1
|
Zhang Y, Liu J, Yu Y, Chen S, Huang F, Yang C, Chang J, Yang L, Fan S, Liu J. Enhanced radiotherapy using photothermal therapy based on dual-sensitizer of gold nanoparticles with acid-induced aggregation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102241. [PMID: 32565227 DOI: 10.1016/j.nano.2020.102241] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/26/2020] [Accepted: 06/07/2020] [Indexed: 12/11/2022]
Abstract
The damaged DNA strands caused by radiotherapy (RT) can repair by themselves. A gold nanoparticles (GNPs) system with acid-induced aggregation was developed into a dual sensitizer owing to its high radioactive rays attenuation ability and enhanced photothermal heating efficiency after GNPs aggregation to achieve a combination therapy of RT and photothermal therapy (PTT). In this combination therapy, the formed GNP aggregates firstly showed a higher sensitize enhancement ratio (SER) value (1.52). Importantly, the self-repair of damaged DNA strands was inhibited by mild PTT through down-regulating the expression of DNA repair protein, thus resulting in a much higher SER value (1.68). Anti-tumor studies further demonstrated that this combination therapy exhibited ideal anti-tumor efficacy. Furthermore, the imaging signals of GNPs in computed tomography and photoacoustic were significantly improved following the GNPs aggregation. Therefore, a dual sensitizer with multimodal imaging was successfully developed and can be further applied as a new anti-tumor therapy.
Collapse
Affiliation(s)
- Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Nankai District, Tianjin, PR China
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Nankai District, Tianjin, PR China
| | - Ying Yu
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Shizhu Chen
- Beijing General Pharmaceutical Corporation, Beijing, China; The National Institutes of Pharmaceutical R&D Co., Ltd., China Resources Pharmaceutical Group Limited, Beijing, China
| | - Fan Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Nankai District, Tianjin, PR China
| | - Cuihong Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Nankai District, Tianjin, PR China
| | - Jinglin Chang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Nankai District, Tianjin, PR China
| | - Lijun Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Nankai District, Tianjin, PR China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Nankai District, Tianjin, PR China.
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Nankai District, Tianjin, PR China.
| |
Collapse
|
2
|
Bruine de Bruin L, Schuuring E, de Bock GH, Slagter-Menkema L, Mastik MF, Noordhuis MG, Langendijk JA, Kluin PM, van der Laan BFAM. High pATM is Associated With Poor Local Control in Supraglottic Cancer Treated With Radiotherapy. Laryngoscope 2020; 130:1954-1960. [PMID: 32275333 PMCID: PMC7384019 DOI: 10.1002/lary.28641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/09/2020] [Accepted: 03/02/2020] [Indexed: 01/25/2023]
Abstract
Objectives Most early stage laryngeal squamous cell carcinomas (LSCC) are treated with radiotherapy. Discovery of new biomarkers are needed to improve prediction of outcome after radiotherapy and to identify potential targets for systemic targeted therapy. The ataxia telangiectasia mutated (ATM) gene plays a critical role in DNA damage response induced by ionizing radiation. Methods The prognostic value of immunohistochemical expression of pATM, pChk2, and p53 were investigated in 141 patients with T1‐T2 LSCC curatively treated with external beam radiotherapy. Uni‐ and multivariable Cox regression analyses were performed to examine the relation between expression levels of markers and local control. Results Local control was significantly worse in cases with high levels of pATM (HR 2.14; 95% CI, 1.08–4.24; P = .03). No significant associations with local control were found for pChk2 and p53 expression. The association of high pATM expression with poor local control was only found for supraglottic LSCC (HR 10.9; 95% CI, 1.40–84.4; P = .02). Conclusion Our findings suggest a potential role for ATM in response to radiotherapy in early stage supraglottic LSCC and imply ATM inhibition as a possibility to improve response to radiotherapy. Level of Evidence NA Laryngoscope, 130: 1954–1960, 2020
Collapse
Affiliation(s)
- Leonie Bruine de Bruin
- Department of Otorhinolaryngology/Head and Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ed Schuuring
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Geertruida H de Bock
- Department of Epidemiology and Statistics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lorian Slagter-Menkema
- Department of Otorhinolaryngology/Head and Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mirjam F Mastik
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maartje G Noordhuis
- Department of Otorhinolaryngology/Head and Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Johannes A Langendijk
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Philip M Kluin
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bernard F A M van der Laan
- Department of Otorhinolaryngology/Head and Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Min X, Huang F, Huang H, Zhao S, Wang G, Zhou M, Chen Z, Li M, Chen Y. The Radiosensitization of Sodium Glycididazole on Nasopharyngeal Carcinoma Cells via Enhancing DNA Damage and Promoting Apoptosis. J Cancer 2019; 10:305-312. [PMID: 30719124 PMCID: PMC6360314 DOI: 10.7150/jca.25941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 10/24/2018] [Indexed: 12/16/2022] Open
Abstract
Background: The radioresistance of nasopharyngeal carcinoma (NPC) was the main cause of radiotherapy failure and it was still a challenge in the treatment of advanced NPC patients. Previous clinical studies demonstrated that sodium glycididazole(CMNA) can enhance the radiosensitivity of NPC, but the corresponding cellular mechanisms or processes remains largely unclear. Methods: To clarify the radiosensitizing effects of CMNA on NPC cells and reveal its cellular mechanisms, its effect on cell survival of NPC cells was assessed by MTT and clonogenic assay, with or without radiation. The potential cellular mechanisms such as cell cycle distribution, apoptosis and DNA damage were assessed. A retrospective analysis of the outcome of patients with III-IV stage NPC who undergo same radiochemotherapy with or without concurrent CMNA treatment was performed to elucidate the role of CMNA in the improvement of the curative effects. Results: The treatment with CMNA at the concentration lower or close to the clinical dosage had little effect on cell survival, cell cycle distribution and a weak effect on DNA damage and cell apoptosis of NPC cells. The combination of CMNA and radiation significantly increased the DNA damage and enhanced the apoptosis of NPC cells, but did not significantly alter the cell cycle distribution as compared with the irradiation (IR) alone. A total of 99 patients who underwent radiochemotherapy were categorized into those with (treatment group, n=52) and without (control group, n=47) the treatment with CMNA. The complete response rates of patients in treatment group were significantly higher than in control group. Conclusions: Our results suggested that CMNA enhance the sensitivity of the NPC cells to radiation via enhancing DNA damage and promoting cell apoptosis. It provides clues for further investigation of the molecular mechanism of the radiosensitization of CMNA on NPC cells.
Collapse
Affiliation(s)
- Xiaoli Min
- Key Laboratory of Oncoproteomics of Chinese National Health and Family Planning Commission, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China.,Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, 410008, Hunan Province, China
| | - Fangling Huang
- Key Laboratory of Oncoproteomics of Chinese National Health and Family Planning Commission, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Huichao Huang
- Key Laboratory of Oncoproteomics of Chinese National Health and Family Planning Commission, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Shuang Zhao
- Key Laboratory of Oncoproteomics of Chinese National Health and Family Planning Commission, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Guoqiang Wang
- Key Laboratory of Oncoproteomics of Chinese National Health and Family Planning Commission, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Minze Zhou
- Key Laboratory of Oncoproteomics of Chinese National Health and Family Planning Commission, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Zhuchu Chen
- Key Laboratory of Oncoproteomics of Chinese National Health and Family Planning Commission, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Maoyu Li
- Key Laboratory of Oncoproteomics of Chinese National Health and Family Planning Commission, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Yongheng Chen
- Key Laboratory of Oncoproteomics of Chinese National Health and Family Planning Commission, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| |
Collapse
|
4
|
Hypoxia-responsive block copolymer radiosensitizers as anticancer drug nanocarriers for enhanced chemoradiotherapy of bulky solid tumors. Biomaterials 2018; 181:360-371. [PMID: 30098571 DOI: 10.1016/j.biomaterials.2018.08.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/10/2018] [Accepted: 08/03/2018] [Indexed: 12/12/2022]
Abstract
Radiosensitizers play an important role in the clinical radiotherapy of hypoxic solid tumors to improve therapeutic efficacy. However, the in vivo performance of clinically used small-molecule radiosensitizers is commonly compromised by low bioavailability in hypoxic tumor regions. Herein, amphiphilic block copolymer radiosensitizers are prepared from clinically approved poly(ethylene glycol)-block-poly(l-glutamic acid) (PEG-b-PLG) and metronidazole (MN) to obtain MN-grafted PEG-b-PLG (PEG-b-P(LG-g-MN)) via condensation reaction, which can self-assemble into core-shell micelles as nanoparticle-formulated radiosensitizers in aqueous solution. The radiosensitizers are demonstrated to possess significantly higher sensitization enhancement ratio (SER) of 2.18 and potent in vivo tumor ablation capability upon exposure to electron beam irradiation compared with clinically used sodium glycididazole (GS) with SER of 1.32. Moreover, after optimizing the ratios of carboxyl and MN groups, PEG-b-P(LG-g-MN) micelles can be used to encapsulate doxorubicin (DOX@HMs) efficiently. Hypoxia-responsive structural transformation of MN into hydrophilic aminoimidazole triggers fast DOX release from DOX@HMs. After intravenous injection of DOX@HMs, potent ablation capability against bulky solid tumors (∼500 mm3) is realized at a low radiation dose (4 Gy) via enhanced chemoradiotherapy. Therefore, the developed novel amphiphilic block copolymer radiosensitizers can be concurrently used as high-efficiency radiosensitizers and hypoxia-responsive DOX nanocarriers for enhanced chemoradiotherapy.
Collapse
|
5
|
Yasui H, Kubota N, Nishizumi J, Sakai Y, Yamamori T, Inanami O. Preclinical study on hypoxic radiosensitizing effects of glycididazole in comparison with those of doranidazole in vitro and in vivo. Oncol Lett 2018; 15:1993-1998. [PMID: 29434899 DOI: 10.3892/ol.2017.7481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/20/2017] [Indexed: 11/06/2022] Open
Abstract
To overcome the radioresistance of hypoxic cells in solid tumor, numerous types of radiosensitizers specifically against them have been developed. Glycididazole has a chemical structure in which two metronidazole forms are combined, and is widely used as a hypoxic radiosensitizer in China. However, a detailed investigation of its radiosensitizing properties has not been performed. The present study reported a comparative assessment of glycididazole and doranidazole, another hypoxic radiosensitizer. All experiments were performed using the murine squamous cell carcinoma cell line SCCVII. Prior to X-irradiation, the cells were treated with the test drugs at concentrations of 10 mM and 200 mg/kg in vitro and in vivo, respectively. Uptake and their intratumor chemical forms were analyzed by high performance liquid chromatography (HPLC). Both drugs enhanced the reproductive cell death induced by X-irradiation under hypoxia. However, the growth delay assay of the transplanted tumor revealed the combination of X-irradiation and glycididazole showed a similar antitumor effect to that of X-irradiation alone, whereas doranidazole significantly sensitized the cells to X-irradiation. HPLC analysis revealed that incorporated glycididazole was decomposed to metronidazole and was therefore present at a lower concentration compared with that of doranidazole. The decomposition of glycididazole to metronidazole reduced its radiosensitizing efficiency in vivo. Elucidation of the kinetics of drugs containing metabolizable chemical forms is necessary for the optimization of clinical treatment.
Collapse
Affiliation(s)
- Hironobu Yasui
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Division of Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan.,Central Institute of Isotope Science, Hokkaido University, Sapporo, Hokkaido 060-0815, Japan
| | - Nobuo Kubota
- R&D Laboratories, Pola Pharma Inc., Yokohama, Kanagawa 244-0812, Japan
| | - Junko Nishizumi
- R&D Laboratories, Pola Pharma Inc., Yokohama, Kanagawa 244-0812, Japan
| | - Yuri Sakai
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Division of Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Tohru Yamamori
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Division of Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Osamu Inanami
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Division of Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
6
|
Hu F, Liu C, Liu H, Xie L, Yu L. Ataxia-Telangiectasia Mutated (ATM) Protein Signaling Participates in Development of Pulmonary Arterial Hypertension in Rats. Med Sci Monit 2017; 23:4391-4400. [PMID: 28894083 PMCID: PMC5606263 DOI: 10.12659/msm.906568] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Previous studies revealed physiological and pathogenetic similarity between vascular smooth muscles cells with severe pulmonary arterial hypertension and tumors. The DNA damage response was found in both pulmonary arterial hypertension (PAH) cells and tumors. The ataxia-telangiectasia mutated proteins (ATM) pathway is considered an important factor in the DNA damage response of tumor formation, but its function in the development of PAH remains unknown. Material/Methods The Sprague-Dawley rat PAH model was established. Three weeks (Group M1), 5 weeks (Group M2), and 7 weeks (Group M3) after drug injection, pulmonary expression of ATM, Checkpoint kinase 2 (Chk2), P53, and P21 were measured. A section of the lungs from Group M2 was used for pulmonary artery vascular smooth muscles cells (PA-SMCs) isolation and culture. The effect of KU60019 in the proliferation and apoptosis of primary cultured rat PA-SMCs was measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and TdT-mediated dUTP nick-end labeling (TUNEL), respectively. Results Immunohistochemistry results show that the expression of ATM, Chk2, and P21 increased in Groups M1 and M2, and decreased in Group M3. Additionally, expression of P53 increased in Group M1, and decreased in Groups M2 and M3. RT-PCR and Western blotting demonstrated that in Groups M1 and M2, the expression of ATM, Chk2, P53, and P21 increased, whereas it decreased in Group M3. In cell culture, 0.3 μM and 0.5 μM KU60019 increased the growth of PA-SMCs, and 0.5 μM KU60019 reduced cell apoptosis. Conclusions Expression of the ATM-Chk2 pathway increased in early stages of PAH formation, but decreased in late stages. In primary cultured PA-SMCs, KU60019 increased cell proliferation and inhibited cell apoptosis.
Collapse
Affiliation(s)
- Fan Hu
- Department of Pediatrics, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China (mainland).,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China (mainland)
| | - Caijun Liu
- Department of Pediatrics, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China (mainland).,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China (mainland)
| | - Hanmin Liu
- Department of Pediatrics, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China (mainland).,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China (mainland)
| | - Liang Xie
- Department of Pediatrics, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China (mainland).,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China (mainland)
| | - Li Yu
- Department of Pediatrics, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China (mainland).,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China (mainland)
| |
Collapse
|
7
|
Wu P, Liu J, Sun X, Li X, Xing L, Yu J. Enhanced radiosensitizing by sodium glycididazole in a recurrent esophageal carcinoma tumor model. Oncotarget 2017; 8:63871-63880. [PMID: 28969036 PMCID: PMC5609968 DOI: 10.18632/oncotarget.19151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 06/05/2017] [Indexed: 01/11/2023] Open
Abstract
Re-irradiation is challenging for esophageal cancer patients with local-regional recurrence after initial radiotherapy. The purpose of this study is to establish a recurrent esophageal tumor model and investigate radiosensitizing effects of sodium glycididazole (CMNa). Tumor models were established by pre-irradiation (0 Gy, 10 Gy or 20 Gy) to the right hind leg of the nude mice 24 hours before tumor transplantation (ECA109 human esophageal carcinoma cells). Tumor growth curves were analyzed. Hypoxic microenvironment was exhibited in tumor frozen slides stained for pimonidazole, Hoechst 33342, hematoxylin-eosin and CD34. Mice bearing primary (0 Gy pre-irradiation) and recurrent (10 Gy pre-irradiation) tumors were randomized into control (no treatment), radiation (30 Gy in 3 weekly fractionations), or radiation combined with CMNa (1 mmol/kg i.p. injected 60 min before radiation) respectively. The data showed tumors from 10 Gy and 20 Gy pre-irradiated sites grew significantly slower than those in the 0 Gy pre-irradiated group. The recurrent xenograft tumors showed increased necrotic fractions, decreased micro-vascular density, increased pimonidazole-positive fraction, and decreased Hoechst-positive fraction. In the primary xenograft tumors, CMNa adding to radiation did not lead to significant tumor growth delay than radiation alone. However, for the recurrent tumor model, the growth rate was remarkably reduced as CMNa combined with radiation as comparison with radiation alone. In conclusion, the recurrent esophageal xenograft model with tumor bed effect was successfully established characterized by slow growth, increased hypoxia fraction and decreased blood flow. Significant radiosensitization by CMNa was demonstrated in the recurrent model.
Collapse
Affiliation(s)
- Peipei Wu
- Department of Radiation Oncology, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academic of Medicine Science, Jinan 250117, Shandong, China.,Department of Oncology, Jining No.1 People's Hospital, Jining 272011, Shandong, China
| | - Jing Liu
- Department of Radiation Oncology, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academic of Medicine Science, Jinan 250117, Shandong, China
| | - Xiaorong Sun
- Department of Radiology, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academic of Medicine Science, Jinan 250117, Shandong, China
| | - Xiaolin Li
- Department of Radiation Oncology, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academic of Medicine Science, Jinan 250117, Shandong, China
| | - Ligang Xing
- Department of Radiation Oncology, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academic of Medicine Science, Jinan 250117, Shandong, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academic of Medicine Science, Jinan 250117, Shandong, China
| |
Collapse
|
8
|
Zhao K, Ke W, Yin W, Li J, Qiang M, Ge Z. Facile Preparation and Radiotherapy Application of an Amphiphilic Block Copolymer Radiosensitizer. ACS Macro Lett 2017; 6:556-560. [PMID: 35610878 DOI: 10.1021/acsmacrolett.7b00196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Radiosensitizer plays an important role in the cancer radiotherapy for efficient killing of hypoxic cancer cells at a low radiation dose. However, the commercially available small molecular radiosensitizers show low efficiency due to poor bioavailability in tumor tissues. In this report, we develop a novel amphiphilic block copolymer radiosensitizer, metronidazole-conjugated poly(ethylene glycol)-b-poly(γ-propargyl-l-glutamate) (PEG-b-P(PLG-g-MN)), which can be self-assembled into core-shell micelles (MN-Micelle) with an optimal size of ∼60 nm in aqueous solution. In vitro cytotoxicity evaluation indicated that MN-Micelle sensitized the hypoxic cancer cells more efficiently under radiation with the sensitization enhancement ratio (SER) of 1.62 as compared with that of commercially available sodium glycididazole (GS; SER = 1.17) at the metronidazole-equivalent concentration of 180 μg/mL. Upon intravenous injection of MN-Micelle into the tumor-bearing mice, high tumor deposition was achieved, which finally suppressed tumor growth completely after electron beam radiation at a low radiation dose of 4 Gy. MN-Micelle with outstanding performance as an in vivo radiosensitizer holds great potentials for translation into radiotherapy application.
Collapse
Affiliation(s)
- Kaijie Zhao
- CAS
Key Laboratory of Soft Matter Chemistry, Department of Polymer Science
and Engineering, University of Science and Technology of China, Hefei 230026, Anhui China
| | - Wendong Ke
- CAS
Key Laboratory of Soft Matter Chemistry, Department of Polymer Science
and Engineering, University of Science and Technology of China, Hefei 230026, Anhui China
| | - Wei Yin
- CAS
Key Laboratory of Soft Matter Chemistry, Department of Polymer Science
and Engineering, University of Science and Technology of China, Hefei 230026, Anhui China
| | - Junjie Li
- CAS
Key Laboratory of Soft Matter Chemistry, Department of Polymer Science
and Engineering, University of Science and Technology of China, Hefei 230026, Anhui China
| | - Ming Qiang
- Department
of Oncology, 105 Hospital of People’s Liberation Army, Hefei 230031, Anhui, China
| | - Zhishen Ge
- CAS
Key Laboratory of Soft Matter Chemistry, Department of Polymer Science
and Engineering, University of Science and Technology of China, Hefei 230026, Anhui China
| |
Collapse
|
9
|
Guo Y, Sun W, Gong T, Chai Y, Wang J, Hui B, Li Y, Song L, Gao Y. miR-30a radiosensitizes non-small cell lung cancer by targeting ATF1 that is involved in the phosphorylation of ATM. Oncol Rep 2017; 37:1980-1988. [PMID: 28259977 PMCID: PMC5367375 DOI: 10.3892/or.2017.5448] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/24/2017] [Indexed: 02/07/2023] Open
Abstract
Increasing number of studies report that microRNAs play important roles in radiosensitization. miR-30a has been proved to perform many functions in the development and treatment of cancer, and it is downregulated in non-small cell lung cancer (NSCLC) tissues and cells. This study was conducted to understand if miR-30a plays a role in the radiosensitivity of NSCLC cells. Radiosensitivity was examed by colony survival assay and tumor volume changing in vitro and in vivo, respectively. Bioinformatic analysis and luciferase reporter assays were used to distinguish the candidate target of miR-30a. qRT-PCR and western blotting were carried out to detect the relative expression of mRNAs and proteins. Cell cycle and cell apoptosis were determined by flow cytometry. Our results illustrated miR-30a could increase the radiosensitivity of NSCLC, especially in A549 cell line. In vivo experiment also showed the potential radiosensitizing possibility of miR-30a. Further exploration validated that miR-30a was directly targeting activating transcription factor 1 (ATF1). In studying the ataxia-telangiectasia mutated (ATM) associated effects on cell radiosensitivity, we found that miR-30a could reduce radiation induced G2/M cell cycle arrest and may also affect radiation induced apoptosis. Together, our results demonstrated that miR-30a may modulate the radiosensitivity of NSCLC through reducing the function of ATF1 in phosphorylation of ATM and have potential therapeutic value.
Collapse
Affiliation(s)
- Yuyan Guo
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wenze Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Tuotuo Gong
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yanlan Chai
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Juan Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Beina Hui
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yi Li
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Liping Song
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ying Gao
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|