1
|
Wu Z, Wu D, Zhong Q, Zou X, Liu Z, Long H, Wei J, Li X, Dai F. The role of zyxin in signal transduction and its relationship with diseases. Front Mol Biosci 2024; 11:1371549. [PMID: 38712343 PMCID: PMC11070705 DOI: 10.3389/fmolb.2024.1371549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
This review highlighted the pivotal role of zyxin, an essential cell focal adhesions protein, in cellular biology and various diseases. Zyxin can orchestrate the restructuring and dynamic alterations of the cellular cytoskeleton, which is involved in cell proliferation, adhesion, motility, and gene transcription. Aberrant zyxin expression is closely correlated with tumor cell activity and cardiac function in both tumorigenesis and cardiovascular diseases. Moreover, in fibrotic and inflammatory conditions, zyxin can modulate cellular functions and inflammatory responses. Therefore, a comprehensive understanding of zyxin is crucial for deciphering signal transduction networks and disease pathogenesis. Investigating its role in diseases holds promise for novel avenues in early diagnosis and therapeutic strategies. Nevertheless, targeting zyxin as a therapeutic focal point presents challenges in terms of specificity, safety, drug delivery, and resistance. Nonetheless, in-depth studies on zyxin and the application of precision medicine could offer new possibilities for personalized treatment modalities.
Collapse
Affiliation(s)
- Zelan Wu
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Daiqin Wu
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qin Zhong
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xue Zou
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhongjing Liu
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hehua Long
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Jing Wei
- Department of Endocrinology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xia Li
- Guizhou Precision Medicine Institute, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Fangjie Dai
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
2
|
Ren H, Su Z, Yang J, Cao J, Zhang Y, Sheng K, Guo K, Wang Y. High Expression Level of TRIP6 is Correlated with Poor Prognosis in Colorectal Cancer and Promotes Tumor Cell Proliferation and Migration. Biochem Genet 2024:10.1007/s10528-024-10711-x. [PMID: 38430448 DOI: 10.1007/s10528-024-10711-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/20/2024] [Indexed: 03/03/2024]
Abstract
Globally, colorectal cancer (CRC) is one of the leading causes of health problems. More reliable molecular biomarkers for early diagnosis in CRC patients are needed. A crucial role for thyroid hormone receptor interacting protein 6 (TRIP6) is played in tumorigenesis and tumor growth. Our study aims to determine the diagnostic and prognostic roles of TRIP6 at CRC. TRIP6 gene expression levels were analyzed in this study from public databases. The relationship between TRIP6 expression and clinicopathological characteristics was explored by logistic regression analysis. Based on Kaplan-Meier (K-M) survival curves and receiver operating characteristic curves (ROC) analysis, the prognostic and diagnostic values of TRIP6 were determined. Protein-protein interaction (PPI) networks analysis were performed using the STRING database. A Spearman's correlation analysis applied for examining the correlation between TRIP6 expression, immune cell infiltration, and immune checkpoint genes. Moreover, colony formation assay and transwell assay were used to investigate the functions of TRIP6. TRIP6 was highly expressed in CRC cancer tissues and cells. K-M survival analysis indicated that a high expression of TRIP6 was associated with poor prognosis. TRIP6 expression was obviously associated with immune cell infiltration and immune checkpoint gene expression. For validation, the results of collected clinical CRC samples show that TRIP6 levels in CRC tumor tissue were higher than those of paired adjacent colorectal tissues. Additionally, in vitro experiments suggested that TRIP6 knockdown suppressed proliferation and migration in CRC cell line RKO. TRIP6 overexpression promoted the proliferation and migration of normal colon cell line NCM460. High TRIP6 expression is associated with poor prognosis in colorectal cancer and promotes tumor cell proliferation and migration which may be a potential diagnostic and prognostic biomarker and a promising therapeutic target for CRC, providing new insights into its role in CRC.
Collapse
Affiliation(s)
- Huijuan Ren
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Ziwei Su
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Jian Yang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Jialing Cao
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Yihan Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei, Anhui, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China.
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China.
| | - Kun Guo
- Department of Surgery, The First Affiliated Hospital of USTC, Hefei, Anhui, China.
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, Anhui, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China.
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China.
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China.
| |
Collapse
|
3
|
The Role of TRIP6, ABCC3 and CPS1 Expression in Resistance of Ovarian Cancer to Taxanes. Int J Mol Sci 2021; 23:ijms23010073. [PMID: 35008510 PMCID: PMC8744980 DOI: 10.3390/ijms23010073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023] Open
Abstract
The main problem precluding successful therapy with conventional taxanes is de novo or acquired resistance to taxanes. Therefore, novel experimental taxane derivatives (Stony Brook taxanes; SB-Ts) are synthesized and tested as potential drugs against resistant solid tumors. Recently, we reported alterations in ABCC3, CPS1, and TRIP6 gene expression in a breast cancer cell line resistant to paclitaxel. The present study aimed to investigate gene expression changes of these three candidate molecules in the highly resistant ovarian carcinoma cells in vitro and corresponding in vivo models treated with paclitaxel and new experimental Stony Brook taxanes of the third generation (SB-T-121605 and SB-T-121606). We also addressed their prognostic meaning in ovarian carcinoma patients treated with taxanes. We estimated and observed changes in mRNA and protein profiles of ABCC3, CPS1, and TRIP6 in resistant and sensitive ovarian cancer cells and after the treatment of resistant ovarian cancer models with paclitaxel and Stony Brook taxanes in vitro and in vivo. Combining Stony Brook taxanes with paclitaxel caused downregulation of CPS1 in the paclitaxel-resistant mouse xenograft tumor model in vivo. Moreover, CPS1 overexpression seems to play a role of a prognostic biomarker of epithelial ovarian carcinoma patients’ poor survival. ABCC3 was overexpressed in EOC tumors, but after the treatment with taxanes, its up-regulation disappeared. Based on our results, we can suggest ABCC3 and CPS1 for further investigations as potential therapeutic targets in human cancers.
Collapse
|
4
|
Abstract
TRIP6, a member of the ZYXIN-family of LIM domain proteins, is a focal adhesion component. Trip6 deletion in the mouse, reported here, reveals a function in the brain: ependymal and choroid plexus epithelial cells are carrying, unexpectedly, fewer and shorter cilia, are poorly differentiated, and the mice develop hydrocephalus. TRIP6 carries numerous protein interaction domains and its functions require homodimerization. Indeed, TRIP6 disruption in vitro (in a choroid plexus epithelial cell line), via RNAi or inhibition of its homodimerization, confirms its function in ciliogenesis. Using super-resolution microscopy, we demonstrate TRIP6 localization at the pericentriolar material and along the ciliary axoneme. The requirement for homodimerization which doubles its interaction sites, its punctate localization along the axoneme, and its co-localization with other cilia components suggest a scaffold/co-transporter function for TRIP6 in cilia. Thus, this work uncovers an essential role of a LIM-domain protein assembly factor in mammalian ciliogenesis.
Collapse
|
5
|
Taank Y, Agnihotri N. Understanding the regulation of β-catenin expression and activity in colorectal cancer carcinogenesis: beyond destruction complex. Clin Transl Oncol 2021; 23:2448-2459. [PMID: 34426910 DOI: 10.1007/s12094-021-02686-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022]
Abstract
Aberrant Wnt/β-catenin signaling is central to colorectal cancer carcinogenesis. The well-known potential of targeting the canonical Wnt signaling pathway for the treatment of CRC is largely attributed to the ability of this pathway to regulate various cellular processes such as cell proliferation, metastasis, drug resistance, immune response, apoptosis, and cellular metabolism. However, with the current approach of targeting this pathway, none of the Wnt-targeted agents have been successfully implicated in clinical practice. Instead of using classical approaches to target this pathway, there is a growing need to find new and modified approaches to achieve the same. For this, a better understanding of the regulation of β-catenin, a major effector of the canonical Wnt pathway is a must. The present review addresses the importance of understanding the regulation of β-catenin beyond the destruction complex. Few recently discovered β-catenin regulators such as ZNF281, TTPAL, AGR2, ARHGAP25, TREM2, and TIPE1 showed significant potential in regulating the development of CRC through modulation of the Wnt/β-catenin signaling pathway in both in vitro and in vivo studies. Although the expression and activity of β-catenin is influenced by many protein regulators, the abovementioned proteins not only influence its expression and activation but are also directly involved in the development of CRC and various other solid tumors. Therefore, we hypothesise that focusing the current research on finding the detailed mechanism of action of these regulators may assist in providing with a better treatment approach or improve the current therapeutic regimens.
Collapse
Affiliation(s)
- Y Taank
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - N Agnihotri
- Department of Biochemistry, Panjab University, Chandigarh, India.
| |
Collapse
|
6
|
Huang Y, Wang Y, Tang J, Qin S, Shen X, He S, Ju S. CAM-DR: Mechanisms, Roles and Clinical Application in Tumors. Front Cell Dev Biol 2021; 9:698047. [PMID: 34295898 PMCID: PMC8290360 DOI: 10.3389/fcell.2021.698047] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Despite the continuous improvement of various therapeutic techniques, the overall prognosis of tumors has been significantly improved, but malignant tumors in the middle and advanced stages still cannot be completely cured. It is now evident that cell adhesion-mediated resistance (CAM-DR) limits the success of cancer therapies and is a great obstacle to overcome in the clinic. The interactions between tumor cells and extracellular matrix (ECM) molecules or adjacent cells may play a significant role in initiating the intracellular signaling pathways that are associated with cell proliferation, survival upon binding to their ligands. Recent studies illustrate that these adhesion-related factors may contribute to the survival of cancer cells after chemotherapeutic therapy, advantageous to resistant cells to proliferate and develop multiple mechanisms of drug resistance. In this review, we focus on the molecular basis of these interactions and the main signal transduction pathways that are involved in the enhancement of the cancer cells’ survival. Furthermore, therapies targeting interactions between cancer cells and their environment to enhance drug response or prevent the emergence of drug resistance will also be discussed.
Collapse
Affiliation(s)
- Yuejiao Huang
- Medical School, Nantong University, Nantong, China.,Department of Medical Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Yuchan Wang
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, China
| | - Jie Tang
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, China
| | - Shiyi Qin
- Medical School, Nantong University, Nantong, China.,Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xianjuan Shen
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Song He
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Shaoqing Ju
- Medical School, Nantong University, Nantong, China.,Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
7
|
Zhou H, Xiang Q, Hu C, Zhang J, Zhang Q, Zhang R. Identification of MMP1 as a potential gene conferring erlotinib resistance in non-small cell lung cancer based on bioinformatics analyses. Hereditas 2020; 157:32. [PMID: 32703314 PMCID: PMC7379796 DOI: 10.1186/s41065-020-00145-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the major type of lung cancer with high morbidity and poor prognosis. Erlotinib, an inhibitor of epidermal growth factor receptor (EGFR), has been clinically applied for NSCLC treatment. Nevertheless, the erlotinib acquired resistance of NSCLC occurs inevitably in recent years. METHODS Through analyzing two microarray datasets, erlotinib resistant NSCLC cells microarray (GSE80344) and NSCLC tissue microarray (GSE19188), the differentially expressed genes (DEGs) were screened via R language. DEGs were then functionally annotated by Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, which up-regulated more than 2-folds in both datasets were further functionally analyzed by Oncomine, GeneMANIA, R2, Coremine, and FunRich. RESULTS We found that matrix metalloproteinase 1 (MMP1) may confer the erlotinib therapeutic resistance in NSCLC. MMP1 highly expressed in erlotinib-resistant cells and NSCLC tissues, and it associated with poor overall survival. In addition, MMP1 may be associated with COPS5 and be involve in an increasing transcription factors HOXA9 and PBX1 in erlotinib resistance. CONCLUSIONS Generally, these results demonstrated that MMP1 may play a crucial role in erlotinib resistance in NSCLC, and MMP1 could be a prognostic biomarker for erlotinib treatment.
Collapse
Affiliation(s)
- Huyue Zhou
- Department of Pharmacy, the Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Chongqing, 400037, China
| | - Qiumei Xiang
- Maternity service center of Beijing Fengtai District Maternal and Child health care hospital, Beijing, 100067, China
| | - Changpeng Hu
- Department of Pharmacy, the Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Chongqing, 400037, China
| | - Jing Zhang
- Department of Pharmacy, the Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Chongqing, 400037, China
| | - Qian Zhang
- Department of Pharmacy, the Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Chongqing, 400037, China.
| | - Rong Zhang
- Department of Pharmacy, the Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Chongqing, 400037, China.
| |
Collapse
|
8
|
Zahedipour F, Jamialahmadi K, Karimi G. The role of noncoding RNAs and sirtuins in cancer drug resistance. Eur J Pharmacol 2020; 877:173094. [PMID: 32243871 DOI: 10.1016/j.ejphar.2020.173094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/22/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022]
Abstract
Cancer is a rising and major health issue around the world. The acquisition of resistance to chemotherapeutic drugs is a great obstacle for the effective treatment of nearly all cancers. Drug resistance is regulated by multiple factors and mechanisms including genetic mutations, abnormal expression of some cellular transporters such as multidrug resistance (MDR) transporters, changes in apoptotic pathways, cancer stem cells, tumor microenvironment, and noncoding RNAs (ncRNAs). Evidence clearly indicates a key role for sirtuins in several characteristics of cancer drug resistance. Recent studies demonstrated the crucial impact of some ncRNAs on sirtuins expression leading to modulation of chemotherapy resistance in cancers. In this review, we will focus on the current findings about the impacts of ncRNAs on the sirtuins pathway and their role in drug resistance of cancer.
Collapse
Affiliation(s)
- Fatemeh Zahedipour
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Jamialahmadi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Liu W, Cheng L, Li Q, Jing J. TRIP6 regulates the proliferation, migration, invasion and apoptosis of osteosarcoma cells by activating the NF-κB signaling pathway. Exp Ther Med 2020; 19:2317-2325. [PMID: 32104300 PMCID: PMC7027267 DOI: 10.3892/etm.2020.8466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/18/2019] [Indexed: 11/06/2022] Open
Abstract
Thyroid hormone receptor-interacting protein 6 (TRIP6), a member of the zyxin family of Lin-Isl-Mec (LIM) proteins, is an adaptor protein primarily expressed in epithelial cells. TRIP6 can regulate a variety of cellular responses, such as actin cytoskeletal reorganization and cell adhesion. However, to the best of our knowledge, the role of TRIP6 in osteosarcoma (Os) has not been previously reported. Therefore, the present study investigated the role of TRIP6 in the occurrence and development of Os, and the potential of utilizing TRIP6 as a therapeutic target in Os. The present results suggested that the expression levels of TRIP6 were significantly increased in Os cells and clinical tissue specimens compared with normal osteoblasts and adjacent non-tumor tissue. Moreover, the present results suggested that overexpressing TRIP6 significantly increased proliferation, migration and invasion, while inhibiting apoptosis in Os cells. However, silencing TRIP6 decreased proliferation, migration and invasion, while activating apoptosis in Os cells. The present results suggested that overexpression of TRIP6 increased NF-κB activation by decreasing the protein expression levels of inhibitor of κBα, and increasing total and phosphorylated P65 levels. The present results indicated that TRIP6 silencing decreased NF-κB activation. Collectively, the present results suggested that TRIP6 may play a role in promoting Os cell proliferation, migration and invasion, while inhibiting cell apoptosis. Furthermore, TRIP6 may be utilized as a novel prognostic biomarker and therapeutic target in Os.
Collapse
Affiliation(s)
- Wei Liu
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Li Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Qingning Li
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Juehua Jing
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
10
|
Wang F, Zhang B, Xu X, Zhu L, Zhu X. TRIP6 promotes tumorigenic capability through regulating FOXC1 in hepatocellular carcinoma. Pathol Res Pract 2020; 216:152850. [PMID: 32046874 DOI: 10.1016/j.prp.2020.152850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/07/2020] [Accepted: 02/04/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is an aggressive malignant tumor with poor prognosis that is characterized by high rates of postoperative recurrence and mortality. Understanding the molecular mechanism of this malignancy is of great significance for the development of new and effective strategies for the treatment of hepatocellular carcinoma. Thyroid hormone receptor-interacting protein 6 (TRIP6), also known as zyxin-related protein-1 or ZRP-1, is an adaptor protein that belongs to the zyxin family of LIM proteins. Recent studies showed that TRIP6 is involved in carcinogenesis. But the functional role of TRIP6 in HCC has not been reported to date. METHODS TRIP6 expression level in HCC cell lines and normal cell line was measured by qPCR. The roles of TRIP6 on HCC cell proliferation, colony formation, and invasion were examined by MTT assay, colony formation assay, and transwell invasion assay, respectively. The effect of TRIP6 on the overall survival of HCC patients was further analyzed. ChIP assay and western blot were performed to validate whether FOXC1 was involved in the regulation of TRIP6 expression. RESULTS Western blot and immunohistochemical analyses showed that TRIP6 expression was up-regulated in HCC tissues compared with adjacent non-tumor tissues. Kaplan-Meier survival analysis indicated that upregulation of TRIP6 was dramatically associated with poor overall survival. TRIP6 knockdown significantly inhibited cell migration, invasion, and proliferation, and its effect on cell proliferation was mediated by the modulation of cell cycle progression. FOXC1 also played a vital role in TRIP6 regulation. TRIP6 mediated the FOXC1-regulated proliferation, invasion, and migration in vitro and tumor growth in vivo. CONCLUSIONS These results suggest that TRIP6 may contribute to the invasiveness and metastasis of HCC cells, and provide new insight into the crucial role of TRIP6 in tumorigenesis and cancer progression.
Collapse
Affiliation(s)
- Feiran Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Bo Zhang
- Medical College of Nantong University, Nantong, Jiangsu, China
| | - Xiaodong Xu
- Department of General Surgery, The Fourth Affiliated Hospital of Nantong University, Yanchen, Jiangsu, China
| | - Lirong Zhu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| | - Xiaochao Zhu
- Department of General Surgery, Suqian First People's Hospital, Suqian, Jiangsu, China.
| |
Collapse
|
11
|
Gu J, Shao R, Li M, Yan Q, Hu H. MiR-485-3p modulates neural stem cell differentiation and proliferation via regulating TRIP6 expression. J Cell Mol Med 2019; 24:398-404. [PMID: 31730275 PMCID: PMC6933395 DOI: 10.1111/jcmm.14743] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/16/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
Recent references have showed crucial roles of several miRNAs in neural stem cell differentiation and proliferation. However, the expression and role of miR‐485‐3p remains unknown. In our reference, we indicated that miR‐485‐3p expression was down‐regulated during NSCs differentiation to neural and astrocytes cell. In addition, the TRIP6 expression was up‐regulated during NSCs differentiation to neural and astrocytes cell. We carried out the dual‐luciferase reporter and found that overexpression of miR‐485‐3p decreased the luciferase activity of pmirGLO‐TRIP6‐wt but not the pmirGLO‐TRIP6‐mut. Ectopic expression of miR‐485‐3p decreased the expression of TRIP6 in NSC. Ectopic miR‐485‐3p expression suppressed the cell growth of NSCs and inhibited nestin expression of NSCs. Moreover, elevated expression of miR‐485‐3p decreased the ki‐67 and cyclin D1 expression in NSCs. Furthermore, we indicated that miR‐485‐3p reduced proliferation and induced differentiation of NSCs via targeting TRIP6 expression. These data suggested that a crucial role of miR‐485‐3p in self‐proliferation and differentiation of NSCs. Thus, altering miR‐485‐3p and TRIP6 modulation may be one promising therapy for treating with neurodegenerative and neurogenesis diseases.
Collapse
Affiliation(s)
- Juxian Gu
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, China
| | - Rusheng Shao
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, China
| | - Meng Li
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, China
| | - Qiuyue Yan
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, China
| | - Hongwei Hu
- Department of Pain, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
12
|
Wang Y, Dong L, Liu Y. Targeting Thyroid Receptor Interacting Protein 6 by MicroRNA-589-5p Inhibits Cell Proliferation, Migration, and Invasion in Endometrial Carcinoma. Cancer Biother Radiopharm 2019; 34:529-536. [PMID: 31424277 DOI: 10.1089/cbr.2018.2766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: MicroRNA-589-5p (miR-589-5p) has been recently reported to be aberrantly regulated in hepatocellular carcinoma, but its functional role and molecular mechanisms still remains unknown in the endometrial carcinoma (EC) as one of the most common female malignancies. Methods: EC tissues and adjacent tissues were collected to determine the expression of miR-589-5p and thyroid receptor interacting protein 6 (TRIP6) using quantitative real time-PCR. Subsequently, two EC cell lines HEC-1B and AN3CA were transfected with miR-589-5p to achieve miR-589-5p overexpression. Using Cell Counting Kit-8 (CCK-8), a wound healing assay and the Transwell assay, we analyzed cell proliferation, migration and invasion. Dual-luciferase reporter assay confirmed that thyroid receptor interacting protein 6 (TRIP6) was a direct target of miR-589-5p. Results: We first observed that miR-589-5p was down-regulated in EC tissues compared with normal endometrial tissues. MiR-589-5p overexpression significantly suppressed EC cell proliferation, migration and invasion. Thyroid receptor interacting protein 6 (TRIP6) was a direct target of miR-589-5p. Besides, TRIP6 knockdown presented similar effects on cell proliferation, migration and invasion to miR-589-5p overexpression. Furthermore, TRIP6 knockdown efficiently enhanced the effects of miR-589-5p on the above cellular function. Moreover, miR-589-5p up-regulated E-cadherin expression, but down-regulated N-cadherin and Vimentin by targeting TRIP6. Conclusions: In summary, miR-589-5p might function as a tumor suppressor by targeting TRIP6, which will provide new insights into the molecular mechanism underlying the development of EC.
Collapse
Affiliation(s)
- Yuefang Wang
- Department of Gynaecology, People's Hospital of Dezhou, Shandong, China
| | - Liwei Dong
- Department of Reproductive Medicine, People's Hospital of Dezhou, Shandong, China
| | - Yuying Liu
- Department of Oncology, People's Hospital of Dezhou, Shandong, China
| |
Collapse
|
13
|
TRIP6, as a target of miR-7, regulates the proliferation and metastasis of colorectal cancer cells. Biochem Biophys Res Commun 2019; 514:231-238. [DOI: 10.1016/j.bbrc.2019.04.092] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/12/2019] [Indexed: 12/17/2022]
|
14
|
Tang J, Zhu L, Huang Y, Shi B, Zhang S, Gu L, Zhao J, Deng M, Zhu J, Xun H, Wang Y, Wang C. Silencing of LIMD1 promotes proliferation and reverses cell adhesion-mediated drug resistance in non-Hodgkin's lymphoma. Oncol Lett 2019; 17:2993-3000. [PMID: 30854077 DOI: 10.3892/ol.2019.9921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 11/08/2018] [Indexed: 01/05/2023] Open
Abstract
LIM domains-containing protein 1 (LIMD1) is a tumor suppressor protein downregulated in numerous solid malignancies. However, the functional role of LIMD1 in non-Hodgkin's lymphoma (NHL) remains unclear. In the present study, it was demonstrated that LIMD1 is associated with the proliferation of NHL and cell adhesion mediated-drug resistance (CAM-DR). It was indicated by western blot analysis that LIMD1expression is lower in progressive lymphoma compared with indolent lymphoma. Furthermore, it was indicated that the role of LIMD1 in cell viability and proliferation remains unclear. Finally, the present study demonstrated that LIMD1 serves an important role in CAM-DR by regulating cell cycle progression. Silencing of LIMD1 may reverse CAM-DR in NHL. Therefore, the findings of the present study suggested that LIMD1 may be a potential therapeutic target for patients with NHL.
Collapse
Affiliation(s)
- Jie Tang
- Department of Oncology, Liyang People's Hospital, Liyang, Jiangsu 213300, P.R. China
| | - Liqun Zhu
- Department of Oncology, Liyang People's Hospital, Liyang, Jiangsu 213300, P.R. China
| | - Yuejiao Huang
- Department of Oncology, Affiliated Cancer Hospital of Nantong University, Nantong, Jiangsu 226002, P.R. China
| | - Bing Shi
- Department of Oncology, The Second People's Hospital of Nantong, Nantong, Jiangsu 226002, P.R. China
| | - Shuqing Zhang
- Department of Oncology, The Second People's Hospital of Nantong, Nantong, Jiangsu 226002, P.R. China
| | - Lingli Gu
- Department of Oncology, The Second People's Hospital of Nantong, Nantong, Jiangsu 226002, P.R. China
| | - Jie Zhao
- Department of Pathogenic Biology, Medical College, Nantong University, Nantong, Jiangsu 226002, P.R. China
| | - Minghao Deng
- Department of Pathogenic Biology, Medical College, Nantong University, Nantong, Jiangsu 226002, P.R. China
| | - Jiahao Zhu
- Department of Pathogenic Biology, Medical College, Nantong University, Nantong, Jiangsu 226002, P.R. China
| | - He Xun
- Department of Pathogenic Biology, Medical College, Nantong University, Nantong, Jiangsu 226002, P.R. China
| | - Yuchan Wang
- Department of Pathogenic Biology, Medical College, Nantong University, Nantong, Jiangsu 226002, P.R. China
| | - Chun Wang
- Department of Oncology, Liyang People's Hospital, Liyang, Jiangsu 213300, P.R. China
| |
Collapse
|
15
|
LINC00675 is a prognostic factor and regulates cell proliferation, migration and invasion in glioma. Biosci Rep 2018; 38:BSR20181039. [PMID: 30061182 PMCID: PMC6146294 DOI: 10.1042/bsr20181039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/21/2018] [Accepted: 07/26/2018] [Indexed: 12/22/2022] Open
Abstract
LINC00675 has been suggested to be dysregulated in gastric cancer, colorectal cancer and pancreatic cancer. However, the expression status and biological function of LINC00675 in glioma were still unknown. Thus, we reported LINC00675 was overexpressed in glioma tissues and cell lines, and positively associated with advanced WHO grade, large tumor size and poor prognosis. Moreover, univariate and multivariate analyses suggested that high-expression of LINC00675 was an independent unfavorable prognostic predictor for glioma. In addition, levels of LINC00675 expression were positively correlated with TRIP6 mRNA and protein expressions. The in vitro experiment showed that silencing of LINC00675 inhibits glioma cell proliferation, migration and invasion through regulating TRIP6. In conclusion, LINC00675 acts as a tumor promoter in glioma progression.
Collapse
|
16
|
Kotb A, Hyndman ME, Patel TR. The role of zyxin in regulation of malignancies. Heliyon 2018; 4:e00695. [PMID: 30094365 PMCID: PMC6072900 DOI: 10.1016/j.heliyon.2018.e00695] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/18/2018] [Accepted: 07/10/2018] [Indexed: 12/17/2022] Open
Abstract
Focal adhesions are highly dynamic multi-protein complexes found at the cell surface and effectively link the cell's internal cytoskeleton to a complex mixture of macromolecules known as the extracellular matrix and mediate transmission of signals from the extracellular matrix to the nucleus. Zyxin is one of the key focal adhesion proteins and is also found to shuttle in the nucleus. Although the mechanism of shuttling to the nucleus unclear, it moves out from the nucleus through a leucine-rich nuclear export signal sequence. It is known to contribute to fundamental cellular activities such as cell migration, adhesion and proliferation by interacting with a variety of cellular proteins. It is also linked with a number of cancers such as melanoma, hepatocellular carcinoma, oral squamous-cell carcinoma, Ewing sarcoma and prostate cancer. However, in many cases, the precise mechanisms by which the absence or presence of zyxin contributes to cancer progression or suppression is unknown. Thus, more work is required to gain insights into how zyxin modulates cellular functions in relationship to cancer. This review summarises the role of zyxin in cancer, with an emphasis on conflicting roles in prostate cancer.
Collapse
Affiliation(s)
- Ahmed Kotb
- Department of Urology, Southern Alberta Institute of Urology, 7007 14 St SW, Calgary, T2V 1P9, Alberta, Canada
| | - Matthew Eric Hyndman
- Department of Urology, Southern Alberta Institute of Urology, 7007 14 St SW, Calgary, T2V 1P9, Alberta, Canada
| | - Trushar R Patel
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, T1K 3M4, Alberta, Canada.,DiscoveryLab, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2H7, Alberta, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, 2500 University Dr NW, Calgary, T2N 1N4, Alberta, Canada
| |
Collapse
|
17
|
TRIP6 promotes cell proliferation in hepatocellular carcinoma via suppression of FOXO3a. Biochem Biophys Res Commun 2017; 494:594-601. [DOI: 10.1016/j.bbrc.2017.10.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 10/23/2017] [Indexed: 12/16/2022]
|
18
|
Shiozawa K, Shuting J, Yoshioka Y, Ochiya T, Kondo T. Extracellular vesicle-encapsulated microRNA-761 enhances pazopanib resistance in synovial sarcoma. Biochem Biophys Res Commun 2017; 495:1322-1327. [PMID: 29191657 DOI: 10.1016/j.bbrc.2017.11.164] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 12/26/2022]
Abstract
The development of drug resistance in tumor cells leads to relapse and distant metastasis. Secreted microRNAs (miRNAs) enclosed in extracellular vesicles (EVs) can act as intercellular messengers. The objective of our study was to elucidate the role of secreted miRNAs to better understand the regulatory network underlying pazopanib-resistance in synovial sarcoma cells. We performed a comprehensive analysis of secreted miRNA abundance in pazopanib treated/untreated synovial sarcoma cells from four different cell lines (SYO-1, HS-SYII, 1273/99, and YaFuSS) using microarray technology, and discovered miR-761 in EVs as a potential biomarker of pazopanib-resistance in synovial sarcoma. Furthermore, we showed that miR-761 putatively targeted three proteins, thyroid hormone receptor interactor 6 (TRIP6), lamin A/C (LMNA), and NAD-dependent protein deacetylase sirtuin-3 (SIRT3). Knockdown of any of these proteins was shown in previous studies to confer increased resistance to chemotherapeutic agents. Our findings provide new insight into the potential role of miR-761, an EV-secreted miRNA from synovial sarcoma cells, making it a potential candidate for use in sarcoma therapy in the future.
Collapse
Affiliation(s)
- Kumiko Shiozawa
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Ji Shuting
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Yusuke Yoshioka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Innovative Seeds Evaluation, National Cancer Center Research Institute, Tokyo, Japan, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| |
Collapse
|
19
|
Yin H, Zhong F, Ouyang Y, Wang Q, Ding L, He S. Upregulation of ADAM12 contributes to accelerated cell proliferation and cell adhesion-mediated drug resistance (CAM-DR) in Non-Hodgkin's Lymphoma. ACTA ACUST UNITED AC 2017; 22:527-535. [PMID: 28395594 DOI: 10.1080/10245332.2017.1312205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE ADAM12 is a member of a disintegrin and metalloproteinase family and has been reported to participate in the development of variety of tumors. However, the role of ADAM12 in Non-Hodgkin Lymphoma (NHL) has not been investigated. The present study was undertaken to determine the expression and biologic function of ADAM12 in human NHL. METHODS First, we constructed a model of cell adhesion in NHL, the mRNA, and protein level of ADAM12 in suspension and the adhesion model was analyzed by RT-PCR and western blot. Then, flow cytometry assay and western blot were used to investigate the mechanism of ADAM12 in the proliferation of NHL cells. In vitro, after using siRNA interfering ADAM12 expression, we performed adhesion assay and cell viability assay to determine the effect of ADAM12 on adhesive rate and drug sensitivity. RESULTS ADAM12 was lowly expressed in suspended cells and highly expressed in adherent NHL cells. In addition, ADAM12 was positively correlated with the proliferation and apoptosis of NHL cells by regulating the expression of p-AKT and p-GSK-3β. Furthermore, ADAM12 promoted cell adhesion-mediated drug resistance (CAM-DR) in DLBCL via AKT signaling pathway. CONCLUSION AND DISCUSSION Our data support a role for ADAM12 in NHL cell proliferation, adhesion, and drug resistance, and it may pave the way for a novel therapeutic approach for CAM-DR in NHL.
Collapse
Affiliation(s)
- Haibing Yin
- a Department of Pathology , Affiliated Cancer Hospital of Nantong University , Nantong , PR China
| | - Fei Zhong
- b Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University , Nantong , PR China
| | - Yu Ouyang
- b Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University , Nantong , PR China
| | - Qiru Wang
- b Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University , Nantong , PR China
| | - Linlin Ding
- b Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University , Nantong , PR China
| | - Song He
- a Department of Pathology , Affiliated Cancer Hospital of Nantong University , Nantong , PR China
| |
Collapse
|