1
|
Godizzi F, Armando F, Boracchi P, Avallone G, Stefanello D, Ferrari R, Chiti LE, Cappelleri A, Zamboni C, Dell'Aere S, Corradi A, Roccabianca P. Survivin, β-catenin, and ki-67 immunohistochemical expression in canine perivascular wall tumors: Preliminary assessment of prognostic significance. Vet Pathol 2024; 61:912-927. [PMID: 38727195 DOI: 10.1177/03009858241246981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
High survivin expression has been correlated with poor outcomes in several canine tumors but not in soft tissue tumors (STTs). Survivin is a target gene of the Wnt/β-catenin pathway, which is involved in human STT oncogenesis. Immunohistochemistry for survivin, β-catenin, and Ki-67 was performed on 41 canine perivascular wall tumors (cPWTs), and statistical associations of protein expression and histopathologic and clinical variables with clinical outcomes were investigated. Immunohistochemically, there was nuclear positivity (0.9%-12.2% of tumor cells) for survivin in 41/41 (100%), cytoplasmic positivity (0 to > 75% of tumor cells) for survivin in 31/41 (76%), nuclear positivity (2.9%-67.2% of tumor cells) for β-catenin in 24/41 (59%), and cytoplasmic positivity (0% to > 75% of tumor cells) for β-catenin in 23/41 (56%) of cPWTs. All tumors expressed nuclear Ki-67 (2.2%-23.5%). In univariate analysis and multivariate analysis (UA and MA, respectively), every 1% increase of nuclear survivin was associated with an increase of the instantaneous death risk by a factor of 1.15 [hazard ratio (HR) = 1.15; P = .007]. Higher nuclear survivin was associated with grade II/III neoplasms (P = .043). Expression of cytoplasmic survivin, nuclear and cytoplasmic β-catenin, and nuclear Ki-67 were not significantly associated with prognosis in UA nor MA. Tumor size was a significant prognostic factor for local recurrence in UA [subdistribution HR (SDHR) = 1.19; P = .02] and for reduced overall survival time in MA. According to UA and MA, a unitary increase of mitotic count was associated with an increase of the instantaneous death risk by a factor of 1.05 (HR = 1.05; P = .014). Nuclear survivin, mitotic count, and tumor size seem to be potential prognostic factors for cPWTs. In addition, survivin and β-catenin may represent promising therapeutic targets for cPWTs.
Collapse
Affiliation(s)
- Francesco Godizzi
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Patrizia Boracchi
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - Giancarlo Avallone
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Ozzano dell'Emilia, Italy
| | - Damiano Stefanello
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
| | - Roberta Ferrari
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
| | - Lavinia E Chiti
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
| | - Andrea Cappelleri
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
- Mouse and Animal Pathology Laboratory (MAPLab), Fondazione UniMi, Milan, Italy
| | - Clarissa Zamboni
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
| | - Silvia Dell'Aere
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
| | - Attilio Corradi
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Paola Roccabianca
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
| |
Collapse
|
2
|
Zhang H, Zheng T, Qin C, Zhang X, Lin H, Huang X, Liu Q, Chang S, Zhang L, Guo J, Zhang Y, Bian C, Liu H. CCT6A promotes cell proliferation in colon cancer by targeting BIRC5 associated with p53 status. Cancer Gene Ther 2024; 31:1151-1163. [PMID: 38997438 DOI: 10.1038/s41417-024-00806-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024]
Abstract
Chaperonin-containing TCP1 (CCT) is a multi-subunit complex, known to participate the correct folding of many proteins. Currently, the mechanism underlying CCT subunits in cancer progression is incompletely understood. Based on data analysis, the expression of CCT subunit 6 A (CCT6A) is found higher than the other subunits of CCT and correlated with an unfavorable prognosis in colon cancer. Here, we find CCT6A silencing suppresses colon cancer proliferation and survival phenotype in vitro and in vivo. CCT6A plays a role in cellular process, including the cell cycle, p53, and apoptosis signaling pathways. Further investigations have shown direct binding between CCT6A and both Wtp53 and Mutp53, and BIRC5 is found to act downstream of CCT6A. The highlight is that CCT6A inhibition significantly reduces BIRC5 expression independent of Wtp53 levels in Wtp53 cells. Conversely, in Mutp53 cells, downregulation of BIRC5 by CCT6A inhibition mainly depends on Mutp53 levels. Additionally, combined CCT6A inhibition and Wtp53 overexpression in Mutp53 cell lines effectively suppresses cell proliferation. It is concluded CCT6A is a potential oncogene that influences BIRC5 through distinct pathways in Wtp53 and Mutp53 cells.
Collapse
Affiliation(s)
- Han Zhang
- Department of Oncology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Taotao Zheng
- School of Medicine, Chongqing University, Chongqing, China
| | - Chuan Qin
- Department of Gastrointestinal Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Xinyue Zhang
- Department of Oncology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Han Lin
- Department of Oncology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Xiaoping Huang
- Department of Oncology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Qiang Liu
- Department of Oncology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Shichuan Chang
- Department of Oncology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Li Zhang
- Department of Oncology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Jing Guo
- Department of Oncology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Yao Zhang
- Department of Oncology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Chunxiang Bian
- School of Life Science and Technology, Mianyang Teacher's College, Mianyang, Sichuan, China.
| | - Huawen Liu
- Department of Oncology, Chongqing University Three Gorges Hospital, Chongqing, China.
- School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
3
|
Mandić D, Nežić L, Amdžić L, Vojinović N, Gajanin R, Popović M, Đeri J, Balint MT, Dumanović J, Milovanović Z, Grujić-Milanović J, Škrbić R, Jaćević V. Overexpression of MRP1/ABCC1, Survivin and BCRP/ABCC2 Predicts the Resistance of Diffuse Large B-Cell Lymphoma to R-CHOP Treatment. Cancers (Basel) 2023; 15:4106. [PMID: 37627134 PMCID: PMC10452886 DOI: 10.3390/cancers15164106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Approximately 40% of patients with diffuse large B-cell lymphoma (DLBCL) experience treatment resistance to the first-line R-CHOP regimen. ATP binding cassette (ABC) transporters and survivin might play a role in multidrug resistance (MDR) in various tumors. The aim was to investigate if the coexpression of ABC transporters and survivin was associated with R-CHOP treatment response. METHODS The expression of Bcl-2, survivin, P-glycoprotein/ABCB1, MRP1/ABCC1, and BCRP/ABCC2 was analyzed using immunohistochemistry in tumor specimens obtained from patients with DLBCL, and classified according to the treatment response as Remission, Relapsed, and (primary) Refractory groups. All patients received R-CHOP or equivalent treatment. RESULTS Bcl-2 was in strong positive correlation with clinical parameters and all biomarkers except P-gp/ABCB1. The overexpression of MRP1/ABCC1, survivin, and BCRP/ABCC2 presented as high immunoreactive scores (IRSs) was detected in the Refractory and Relapsed groups (p < 0.05 vs. Remission), respectively, whereas the IRS of P-gp/ABCB1 was low. Significant correlations were found among either MRP1/ABCC1 and survivin or BCRP/ABCC2 in the Refractory and Relapsed groups, respectively. In multiple linear regression analysis, ECOG status along with MRP1/ABCC1 or survivin and BRCP/ABCG2 was significantly associated with the prediction of the R-CHOP treatment response. CONCLUSIONS DLBCL might harbor certain molecular signatures such as MRP1/ABCC1, survivin, and BCRP/ABCC2 overexpression that can predict resistance to R-CHOP.
Collapse
Affiliation(s)
- Danijela Mandić
- Department of Hematology, Clinic of Internal Medicine, University Clinical Center Republic of Srpska, 12 Beba, 78000 Banja Luka, Bosnia and Herzegovina;
- Department of Internal Medicine, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina
| | - Lana Nežić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina; (L.N.); (R.Š.)
| | - Ljiljana Amdžić
- Center for Biomedical Research, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina; (L.A.); (N.V.)
| | - Nataša Vojinović
- Center for Biomedical Research, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina; (L.A.); (N.V.)
| | - Radoslav Gajanin
- Department of Pathology, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina;
| | - Miroslav Popović
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina;
| | - Jugoslav Đeri
- Department of Surgery, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina;
| | - Milena Todorović Balint
- Department of Hematology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Clinic of Hematology, University Clinical Center of Serbia, 2 Pasterova, 11000 Belgrade, Serbia
| | - Jelena Dumanović
- Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, Studenski trg 16, 11000 Belgrade, Serbia;
- Medical Faculty of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia
| | - Zoran Milovanović
- Special Police Unit, Ministry of Interior, Trebevićka 12/A, 11030 Belgrade, Serbia;
| | - Jelica Grujić-Milanović
- Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, University of Belgrade, Dr. Subotića 4, 11000 Belgrade, Serbia;
| | - Ranko Škrbić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina; (L.N.); (R.Š.)
- Center for Biomedical Research, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina; (L.A.); (N.V.)
| | - Vesna Jaćević
- Medical Faculty of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia
- Department for Experimental Toxicology and Pharmacology, National Poison Control Centre, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| |
Collapse
|
4
|
Wright S, Burkholz SR, Zelinsky C, Wittman C, Carback RT, Harris PE, Blankenberg T, Herst CV, Rubsamen RM. Survivin Expression in Luminal Breast Cancer and Adjacent Normal Tissue for Immuno-Oncology Applications. Int J Mol Sci 2023; 24:11827. [PMID: 37511584 PMCID: PMC10380623 DOI: 10.3390/ijms241411827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Survivin (BIRC5) is a tumor-associated antigen (TAA) overexpressed in various tumors but present at low to undetectable levels in normal tissue. Survivin is known to have a high expression in breast cancer (e.g., Ductal Carcinoma in situ (DCIS) and triple negative breast cancer). Previous studies have not compared survivin expression levels in DCIS tumor samples to levels in adjacent, normal breast tissue from the same patient. To ensure the effective use of survivin as a target for T cell immunotherapy of breast cancer, it is essential to ascertain the varying levels of survivin expression between DCIS tumor tissue samples and the adjacent normal breast tissue taken from the same patient simultaneously. Next-generation sequencing of RNA (RNA-seq) in normal breast tissue and tumor breast tissue from five women presenting with DCIS for lumpectomy was used to identify sequence variation and expression levels of survivin. The identity of both tumor and adjacent normal tissue samples were corroborated by histopathology. Survivin was overexpressed in human breast tissue tumor samples relative to the corresponding adjacent human normal breast tissue. Wild-type survivin transcripts were the predominant species identified in all tumor tissue sequenced. This study demonstrates upregulated expression of wild type survivin in DCIS tumor tissue versus normal breast tissue taken from the same patient at the same time, and provides evidence that developing selective cytotoxic T lymphocyte (CTL) immunotherapy for DCIS targeting survivin warrants further study.
Collapse
Affiliation(s)
- Sharon Wright
- Saint Mary’s Regional Medical Center, Reno, NV 89503, USA; (S.W.); (C.Z.); (C.W.)
- Western Surgical Group, Reno, NV 89502, USA
| | - Scott R. Burkholz
- Flow Pharma Inc., Warrensville Heights, OH 44128, USA; (S.R.B.); (R.T.C.); (P.E.H.); (T.B.); (C.V.H.)
| | - Cathy Zelinsky
- Saint Mary’s Regional Medical Center, Reno, NV 89503, USA; (S.W.); (C.Z.); (C.W.)
| | - Connor Wittman
- Saint Mary’s Regional Medical Center, Reno, NV 89503, USA; (S.W.); (C.Z.); (C.W.)
| | - Richard T. Carback
- Flow Pharma Inc., Warrensville Heights, OH 44128, USA; (S.R.B.); (R.T.C.); (P.E.H.); (T.B.); (C.V.H.)
| | - Paul E. Harris
- Flow Pharma Inc., Warrensville Heights, OH 44128, USA; (S.R.B.); (R.T.C.); (P.E.H.); (T.B.); (C.V.H.)
| | - Tikoes Blankenberg
- Flow Pharma Inc., Warrensville Heights, OH 44128, USA; (S.R.B.); (R.T.C.); (P.E.H.); (T.B.); (C.V.H.)
- Shasta Pathology Associates, Redding, CA 96001, USA
| | - Charles V. Herst
- Flow Pharma Inc., Warrensville Heights, OH 44128, USA; (S.R.B.); (R.T.C.); (P.E.H.); (T.B.); (C.V.H.)
| | - Reid M. Rubsamen
- Saint Mary’s Regional Medical Center, Reno, NV 89503, USA; (S.W.); (C.Z.); (C.W.)
- Flow Pharma Inc., Warrensville Heights, OH 44128, USA; (S.R.B.); (R.T.C.); (P.E.H.); (T.B.); (C.V.H.)
- Cleveland Medical Center, University Hospitals, Cleveland, OH 44106, USA
- Case Western Reserve School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
5
|
Survivin Small Molecules Inhibitors: Recent Advances and Challenges. Molecules 2023; 28:molecules28031376. [PMID: 36771042 PMCID: PMC9919791 DOI: 10.3390/molecules28031376] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Survivin, as a member of the inhibitor of apoptosis proteins (IAPs) family, acts as a suppressor of apoptosis and plays a central role in cell division. Survivin has been considered as an important cancer drug target because it is highly expressed in many types of human cancers, while it is effectively absent from terminally differentiated normal tissues. Moreover, survivin is involved in tumor cell resistance to chemotherapy and radiation. Preclinically, downregulation of survivin expression or function reduced tumor growth induced apoptosis and sensitized tumor cells to radiation and chemotherapy in different human tumor models. This review highlights the role of survivin in promoting cellular proliferation and inhibiting apoptosis and summarizes the recent advances in and challenges of developing small-molecule survivin inhibitors.
Collapse
|
6
|
Fuller RN, Kabagwira J, Vallejos PA, Folkerts AD, Wall NR. Survivin Splice Variant 2β Enhances Pancreatic Ductal Adenocarcinoma Resistance to Gemcitabine. Onco Targets Ther 2022; 15:1147-1160. [PMID: 36238134 PMCID: PMC9553431 DOI: 10.2147/ott.s341720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease with poor prognosis, as it is difficult to predict or circumvent, and it develops chemoresistance quickly. One cellular mechanism associated with chemoresistance is alternative splicing dysfunction, a process through which nascent mRNA is spliced into different isoforms. Survivin (Baculoviral IAP Repeat-Containing Protein 5 (BIRC5)), a member of the inhibitor of apoptosis (IAP) protein family and a cell cycle-associated oncoprotein, is overexpressed in most cancers and undergoes alternative splicing (AS) to generate six different splicing isoforms. Methods To determine if survivin splice variants (SSV) could be involved in PDAC chemoresistance, a Gemcitabine (Gem) resistant (GR) cell line, MIA PaCa-2 GR, was created and assessed for its SSV levels and their potential association with GR. Cross-resistance was assessed in MIA-PaCa-2 GR cells to FIRINOX (5-fluorouracil (5-FU), irinotecan, and oxaliplatin). Once chemoresistance was confirmed, RT-qPCR was used to assess the expression of survivin splice variants (SSVs) in PDAC cell lines. To confirm the effect of SSVs on chemoresistance, we used siRNA to knockdown all SSVs or SSV 2β. Results The MIA PaCa-2 GR cell line was 40 times more resistant to Gem and revealed increased resistance to FIRINOX (5-fluorouracil (5-FU), irinotecan, and oxaliplatin); when compared to the parental MIA-PaCa-2 cells. RT-qPCR studies revealed an 8-fold relative expression increase in SSV 2β and a 2- to 8-fold increase in the other five SSVs in the GR cells. Knockdown of all SSV or SSV 2β only, using small inhibitory RNA (siRNA), sensitized the GR cells to Gem, indicating that these SSVs play a role in PDAC chemoresistance. Conclusion These findings provide evidence for the potential role of SSV 2β and other SSVs in innate and acquired PDAC chemoresistance. We also show that the expression of SSVs is not affected by the type of chemoresistance, therefore targeting survivin splice variants in combination with chemotherapy could benefit a wide range of patients.
Collapse
Affiliation(s)
- Ryan N Fuller
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Janviere Kabagwira
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Paul A Vallejos
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Andrew D Folkerts
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Nathan R Wall
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA,Correspondence: Nathan R Wall, Center for Health Disparities & Molecular Medicine, 11085 Campus Street, Mortensen Hall 160, Loma Linda University, Loma Linda, CA, 92350, USA, Tel +909-558-4000 x81397, Email
| |
Collapse
|
7
|
Thota R, Aggarwal S, Chirom AS, Thakar A, Gupta SD, Sharma SC, Das SN. Serum Survivin in Oral Submucosal Fibrosis and Squamous Cell Carcinoma. Indian J Otolaryngol Head Neck Surg 2022; 74:2027-2032. [PMID: 36452695 PMCID: PMC9702048 DOI: 10.1007/s12070-020-01980-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/16/2020] [Indexed: 11/26/2022] Open
Abstract
Survivin, an inhibitor of apoptosis protein is a biomarker of significance in prognostication of many malignancies. In the current study we investigated the serum survivin levels in patients with oral submucosal fibrosis (OSMF) and squamous cell carcinoma (OSCC). Serum was isolated from, peripheral blood collected of clinically and histopathologically confirmed OSMF and OSCC patients. Circulating level of survivin was measured in patients and control subjects by ELISA and analyzed further using Kruskal-Wallis test and two-sample Wilcoxon rank-sum (Mann-Whitney) test. Serum Survivin levels were significantly reduced in the OSCC group as compared to the control group. No significant correlation was noted between the serum survivin level and various clinicopathological characteristics of OSCC and OSMF patients. Our study suggests that free, wild form of circulating survivin probably has no role in predicting the prognosis of oral cancer or the malignant transformation potential of oral submucosal fibrosis.
Collapse
Affiliation(s)
- Ramya Thota
- Department of Otorhinolaryngology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029 India
| | - Sadhna Aggarwal
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029 India
| | - Amit Singh Chirom
- Department of Otorhinolaryngology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029 India
| | - Alok Thakar
- Department of Otorhinolaryngology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029 India
| | - Siddhartha Dutta Gupta
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029 India
| | - Suresh C. Sharma
- Department of Otorhinolaryngology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029 India
| | - Satya N. Das
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029 India
| |
Collapse
|
8
|
Martínez-Sifuentes MA, Bassol-Mayagoitia S, Nava-Hernández MP, Ruiz-Flores P, Ramos-Treviño J, Haro-Santa Cruz J, Hernández-Ibarra JA. Survivin in Breast Cancer: A Review. Genet Test Mol Biomarkers 2022; 26:411-421. [PMID: 36166738 DOI: 10.1089/gtmb.2021.0286] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer in women and ranks second among causes for cancer-related death in women. Gene technology has led to the recognition that breast cancer is a heterogeneous disease composed of different biological subtypes, and genetic profiling enables the response to chemotherapy to be predicted. This fact emphasizes the importance of selecting sensitive diagnostic and prognostic markers in the early disease stage and more efficient targeted treatments for this disease. One such prognostic marker appears to be survivin. Many studies have shown that survivin is strongly expressed in different types of cancers. Its overexpression has been demonstrated in breast cancer, and high activity of the survivin gene has been associated with a poor prognosis and worse survival rates.
Collapse
Affiliation(s)
- Manuel Antonio Martínez-Sifuentes
- Department of Reproductive Biology and Biomedical Research Center, School of Medicine, Autonomous University of Coahuila, Torreón, Mexico
| | - Susana Bassol-Mayagoitia
- Department of Reproductive Biology and Biomedical Research Center, School of Medicine, Autonomous University of Coahuila, Torreón, Mexico
| | - Martha P Nava-Hernández
- Department of Reproductive Biology and Biomedical Research Center, School of Medicine, Autonomous University of Coahuila, Torreón, Mexico
| | - Pablo Ruiz-Flores
- Department of Genetics and Molecular Medicine, Biomedical Research Center, School of Medicine, Autonomous University of Coahuila, Torreón, Mexico
| | - Juan Ramos-Treviño
- Department of Reproductive Biology and Biomedical Research Center, School of Medicine, Autonomous University of Coahuila, Torreón, Mexico
| | - Jorge Haro-Santa Cruz
- Department of Genetics and Molecular Medicine, Biomedical Research Center, School of Medicine, Autonomous University of Coahuila, Torreón, Mexico
| | - José Anselmo Hernández-Ibarra
- Department of Reproductive Biology and Biomedical Research Center, School of Medicine, Autonomous University of Coahuila, Torreón, Mexico
| |
Collapse
|
9
|
Tossetta G, Marzioni D. Natural and synthetic compounds in Ovarian Cancer: A focus on NRF2/KEAP1 pathway. Pharmacol Res 2022; 183:106365. [PMID: 35901941 DOI: 10.1016/j.phrs.2022.106365] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 12/20/2022]
Abstract
Among gynecologic malignancies, ovarian cancer is one of the most dangerous, with a high fatality rate and relapse due to the occurrence of chemoresistance. Many researchers demonstrated that oxidative stress is involved in tumor occurrence, development and procession. Nuclear factor erythroid 2-related factor 2 (NRF2) is an important transcription factor playing an important role in protecting against oxidative damage. Increased levels of Reactive Oxygen Species (ROS) activate NRF2 signaling inducing the expression of antioxidant enzymes such as heme oxygenase (HO-1), catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD) that protect cells against oxidative stress. However, NRF2 activation in cancer cells is responsible for the development of chemoresistance inactivating drug-mediated oxidative stress that normally leads cancer cells to death. In this review we analyzed the current literature regarding the role of natural and synthetic compounds in modulating NRF2/KEAP1 (Kelch Like ECH Associated Protein 1) pathway in in vitro models of ovarian cancer. In particular, we reported how these compounds can modulate chemotherapy response.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, Ancona, Italy.
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
10
|
Górska A, Mazur AJ. Integrin-linked kinase (ILK): the known vs. the unknown and perspectives. Cell Mol Life Sci 2022; 79:100. [PMID: 35089438 PMCID: PMC8799556 DOI: 10.1007/s00018-021-04104-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/29/2021] [Accepted: 12/17/2021] [Indexed: 02/08/2023]
Abstract
Integrin-linked kinase (ILK) is a multifunctional molecular actor in cell-matrix interactions, cell adhesion, and anchorage-dependent cell growth. It combines functions of a signal transductor and a scaffold protein through its interaction with integrins, then facilitating further protein recruitment within the ILK-PINCH-Parvin complex. ILK is involved in crucial cellular processes including proliferation, survival, differentiation, migration, invasion, and angiogenesis, which reflects on systemic changes in the kidney, heart, muscle, skin, and vascular system, also during the embryonal development. Dysfunction of ILK underlies the pathogenesis of various diseases, including the pro-oncogenic activity in tumorigenesis. ILK localizes mostly to the cell membrane and remains an important component of focal adhesion. We do know much about ILK but a lot still remains either uncovered or unclear. Although it was initially classified as a serine/threonine-protein kinase, its catalytical activity is now questioned due to structural and functional issues, leaving the exact molecular mechanism of signal transduction by ILK unsolved. While it is known that the three isoforms of ILK vary in length, the presence of crucial domains, and modification sites, most of the research tends to focus on the main isoform of this protein while the issue of functional differences of ILK2 and ILK3 still awaits clarification. The activity of ILK is regulated on the transcriptional, protein, and post-transcriptional levels. The crucial role of phosphorylation and ubiquitylation has been investigated, but the functions of the vast majority of modifications are still unknown. In the light of all those open issues, here we present an extensive literature survey covering a wide spectrum of latest findings as well as a past-to-present view on controversies regarding ILK, finishing with pointing out some open questions to be resolved by further research.
Collapse
Affiliation(s)
- Agata Górska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland.
| | - Antonina Joanna Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland.
| |
Collapse
|
11
|
Wild type, dEX3 and 2B survivin isoforms localize to the tumor cell plasma membrane, are secreted in exosomes, and interact with extracellular tubulin. Biochem Biophys Rep 2021; 28:101174. [PMID: 34849411 PMCID: PMC8608592 DOI: 10.1016/j.bbrep.2021.101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 11/20/2022] Open
Abstract
The Inhibitor of Apoptosis Protein survivin (svn) is upregulated in nearly all types of cancer and represents a promising therapeutic target. Localization to specific subcellular compartments and interactions with various binding partners allow survivin to play diverse roles in apoptosis resistance and mitosis. Survivin has recently been found in two extracellular compartments: the outer plasma membrane and secreted exosomes. In addition to svn-wt, splice variants svn-dEX3 and svn-2B are also overexpressed in human tumors. Here we show that, similarly to svn-wt, svn-dEX3 and svn-2B can be displayed on the outer plasma membrane, and secreted in exosomes. Additionally, we have identified a novel interaction of all three forms of survivin with secreted tubulin.
Collapse
|
12
|
Pansini PF, do Valle IB, Damasceno TCD, de Abreu PM, Có ACG, López RVM, Lenzi J, Rocha RM, Souza ED, Curado MP, Mehanna H, Nankivell P, de Podestá JRV, von Zeidler SV. Differential Expression of Potential Biomarkers of Oral Squamous Cell Carcinoma Development. Head Neck Pathol 2021; 15:1127-1136. [PMID: 33840043 PMCID: PMC8633043 DOI: 10.1007/s12105-021-01322-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
To evaluate molecular epithelial changes, we investigated whether a profile of survivin, cyclin dependent kinase inhibitor 2A (CDKN2A), epidermal growth factor receptor (EGFR), polo like kinase 1 (PLK1), p63, p40 (Δnp63 isoform), cyclin D1 (CCND1) and BCL2 apoptosis regulator (BCL2) proteins could predict malignant transformation. Different tissue segments (tumor adjacent epithelium; dysplasia and tumor) from a total of 109 patients were analyzed by immunohistochemistry. An increased expression of survivin (p < 0.001), PLK1 (p = 0.001), and p63 (p < 0.001) in parallel to reduced immunostaining of p40 (p < 0.001) and BCL2 (p = 0.029) was observed among the tissue segments analyzed. Our study revealed that survivin, PLK1, p63, p40 and BCL2 play a role in oral tumorigenesis and represent promising biomarkers able to recognize mesenchymal phenotype induction in the transition from nonmalignant cells to tumor cells. These results reveals critical interaction between survivin, PLK1, p63, p40 promising proteins during invasive carcinoma development.
Collapse
Affiliation(s)
- Paola Fernandes Pansini
- Departamento de Patologia, Programa de Pós-Graduação Em Biotecnologia, Centro de Ciências da Saúde - Universidade Federal do Espírito santo, Av. Marechal Campos, 1468 Maruípe, Vitoria, Espírito Santo 29.043-900 Brazil
| | - Isabella Bittencourt do Valle
- Departamento de Patologia, Programa de Pós-Graduação Em Biotecnologia, Centro de Ciências da Saúde - Universidade Federal do Espírito santo, Av. Marechal Campos, 1468 Maruípe, Vitoria, Espírito Santo 29.043-900 Brazil
- Programa de Pós-Graduação em Odontologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | - Thabata Coeli Dias Damasceno
- Departamento de Patologia, Programa de Pós-Graduação Em Biotecnologia, Centro de Ciências da Saúde - Universidade Federal do Espírito santo, Av. Marechal Campos, 1468 Maruípe, Vitoria, Espírito Santo 29.043-900 Brazil
| | - Priscila Marinho de Abreu
- Departamento de Patologia, Programa de Pós-Graduação Em Biotecnologia, Centro de Ciências da Saúde - Universidade Federal do Espírito santo, Av. Marechal Campos, 1468 Maruípe, Vitoria, Espírito Santo 29.043-900 Brazil
| | - Anna Clara Gregório Có
- Departamento de Patologia, Programa de Pós-Graduação Em Biotecnologia, Centro de Ciências da Saúde - Universidade Federal do Espírito santo, Av. Marechal Campos, 1468 Maruípe, Vitoria, Espírito Santo 29.043-900 Brazil
| | - Rossana Verónica Mendoza López
- Instituto do Câncer do Estado de São Paulo (ICESP) - Center for Translational Research in Oncology, Universidade de São Paulo, São Paulo, Brazil
| | - Jeferson Lenzi
- Programa de Detecção Precoce do Câncer Bucal, Setor de Cirurgia de Cabeça e Pescoço, Hospital Santa Rita de Cássia, Vitoria, Espírito Santo Brazil
| | - Ricardo Mai Rocha
- Programa de Detecção Precoce do Câncer Bucal, Setor de Cirurgia de Cabeça e Pescoço, Hospital Santa Rita de Cássia, Vitoria, Espírito Santo Brazil
| | - Evandro Duccini Souza
- Programa de Detecção Precoce do Câncer Bucal, Setor de Cirurgia de Cabeça e Pescoço, Hospital Santa Rita de Cássia, Vitoria, Espírito Santo Brazil
| | - Maria Paula Curado
- Centro Internacional de Pesquisa, AC Camargo Cancer Center, São Paulo, São Paulo Brazil
| | - Hisham Mehanna
- Institute for Head and Neck Studies and Education (InHANSE), University of Birmingham, Birmingham, UK
| | - Paul Nankivell
- Institute for Head and Neck Studies and Education (InHANSE), University of Birmingham, Birmingham, UK
| | - José Roberto Vasconcelos de Podestá
- Programa de Detecção Precoce do Câncer Bucal, Setor de Cirurgia de Cabeça e Pescoço, Hospital Santa Rita de Cássia, Vitoria, Espírito Santo Brazil
| | - Sandra Ventorin von Zeidler
- Departamento de Patologia, Programa de Pós-Graduação Em Biotecnologia, Centro de Ciências da Saúde - Universidade Federal do Espírito santo, Av. Marechal Campos, 1468 Maruípe, Vitoria, Espírito Santo 29.043-900 Brazil
| |
Collapse
|
13
|
Abstract
Survivin is one of the rare proteins that is differentially expressed in normal and cancer cells and is directly or indirectly involved in numerous pathways required for tumor maintenance. It is expressed in almost all cancers and its expression has been detected at early stages of cancer. These traits make survivin an exceptionally attractive target for cancer therapeutics. Even with these promising features to be an oncotherapeutic target, there has been limited success in the clinical trials targeting survivin. Only recently it has emerged that survivin was not being specifically targeted which could have resulted in the negative clinical outcome. Also, focus of research has now shifted from survivin expression in the overall heterogeneous tumor cell populations to survivin expression in cancer stem cells as these cells have proved to be the major drivers of tumors. Therefore, in this review we have analyzed the expression of survivin in normal and cancer cells with a particular focus on its expression in cancer stem cell compartment. We have discussed the major signaling pathways involved in regulation of survivin. We have explored the current development status of various types of interventions for inhibition of survivin. Furthermore, we have discussed the challenges involving the development of potent and specific survivin inhibitors for cancer therapeutics. Finally we have given insights for some of the promising future anticancer treatments.
Collapse
|
14
|
Miliaraki M, Briassoulis P, Ilia S, Polonifi A, Mantzourani M, Briassouli E, Vardas K, Nanas S, Pistiki A, Theodorakopoulou M, Tavladaki T, Spanaki AM, Kondili E, Dimitriou H, Tsiodras S, Georgopoulos D, Armaganidis A, Daikos G, Briassoulis G. Survivin and caspases serum protein levels and survivin variants mRNA expression in sepsis. Sci Rep 2021; 11:1049. [PMID: 33441606 PMCID: PMC7806640 DOI: 10.1038/s41598-020-78208-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a dysregulated host response to infection related to devastating outcomes. Recently, interest has been shifted towards apoptotic and antiapoptotic pathobiology. Apoptosis is executed through the activation of caspases regulated by a number of antiapoptotic proteins, such as survivin. The survivin and caspases’ responses to sepsis have not yet been elucidated. This is a multicenter prospective observational study concerning patients with sepsis (n = 107) compared to patients with traumatic systemic inflammatory response syndrome (SIRS) (n = 75) and to healthy controls (n = 89). The expression of survivin was quantified through real-time quantitative polymerase chain reaction for the different survivin splice variants (wild type-WT, ΔEx3, 2B, 3B) in peripheral blood leukocytes. The apoptotic or antiapoptotic tendency was specified by measuring survivin-WT, caspase-3, and -9 serum protein concentrations through enzyme-linked immunosorbent assay. The survivin-WT, -2B, -ΔΕx3 mRNA, survivin protein, and caspases showed an escalated increase in SIRS and sepsis, whereas survivin-3B was repressed in sepsis (p < 0.05). Survivin correlated with IL-8 and caspase-9 (p < 0.01). For discriminating sepsis, caspase-9 achieved the best receiver operating characteristic curve (AUROC) of 0.95. In predicting mortality, caspase-9 and survivin protein achieved an AUROC of 0.70. In conclusion, specific apoptotic and antiapoptotic pathways might represent attractive targets for future research in sepsis.
Collapse
Affiliation(s)
- Marianna Miliaraki
- Pediatric Intensive Care Unit, Medical School, University of Crete, Heraklion, Crete, Greece.,Postgraduate Program "Emergencies and Intensive Care in Children Adolescents and Young Adults", Medical School, University of Crete, Heraklion, Crete, Greece
| | - Panagiotis Briassoulis
- Pediatric Intensive Care Unit, Medical School, University of Crete, Heraklion, Crete, Greece.,Postgraduate Program "Emergencies and Intensive Care in Children Adolescents and Young Adults", Medical School, University of Crete, Heraklion, Crete, Greece
| | - Stavroula Ilia
- Pediatric Intensive Care Unit, Medical School, University of Crete, Heraklion, Crete, Greece.,Postgraduate Program "Emergencies and Intensive Care in Children Adolescents and Young Adults", Medical School, University of Crete, Heraklion, Crete, Greece
| | - Aikaterini Polonifi
- First Department of Internal Medicine - Propaedeutic, National and Kapodistrian University of Athens, Athens, Greece
| | - Marina Mantzourani
- First Department of Internal Medicine - Propaedeutic, National and Kapodistrian University of Athens, Athens, Greece
| | - Efrossini Briassouli
- First Department of Internal Medicine - Propaedeutic, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Vardas
- First Critical Care Department, Evangelismos University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Serafim Nanas
- First Critical Care Department, Evangelismos University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Pistiki
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Theodorakopoulou
- 2nd Department of Critical Care, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Theonymfi Tavladaki
- Pediatric Intensive Care Unit, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Anna Maria Spanaki
- Pediatric Intensive Care Unit, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Eumorfia Kondili
- Intensive Care Unit, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Helen Dimitriou
- Division of Mother and Child Health, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Sotirios Tsiodras
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Apostolos Armaganidis
- 2nd Department of Critical Care, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George Daikos
- First Department of Internal Medicine - Propaedeutic, National and Kapodistrian University of Athens, Athens, Greece
| | - George Briassoulis
- Pediatric Intensive Care Unit, Medical School, University of Crete, Heraklion, Crete, Greece. .,Postgraduate Program "Emergencies and Intensive Care in Children Adolescents and Young Adults", Medical School, University of Crete, Heraklion, Crete, Greece.
| |
Collapse
|
15
|
Adamopoulos PG, Tsiakanikas P, Adam EE, Scorilas A. Unraveling novel survivin mRNA transcripts in cancer cells using an in-house developed targeted high-throughput sequencing approach. Genomics 2020; 113:573-581. [PMID: 32980523 DOI: 10.1016/j.ygeno.2020.09.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022]
Abstract
The human baculoviral IAP repeat containing 5 (BIRC5), also known as survivin, is a conserved member of the inhibitor of apoptosis protein (IAPs) family, which is normally expressed during embryonic and fetal development. Although the expression levels of survivin are low in terminally differentiated cells and/or tissues, they can be found notably increased in certain pathological conditions including malignant tumors. Conventional cloning and sequencing techniques have already confirmed that alternative splicing events of the survivin pre-mRNA result in five distinct alternative transcript variants. In the present study, however, we implemented an innovative, in-house developed, targeted DNA-seq assay to identify novel survivin alternative transcript variants with increased depth and coverage that high-throughput sequencing approaches offer. Bioinformatics analysis of the derived NGS datasets unveiled several novel splice junctions between annotated exons of survivin gene as well as the existence of a novel exon of 117 nt, spanning between the annotated exons 3 and 3B. Validation of the NGS findings with PCR-based assays, using variant-specific primers, led to the identification of fourteen novel survivin alternative splice variants (BIRC5 v.4 - v.17), which demonstrate wide expression profiles in a broad established panel of human cell lines. Although the presented novel findings provide a crystal-clear overview of the survivin mRNAs that are actually generated from the pre-mRNA, future studies should focus on the impending necessity of characterizing the biological function of all novel alternative transcript variants as well as the putative protein isoforms. Such studies will further contribute to our understanding of how the balance between survivin isoforms regulate malignant cell proliferation and apoptosis, providing novel diagnostic, prognostic and predictive biomarkers as well as therapeutic targets.
Collapse
Affiliation(s)
- Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni E Adam
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
16
|
Sadigh Y, Tahiri-Alaoui A, Spatz S, Nair V, Ribeca P. Pervasive Differential Splicing in Marek's Disease Virus can Discriminate CVI-988 Vaccine Strain from RB-1B Very Virulent Strain in Chicken Embryonic Fibroblasts. Viruses 2020; 12:E329. [PMID: 32197378 PMCID: PMC7150913 DOI: 10.3390/v12030329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
Marek's disease is a major scourge challenging poultry health worldwide. It is caused by the highly contagious Marek's disease virus (MDV), an alphaherpesvirus. Here, we showed that, similar to other members of its Herpesviridae family, MDV also presents a complex landscape of splicing events, most of which are uncharacterised and/or not annotated. Quite strikingly, and although the biological relevance of this fact is unknown, we found that a number of viral splicing isoforms are strain-specific, despite the close sequence similarity of the strains considered: very virulent RB-1B and vaccine CVI-988. We validated our findings by devising an assay that discriminated infections caused by the two strains in chicken embryonic fibroblasts on the basis of the presence of some RNA species. To our knowledge, this study is the first to accomplish such a result, emphasizing how relevant a comprehensive picture of the viral transcriptome is to fully understand viral pathogenesis.
Collapse
Affiliation(s)
- Yashar Sadigh
- Avian Viral Oncogenesis, The Pirbright Institute, Ash Road, Woking GU24 0NF, UK;
| | - Abdessamad Tahiri-Alaoui
- Clinical BioManufacturing Facility, The Jenner Institute, University of Oxford, Old Road, Headington, Oxford OX3 7JT, UK;
| | - Stephen Spatz
- US National Poultry Research Center, 934 College Station Road, Athens, GA 30605, USA;
| | - Venugopal Nair
- Avian Viral Oncogenesis, The Pirbright Institute, Ash Road, Woking GU24 0NF, UK;
| | - Paolo Ribeca
- Integrative Biology and Bioinformatics, The Pirbright Institute, Ash Road, Woking GU24 0NF, UK
- Biomathematics and Statistics Scotland (BioSS), James Clerk Maxwell Building, Peter Guthrie Tait Road, The King’s Buildings, Edinburgh EH9 3FD, UK
| |
Collapse
|
17
|
Bernardo PS, Lemos LGT, de Moraes GN, Maia RC. Unraveling survivin expression in chronic myeloid leukemia: Molecular interactions and clinical implications. Blood Rev 2020; 43:100671. [PMID: 32107072 DOI: 10.1016/j.blre.2020.100671] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/15/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disorder characterized by the BCR-ABL oncoprotein, known to drive leukemogenesis by orchestrating multiple signaling pathways ultimately involved in cell survival. Despite successful response rates of CML patients to tyrosine kinase inhibitors (TKIs), resistance eventually arises due to BCR-ABL-dependent and independent mechanisms. Survivin is an inhibitor of apoptosis protein acting in the interface between apoptosis deregulation and cell cycle progression. In CML, high levels of survivin have been associated with late stages of disease and therapy resistance. In this review, we provide an overview of important aspects concerning survivin subcellular localization and expression pattern in CML patients and cell lines. Moreover, we highlight the relevance of molecular networks involving survivin for disease progression and treatment resistance. Finally, we discuss the mechanisms accounting for survivin overexpression, as well as novel therapeutic interventions that have been designed to counteract survivin-associated malignancy in CML.
Collapse
Affiliation(s)
- Paula Sabbo Bernardo
- Laboratory of Cellular and Molecular Hemato-Oncology, Program of Molecular Hemato-Oncology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Lauana Greicy Tonon Lemos
- Laboratory of Cellular and Molecular Hemato-Oncology, Program of Molecular Hemato-Oncology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Gabriela Nestal de Moraes
- Laboratory of Cellular and Molecular Hemato-Oncology, Program of Molecular Hemato-Oncology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Raquel Ciuvalschi Maia
- Laboratory of Cellular and Molecular Hemato-Oncology, Program of Molecular Hemato-Oncology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
18
|
Bianco B, Filipchiuk C, Christofolini DM, Barbosa CP, Montagna E. The role of survivin in the pathogenesis of endometriosis. Minerva Med 2019; 111:21-32. [PMID: 31755675 DOI: 10.23736/s0026-4806.19.06358-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Endometriosis is a common, estrogen-dependent condition, defined as the presence of endometrial-like tissue outside of the uterus, associated with often chronic and inflammatory reaction. The association of endometriosis with cancer is unclear, although endometriosis and cancer present some molecular similarities. Survinin, encoded by the BIRC5 gene, is a protein that controls cell division, inhibits apoptosis and promotes angiogenesis. Here we aimed to summarize and to discuss the main findings of studies that addressed the involvement of survivin in the pathogenesis of endometriosis. EVIDENCE ACQUISITION We conducted a comprehensive retrieval from electronic databases, included the MEDLINE, EMBASE, with no restrictions to time span. We used the search terms endometriosis and survivin or BIRC5 and collected all relevant studies to explore the association between endometriosis and surviving expression. EVIDENCE SYNTHESIS A total of 21 studies included in the systematic review, comprising sample collected from 1263 women with endometriosis. Results showed the involvement of more than 60 genes and proteins evaluated in eutopic, ectopic, endometrial and ovarian endometriosis, as well as in several gynecological conditions compared to healthy controls. CONCLUSIONS The studies provided the basis for the involvement of survivin in the pathogenesis of the disease by several and independent pathways.
Collapse
Affiliation(s)
- Bianca Bianco
- Center of Natural and Human Sciences (CCNH), Universidade Federal do ABC, Santo André, Brazil - .,Department of Collective Health, Discipline of Sexual and Reproductive Health and Populational Genetics, Faculdade de Medicina do ABC/Centro Universitário Saúde ABC, Santo André, Brazil -
| | - Carolina Filipchiuk
- Center of Natural and Human Sciences (CCNH), Universidade Federal do ABC, Santo André, Brazil
| | - Denise M Christofolini
- Department of Collective Health, Discipline of Sexual and Reproductive Health and Populational Genetics, Faculdade de Medicina do ABC/Centro Universitário Saúde ABC, Santo André, Brazil
| | - Caio P Barbosa
- Department of Collective Health, Discipline of Sexual and Reproductive Health and Populational Genetics, Faculdade de Medicina do ABC/Centro Universitário Saúde ABC, Santo André, Brazil
| | - Erik Montagna
- Postgraduate Program in Health Sciences, Faculdade de Medicina do ABC/Centro Universitário Saúde ABC, Santo André, Brazil
| |
Collapse
|
19
|
Quispe PA, Lavecchia MJ, León IE. On the discovery of a potential survivin inhibitor combining computational tools and cytotoxicity studies. Heliyon 2019; 5:e02238. [PMID: 31440594 PMCID: PMC6699424 DOI: 10.1016/j.heliyon.2019.e02238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/26/2019] [Accepted: 08/02/2019] [Indexed: 01/04/2023] Open
Abstract
Survivin protein is a metalloprotein member of the inhibitors of apoptosis proteins family, involved in the regulation of programmed cell death. Due to the recent development of antitumor therapies having survivin as molecular target, several strategies to interfere with the expression or function of survivin have emerged. This work describes the discovery of a new potential inhibitor of survivin function using a computer-aided drug design approach. Structure-based virtual screening and molecular dynamic simulations were carried out to select two compounds as possible inhibitors. According to the binding energy, possible ligand localization is in a cavity, close to dimerization interface. Next, cell-based assays were performed on three cell lines: two with tumor phenotype and over-expression of survivin, and another with normal phenotype and low expression of survivin. One of the selected compounds shows a selectively antitumor effect on panel cell lines suggesting that the compound effect could be correlated with the survivin expression.
Collapse
Affiliation(s)
- Patricia A Quispe
- CEQUINOR (Centro de Química Inorgánica, CONICET-UNLP) Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900, La Plata, Argentina
| | - Martin J Lavecchia
- CEQUINOR (Centro de Química Inorgánica, CONICET-UNLP) Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900, La Plata, Argentina
| | - Ignacio E León
- CEQUINOR (Centro de Química Inorgánica, CONICET-UNLP) Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900, La Plata, Argentina
| |
Collapse
|
20
|
Abstract
Survivin (also known as BIRC5) is an evolutionarily conserved eukaryotic protein that is essential for cell division and can inhibit cell death. Normally it is only expressed in actively proliferating cells, but is upregulated in most, if not all cancers; consequently, it has received significant attention as a potential oncotherapeutic target. In this Cell Science at a Glance article and accompanying poster, we summarise our knowledge of survivin 21 years on from its initial discovery. We describe the structure, expression and function of survivin, highlight its interactome and conclude by describing anti-survivin strategies being trialled.
Collapse
Affiliation(s)
- Sally P Wheatley
- Department of Biochemistry, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Dario C Altieri
- The Wistar Institute Cancer Center, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Altered expression of survivin and its splice variants ∆Ex3 and 2B contributes to disease development in breast cancer. Meta Gene 2019. [DOI: 10.1016/j.mgene.2018.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
22
|
Eren-Keleş E, Karabulut HG, Çakmaklı HF, Adaklı B, Köse SK, Uğur-Dinçaslan H, Yavuz G, Ertem M, Tükün A. Expression of Survivin and Its Splice Variants in Pediatric Acute Lymphoblastic Leukemia. Genet Test Mol Biomarkers 2018; 22:680-685. [PMID: 30489176 DOI: 10.1089/gtmb.2018.0152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aims: Survivin is involved in the inhibition of apoptosis and the regulation of cell division. In addition to wild-type survivin (survivin-wt), at least four splice variants with differential functions (ΔEx3 and 3B antiapoptotic, and 2α and 2B proapoptotic) have been identified. Survivin is highly expressed in several cancers, including hematological malignancies. Although acute lymphoblastic leukemia (ALL) is the most frequent malignancy in children, studies that investigated survivin expression in ALL are limited, and there is no study on 3B and 2α expression in ALL. Therefore the expression of survivin-wt and its splice variants was investigated in pediatric B-cell ALL patients. Materials and Methods: The expression of survivin-wt and its four splice variants was investigated by quantitative real-time polymerase chain reaction in archival RNA samples of 35 pediatric B-cell ALL patients. Patients were divided into high- and standard-risk groups according to age, white blood cell count, extramedullary involvement, and genetic risk factors; expression of survivin variants was compared between these two risk groups. Results: We found that the ratio of survivin-ΔEx3/wild type (WT) expression was higher in the low-risk group than in the high-risk group. Conclusion: Comparative analysis between the high- and low-risk B-cell ALL groups indicated that the survivin-ΔEx3/WT expression ratio could potentially be used in risk classification for pediatric B-cell ALL.
Collapse
Affiliation(s)
- Efsun Eren-Keleş
- Central Laboratory, Biotechnology Institute, Ankara University, Ankara, Turkey
| | | | - Hasan Fatih Çakmaklı
- Department of Pediatric Hematology and Oncology, School of Medicine, Ankara University, Ankara, Turkey
| | - Başak Adaklı
- Department of Pediatric Hematology and Oncology, Istinye University, Medicalpark Bahçelievler Hospital, Istanbul, Turkey
| | - Serdar Kenan Köse
- Department of Biostatistics, School of Medicine, Ankara University, Ankara, Turkey
| | - Handan Uğur-Dinçaslan
- Department of Pediatric Hematology and Oncology, School of Medicine, Ankara University, Ankara, Turkey
| | - Gülsan Yavuz
- Department of Pediatric Hematology and Oncology, School of Medicine, Ankara University, Ankara, Turkey
| | - Mehmet Ertem
- Department of Pediatric Hematology and Oncology, School of Medicine, Ankara University, Ankara, Turkey
| | - Ajlan Tükün
- Duzen Laboratories Group, Division of Medical Genetics, Ankara, Turkey
| |
Collapse
|
23
|
Silva IT, Munkert J, Nolte E, Schneider NFZ, Rocha SC, Ramos ACP, Kreis W, Braga FC, de Pádua RM, Taranto AG, Cortes V, Barbosa LA, Wach S, Taubert H, Simões CMO. Cytotoxicity of AMANTADIG - a semisynthetic digitoxigenin derivative - alone and in combination with docetaxel in human hormone-refractory prostate cancer cells and its effect on Na +/K +-ATPase inhibition. Biomed Pharmacother 2018; 107:464-474. [PMID: 30107342 DOI: 10.1016/j.biopha.2018.08.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/26/2018] [Accepted: 08/06/2018] [Indexed: 01/29/2023] Open
Abstract
Cardiac glycosides (CGs) are natural compounds used to treat congestive heart failure. They have garnered attention as a potential cancer treatment option, especially because they bind to Na+/K+-ATPase as a target and activate intracellular signaling pathways leading to a variety of cellular responses. In this study we evaluated AMANTADIG, a semisynthetic cardenolide derivative, for its cytotoxic activity in two human androgen-insensitive prostate carcinoma cell lines, and the potential synergistic effects with docetaxel. AMANTADIG induced cytotoxic effects in both cell lines, and a combination with docetaxel showed a moderate and strong synergism in DU145 and PC-3 cells, respectively, at concentrations considerably lower than their IC50 values. Cell cycle analyses showed that AMANTADIG and its synergistic combination induced G2/M arrest of DU145 and PC-3 cells by modulating Cyclin B1, CDK1, p21 and, mainly, survivin expression, a promising target in cancer therapy. Furthermore, AMANTADIG presented reduced toxicity toward non-cancerous cell type (PBMC), and computational docking studies disclosed high-affinity binding to the Na+/K+-ATPase α subunit, a result that was experimentally confirmed by Na+/K+-ATPase inhibition assays. Hence, AMANTADIG inhibited Na+/K+-ATPase activity in PC-3 cells, as well as in purified pig kidney at nanomolar range. Altogether, these data highlight the potent effects of AMANTADIG in combination with docetaxel and offer important insights for the development of more effective and selective therapies against prostate cancer.
Collapse
Affiliation(s)
- Izabella Thaís Silva
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Departamento de Ciências Farmacêuticas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Jennifer Munkert
- Department of Biology, Chair of Pharmaceutical Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Elke Nolte
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Erlangen, Germany
| | | | - Sayonarah Carvalho Rocha
- Laboratório de Bioquímica Celular, Faculdade de Bioquímica, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, Brazil
| | - Ana Carolina Pacheco Ramos
- Laboratório de Bioquímica Celular, Faculdade de Bioquímica, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, Brazil
| | - Wolfgang Kreis
- Department of Biology, Chair of Pharmaceutical Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Fernão Castro Braga
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Maia de Pádua
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alex G Taranto
- Laboratório de Química Farmacêutica Medicinal, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, Brazil
| | - Vanessa Cortes
- Laboratório de Bioquímica Celular, Faculdade de Bioquímica, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, Brazil
| | - Leandro Augusto Barbosa
- Laboratório de Bioquímica Celular, Faculdade de Bioquímica, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, Brazil
| | - Sven Wach
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Erlangen, Germany
| | - Helge Taubert
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Erlangen, Germany
| | | |
Collapse
|
24
|
Seta R, Mascitti M, Campagna R, Sartini D, Fumarola S, Santarelli A, Giuliani M, Cecati M, Muzio LL, Emanuelli M. Overexpression of nicotinamide N-methyltransferase in HSC-2 OSCC cell line: effect on apoptosis and cell proliferation. Clin Oral Investig 2018; 23:829-838. [PMID: 29882109 DOI: 10.1007/s00784-018-2497-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 05/29/2018] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Oral squamous cell carcinoma (OSCC) is the most common malignancy of oral cavity. Despite advances in therapeutic approaches, the 5-year survival rate for oral cancer has not improved in the last three decades. Therefore, new molecular targets for early diagnosis and treatment of OSCC are needed. In the present study, we focused on the enzyme nicotinamide N-methyltransferase (NNMT). We have previously shown that enzyme expression is upregulated in OSCC and NNMT knockdown in PE/CA PJ-15 cells significantly decreased cell growth in vitro and tumorigenicity in vivo. MATERIAL AND METHODS To further explore the role of the enzyme in oral cancer cell metabolism, HSC-2 cells were transfected with the NNMT expression vector (pcDNA3-NNMT) and the effect of enzyme upregulation on cell proliferation was evaluated by MTT assay. Subsequently, we investigated at molecular level the role of NNMT on apoptosis and cell proliferation, by exploring the expression of β-catenin, survivin, and Ki-67 by real-time PCR. Moreover, we performed immunohistochemistry on 20 OSCC tissue samples to explore the expression level of NNMT and survivin ΔEx3 isoform. RESULTS Enzyme upregulation significantly increased cell growth in vitro. Moreover, a positive correlation between NNMT and survivin ΔEx3 isoform expression levels was found both in HSC-2 cells and in OSCC tissue samples. CONCLUSION Taken together, our results indicate a possible involvement of NNMT in the proliferation and tumorigenic capacity of OSCC cells and seem to suggest that the enzyme could represent a potential target for the treatment of oral cancer. CLINICAL RELEVANCE The involvement of NNMT in cell growth and anti-apoptotic mechanisms seems to suggest that this enzyme could be a new therapeutic target to improve the survival of OSCC patients.
Collapse
Affiliation(s)
- Riccardo Seta
- Department of Clinical Sciences, Polytechnic University of Marche, Via Ranieri 65, 60131, Ancona, Italy
| | - Marco Mascitti
- Department of Clinical Sciences, Polytechnic University of Marche, Via Ranieri 65, 60131, Ancona, Italy
| | - Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, Via Ranieri 65, 60131, Ancona, Italy
| | - Davide Sartini
- Department of Clinical Sciences, Polytechnic University of Marche, Via Ranieri 65, 60131, Ancona, Italy
| | - Stefania Fumarola
- Department of Clinical Sciences, Polytechnic University of Marche, Via Ranieri 65, 60131, Ancona, Italy
| | - Andrea Santarelli
- Department of Clinical Sciences, Polytechnic University of Marche, Via Ranieri 65, 60131, Ancona, Italy
| | - Michele Giuliani
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 - 71122, Foggia, Italy
| | - Monia Cecati
- Department of Clinical Sciences, Polytechnic University of Marche, Via Ranieri 65, 60131, Ancona, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 - 71122, Foggia, Italy
| | - Monica Emanuelli
- Department of Clinical Sciences, Polytechnic University of Marche, Via Ranieri 65, 60131, Ancona, Italy.
| |
Collapse
|
25
|
Yang Y, Xu J, Zhang Q. Detection of urinary survivin using a magnetic particles-based chemiluminescence immunoassay for the preliminary diagnosis of bladder cancer and renal cell carcinoma combined with LAPTM4B. Oncol Lett 2018; 15:7923-7933. [PMID: 29725479 PMCID: PMC5920492 DOI: 10.3892/ol.2018.8317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/16/2018] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to establish a simple step magnetic particles (MPs) based chemiluminescence enzyme immunoassay (CLEIA) for the detection of urinary survivin, and to investigate the diagnostic value of urinary survivin and lysosome-associated protein transmembrane-4β (LAPTM4B) in bladder cancer (BC) and renal cell carcinoma (RCC). The MPs-based CLEIA was developed on the basis of a double antibodies sandwich immunoreaction and luminol-H2O2 chemiluminescence system. The parameters of the method were optimized and evaluated. Urine samples were obtained from 200 BC patients, 81 RCC patients and 114 healthy individuals, and the MPs-based CLEIA method was employed to detect their urinary survivin. At the same time, the urinary LAPTM4B levels of the BC patients, RCC patients and the healthy controls were measured. The diagnostic efficiency of urinary survivin and LAPTM4B in BC and RCC was evaluated separately and jointly. A one-step MPs-based CLEIA for the detection of urinary survivin with good accuracy and precision was established. The signals were dependent on survivin concentrations in the range, 0 to 200 ng/ml, and the detection limit was 0.949 ng/ml. The areas under the receiver operating characteristic curves (AUC) were 0.771 in BC and 0.763 in RCC for urinary survivin. Urinary survivin was correlated with the tumor stage (P=0.002), lymph node metastasis (P=0.017), distant metastasis (P=0.005) and tumor size (P=0.02) of BC; however, no association with the clinicopathological parameters in RCC was observed. The AUCs for urinary LAPTM4B were 0.738 in BC and 0.704 in RCC, respectively. The AUCs for them combined were 0.842 in BC and 0.920 in RCC. The MPs-based CLEIA was performed well in the detection of urinary survivin. Urinary survivin and LAPTM4B could serve as potential biomarkers for the preliminary diagnosis of BC and RCC, and in combination they a achieved a greater diagnostic performance.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Clinical Laboratory, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Jianjun Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Clinical Laboratory, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Qingyun Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Clinical Laboratory, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| |
Collapse
|
26
|
Nolte E, Wach S, Silva IT, Lukat S, Ekici AB, Munkert J, Müller-Uri F, Kreis W, Oliveira Simões CM, Vera J, Wullich B, Taubert H, Lai X. A new semisynthetic cardenolide analog 3β-[2-(1-amantadine)- 1-on-ethylamine]-digitoxigenin (AMANTADIG) affects G2/M cell cycle arrest and miRNA expression profiles and enhances proapoptotic survivin-2B expression in renal cell carcinoma cell lines. Oncotarget 2017; 8:11676-11691. [PMID: 28099931 PMCID: PMC5355295 DOI: 10.18632/oncotarget.14644] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/24/2016] [Indexed: 12/14/2022] Open
Abstract
Cardiac glycosides are well known in the treatment of cardiovascular diseases; however, their application as treatment option for cancer patients is under discussion. We showed that the cardiac glycoside digitoxin and its analog AMANTADIG can inhibit the growth of renal cell carcinoma (RCC) cell lines and increase G2/M cell cycle arrest. To identify the signaling pathways and molecular basis of this G2/M arrest, microRNAs were profiled using microRNA arrays. Cardiac glycoside treatment significantly deregulated two microRNAs, miR-2278 and miR-670-5p. Pathway enrichment analysis showed that all cardiac glycoside treatments affected the MAPK and the axon guidance pathway. Within these pathways, three genes, MAPK1, NRAS and RAC2, were identified as in silico targets of the deregulated miRNAs. MAPK1 and NRAS are known regulators of G2/M cell cycle arrest. AMANTADIG treatment enhanced the expression of phosphorylated MAPK1 in 786-O cells. Secondly, we studied the expression of survivin known to be affected by cardiac glycosides and to regulate the G2/M cell phase. AMANTADIG treatment upregulated the expression of the pro-apoptotic survivin-2B variant in Caki-1 and 786-O cells. Moreover, treatment with AMANTADIG resulted in significantly lower survivin protein expression compared to 786-O control cells. Summarizing, treatment with all cardiac glycosides induced G2/M cell cycle arrest and downregulated the miR-2278 and miR-670-5p in microarray analysis. All cardiac glycosides affected the MAPK-pathway and survivin expression, both associated with the G2/M phase. Because cells in the G2/M phase are radio- and chemotherapy sensitive, cardiac glycosides like AMANTADIG could potentially improve the efficacy of radio- and/or chemotherapy in RCCs.
Collapse
Affiliation(s)
- Elke Nolte
- Department of Urology, University Hospital Erlangen, Erlangen, Germany
| | - Sven Wach
- Department of Urology, University Hospital Erlangen, Erlangen, Germany
| | - Izabella Thais Silva
- Department of Pharmaceutical Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil.,Department of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Sabine Lukat
- Department of Urology, University Hospital Erlangen, Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jennifer Munkert
- Department of Biology, Chair of Pharmaceutical Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Frieder Müller-Uri
- Department of Biology, Chair of Pharmaceutical Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Kreis
- Department of Biology, Chair of Pharmaceutical Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | | | - Julio Vera
- Laboratory of Systems Tumor Immunology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Bernd Wullich
- Department of Urology, University Hospital Erlangen, Erlangen, Germany
| | - Helge Taubert
- Department of Urology, University Hospital Erlangen, Erlangen, Germany
| | - Xin Lai
- Laboratory of Systems Tumor Immunology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
27
|
Marioni G, Ottaviano G, Marchese-Ragona R, Fasanaro E, Tealdo G, Zanotti C, Randon B, Giacomelli L, Stellini E, Blandamura S. Nuclear survivin expression correlates with endoglin-assessed microvascularisation in laryngeal carcinoma. J Clin Pathol 2017; 70:1033-1037. [DOI: 10.1136/jclinpath-2016-204230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/02/2017] [Accepted: 04/08/2017] [Indexed: 12/27/2022]
Abstract
AimsSurvivin—a member of the family of inhibitor of apoptosis proteins that control cell division, apoptosis and metastasis—is overexpressed in virtually all human cancers, including laryngeal squamous cell carcinoma (LSCC). Recent findings also correlate survivin expression with the regulation of angiogenesis. The novel main aim of this study was a preliminary investigation into the potential role of survivin expression in LSCC neoangiogenesis, as determined by endoglin-assessed microvascular density (MVD).MethodsImmunohistochemical expression of nuclear survivin and endoglin-assessed MVD were ascertained by image analysis in 75 consecutive LSCCs.ResultsStatistical analysis disclosed a strong direct correlation between nuclear survivin expression and MVD. Patients whose nuclear survivin expression was ≥6.0% had a significantly higher LSCC recurrence rate, and a significantly shorter disease-free survival (DFS) than those with a nuclear survivin expression <6.0%. The LSCC recurrence rate was also higher and the DFS shorter in patients with endoglin-assessed MVD ≥6.89%. The OR for recurrence was 2.79 in patients with LSCC with a nuclear survivin expression ≥6.0%, and 12.31 in those with an MVD≥6.89%.ConclusionsSurvivin-targeting strategies to enhance tumour cell response to apoptosis and inhibit tumour growth should receive more attention with a view to developing agents for use in multimodality advanced LSCC treatment, or combined with conventional chemotherapy. Given the present preliminary evidence in LSCC, survivin targeting should also be further investigated for anti-angiogenic purposes, to reduce tumour blood flow and induce cancer necrosis.
Collapse
|
28
|
Waligórska-Stachura J, Sawicka-Gutaj N, Zabel M, Andrusiewicz M, Gut P, Czarnywojtek A, Ruchała M. Survivin DEx3 as a biomarker of thyroid cancers: A study at the mRNA and protein level. Oncol Lett 2017; 13:2437-2441. [PMID: 28454416 DOI: 10.3892/ol.2017.5713] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/23/2016] [Indexed: 12/31/2022] Open
Abstract
Survivin and its splice variants DEx3 and 2B are involved in pathogenesis of numerous types of cancer. Proliferating cell nuclear antigen (PCNA) level correlates with cellular proliferation. The present study aimed to analyze the potential utility of survivin and its splice variants DEx3 and 2B as biomarkers for thyroid cancer. PCNA, survivin and its splice variants DEx3 and 2B expressions were analyzed in 22 tissue samples (15 thyroid cancers and 7 benign lesions) by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry (IHC). There was significantly higher staining for survivin (P=0.019), survivin DEx3 (P=0.001), survivin 2B (P=0.0149) and PCNA (P=0.0237) in thyroid malignant tumors when compared with benign lesions. The receiver operating characteristics curve analysis has shown that the cut-off points of survivin IHC expression >2 [sensitivity 46.7%; specificity 100%; area under curve (AUC) 0.810; P=0.0005] and survivin DEx3 IHC expression >0 (sensitivity 86.7%; specificity 100%; AUC 0.933; P<0.0001) were the best predictors of thyroid malignancy. Additionally, PCNA staining >1 (sensitivity 93.3%; specificity 71.4%; AUC 0.790; P=0.0243) and survivin 2B >2 (sensitivity 46.7%; specificity 100%; AUC 0.824; P=0.0002) were the best predictors of thyroid cancer. In conclusion, the present study exhibited that survivin DEx3 expression has high specificity and sensitivity for discrimination between benign thyroid lesions and cancers. Survivin DEx3 may be considered a biological marker of thyroid malignancy and therefore applied in clinical practice.
Collapse
Affiliation(s)
- Joanna Waligórska-Stachura
- Department of Endocrinology, Metabolism and Internal Medicine, Poznań University of Medical Sciences, 60-355 Poznań, Poland
| | - Nadia Sawicka-Gutaj
- Department of Endocrinology, Metabolism and Internal Medicine, Poznań University of Medical Sciences, 60-355 Poznań, Poland
| | - Maciej Zabel
- Department of Histology and Embryology, Poznań University of Medical Sciences, 60-781 Poznań, Poland
| | - Mirosław Andrusiewicz
- Department of Cell Biology, Poznań University of Medical Sciences, 60-806 Poznań, Poland
| | - Paweł Gut
- Department of Endocrinology, Metabolism and Internal Medicine, Poznań University of Medical Sciences, 60-355 Poznań, Poland
| | - Agata Czarnywojtek
- Department of Endocrinology, Metabolism and Internal Medicine, Poznań University of Medical Sciences, 60-355 Poznań, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznań University of Medical Sciences, 60-355 Poznań, Poland
| |
Collapse
|