activity in clonogenic survival assays, with IC50 of 10−100 nM, and demonstrated radiosensitization. Combined treatments exhibited significantly higher γH2Ax levels compared with controls. In xenograft models, vosaroxin reduced tumor growth and showed enhanced activity with RT; vosaroxin/RT combined was more effective than temozolomide/RT. Vosaroxin/RT triggered rapid and massive cell death with characteristics of necrosis. A minor proportion of treated cells underwent caspase-dependent apoptosis, in agreement with in vitro results. Vosaroxin/RT inhibited RT-induced autophagy, increasing necrosis. This was associated with increased recruitment of granulocytes, monocytes, and undifferentiated bone marrow–derived lymphoid cells. Pharmacokinetic analyses revealed adequate blood-brain penetration of vosaroxin. Vosaroxin/RT increased disease-free survival (DFS) and overall survival (OS) significantly compared with RT, vosaroxin alone, temozolomide, and temozolomide/RT in the U251-luciferase orthotopic model. Materials and Methods Cellular, molecular, and antiproliferative effects of vosaroxin alone or combined with RT were evaluated in 13 GBM cell lines. Tumor growth delay was determined in U87MG, U251, and T98G xenograft mouse models. (DFS) and (OS) were assessed in orthotopic intrabrain models using luciferase-transfected U251 cells by bioluminescence and magnetic resonance imaging. Conclusions Vosaroxin demonstrated significant activity in vitro and in vivo in GBM models, and showed additive/synergistic activity when combined with RT in O6-methylguanine methyltransferase-negative and -positive cell lines.
Collapse
Affiliation(s)
- Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, Division of Radiotherapy, University of L'Aquila, L'Aquila, Italy.,Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Andrea Mancini
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Claudia Mattei
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Neurosciences, University of L'Aquila, L'Aquila, Italy
| | - Flora Vitale
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Neurosciences, University of L'Aquila, L'Aquila, Italy
| | - Francesco Marampon
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Alessandro Colapietro
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Giulia Rossi
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Luca Ventura
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Neurosciences, University of L'Aquila, L'Aquila, Italy
| | - Antonella Vetuschi
- Department of Biotechnological and Applied Clinical Sciences, Chair of Human Anatomy, University of L'Aquila, L'Aquila, Italy
| | - Ernesto Di Cesare
- Department of Biotechnological and Applied Clinical Sciences, Division of Radiotherapy, University of L'Aquila, L'Aquila, Italy
| | - Judith A Fox
- Sunesis Pharmaceuticals Inc., South San Francisco, CA, USA
| | - Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
17
|
Wang Z, Jia G, Li Y, Liu J, Luo J, Zhang J, Xu G, Chen G. Clinicopathological signature of p21-activated kinase 1 in prostate cancer and its regulation of proliferation and autophagy via the mTOR signaling pathway. Oncotarget 2017; 8:22563-22580. [PMID: 28186966 PMCID: PMC5410245 DOI: 10.18632/oncotarget.15124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/23/2017] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common malignant tumors in men. The etiology and pathogenesis of PCa remain unclear. P21-activated kinase 1 (PAK1) is a member of a family of serine/threonine kinases and regulates cell growth and contributes to tumor invasion and metastasis. However, the association of PAK1 with PCa tumorigenesis and in particular with cell autophagy remains unknown. We found that the positive expression of PAK1 was significantly increased in PCa patients compared with BPH patients (P < 0.05). The expression of PAK1, p-PAK1 and LC3B1 in DU145 was increased by the activator of mTOR MYH1485. The expression of PAK1, p-PAK1, mTOR and Beclin1 decreased in PAK1-shRNA expressing DU145 cell. Knocking down of PAK1 inhibited DU145 cell growth, invasion and migration in vitro, and inhibited tumor growth in vivo. Our study demonstrated that PAK1 is upregulated in PCa and regulated by the mTOR signaling pathway and contributes to tumor autophagy. Thus, PAK1 may be a potential tumor marker and therapeutic target of PCa.
Collapse
Affiliation(s)
- Zhanyu Wang
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Guojin Jia
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Yan Li
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Jikai Liu
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Jinfang Luo
- Department of Pathology, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Jihong Zhang
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Guoxiong Xu
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Gang Chen
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| |
Collapse
|
18
|
Class I phosphatidylinositol 3-kinase inhibitors for cancer therapy. Acta Pharm Sin B 2017; 7:27-37. [PMID: 28119806 PMCID: PMC5237710 DOI: 10.1016/j.apsb.2016.07.006] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/09/2016] [Accepted: 05/16/2016] [Indexed: 12/19/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K) pathway is frequently activated in human cancers. Class I PI3Ks are lipid kinases that phosphorylate phosphatidylinositol 4,5-bisphosphate (PIP2) at the 3-OH of the inositol ring to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3), which in turn activates Akt and the downstream effectors like mammalian target of rapamycin (mTOR) to play key roles in carcinogenesis. Therefore, PI3K has become an important anticancer drug target, and currently there is very high interest in the pharmaceutical development of PI3K inhibitors. Idelalisib has been approved in USA and Europe as the first-in-class PI3K inhibitor for cancer therapy. Dozens of other PI3K inhibitors including BKM120 and ZSTK474 are being evaluated in clinical trials. Multifaceted studies on these PI3K inhibitors are being performed, such as single and combinational efficacy, resistance, biomarkers, etc. This review provides an introduction to PI3K and summarizes key advances in the development of PI3K inhibitors.
Collapse
|
19
|
Festuccia C. Investigational serine/threonine kinase inhibitors against prostate cancer metastases. Expert Opin Investig Drugs 2016; 26:25-34. [PMID: 27892725 DOI: 10.1080/13543784.2016.1266337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Androgen deprivation therapy (ADT) is used as first therapeutic approach in prostate cancer (PCa) although castration resistant disease (CRPC) develops with high frequency. CRPC is the consequence of lack of apoptotic responses to ADT. Alternative targeting of the androgen axis with abiraterone and enzalutamide, as well as taxane-based chemotherapy were used in CRPC. Serine/threonine protein kinases (STKs) regulate different molecular pathways of normal and neoplastic cells and participate to development of CRPC as well as to the progression towards a bone metastatic disease (mCRPC). Areas covered: The present review provide data on STK expression and activity in the development of CRPC as well as summarize recent reports of different strategies to block STK activity for the control of PCa progression. Expert Opinion: Inhibitors for different STKs have been developed but clinical trials in PCa are comparatively rare and few exhibit satisfactory 'drug-like' properties. It is, however, necessary to intensify, when possible, the number of clinical trials with these drugs in order to insert new therapies or combinations with standard hormone- and chemo-therapies in the treatment guidelines of the mPCA.
Collapse
Affiliation(s)
- Claudio Festuccia
- a Department of Biotechnological and Applied Clinical Sciences , University of L'Aquila , L'Aquila , Italy
| |
Collapse
|
20
|
Ong PS, Wang LZ, Dai X, Tseng SH, Loo SJ, Sethi G. Judicious Toggling of mTOR Activity to Combat Insulin Resistance and Cancer: Current Evidence and Perspectives. Front Pharmacol 2016; 7:395. [PMID: 27826244 PMCID: PMC5079084 DOI: 10.3389/fphar.2016.00395] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/07/2016] [Indexed: 12/16/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR), via its two distinct multiprotein complexes, mTORC1, and mTORC2, plays a central role in the regulation of cellular growth, metabolism, and migration. A dysregulation of the mTOR pathway has in turn been implicated in several pathological conditions including insulin resistance and cancer. Overactivation of mTORC1 and disruption of mTORC2 function have been reported to induce insulin resistance. On the other hand, aberrant mTORC1 and mTORC2 signaling via either genetic alterations or increased expression of proteins regulating mTOR and its downstream targets have contributed to cancer development. These underlined the attractiveness of mTOR as a therapeutic target to overcome both insulin resistance and cancer. This review summarizes the evidence supporting the notion of intermittent, low dose rapamycin for treating insulin resistance. It further highlights recent data on the continuous use of high dose rapamycin analogs and related second generation mTOR inhibitors for cancer eradication, for overcoming chemoresistance and for tumor stem cell suppression. Within these contexts, the potential challenges associated with the use of mTOR inhibitors are also discussed.
Collapse
Affiliation(s)
- Pei Shi Ong
- Department of Pharmacy, Faculty of Science, National University of Singapore Singapore, Singapore
| | - Louis Z Wang
- Department of Pharmacy, Faculty of Science, National University of SingaporeSingapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | - Xiaoyun Dai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| | - Sheng Hsuan Tseng
- Department of Pharmacy, Faculty of Science, National University of Singapore Singapore, Singapore
| | - Shang Jun Loo
- Department of Pharmacy, Faculty of Science, National University of Singapore Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| |
Collapse
|