1
|
Geng N, Xian M, Deng L, Kuang B, Pan Y, Liu K, Ye Y, Fan M, Bai Z, Guo F. Targeting the senescence-related genes MAPK12 and FOS to alleviate osteoarthritis. J Orthop Translat 2024; 47:50-62. [PMID: 39007035 PMCID: PMC11245888 DOI: 10.1016/j.jot.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/07/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
Background The mechanism by which chondrocyte senescence aggravate OA progression has not yet been well elucidated. The aim of this study was to investigate the chondrocyte senescence related gene biosignatures in OA, and to analyze on the underlying mechanisms of senescence in OA. Materials and methods We intersected osteoarthritis dataset GSE82107 from GEO database and senescence dataset from CellAge database of human senescence-associated genes based on genetic manipulations experiments plus gene expression profilin, and screened out 4 overlapping genes. The hub genes were verified in vitro and in human OA cartilage tissues by qRT-PCR. We further confirmed the function of mitogen-activated protein kinase 12 (MAPK12) and Fos proto-oncogene (FOS) in OA in vitro and in vivo by qRT-PCR, western blotting, Edu staining, immunofluorescence, SA-β-gal staining, HE, IHC, von frey test, and hot plate. Results 1458 downregulated and 218 upregulated DEGs were determined from GSE82107, and 279 human senescence-associated genes were downloaded from CellAge database. After intersection assay, we screened out 4 overlapping genes, of which FOS, CYR61 and TNFSF15 were upregulated, MAPK12 was downregulated. The expression of MAPK12 was obviously downregulated, whereas the expression profiles of FOS, CYR61 and TNFSF15 were remarkedly upregulated in H2O2- or IL-1β-stimulated C28/I2 cells, human OA cartilage tissues, and knee cartilage of aging mice. Furthermore, both MAPK12 over-expression and FOS knock-down can promote cell proliferation and cartilage anabolism, inhibit cell senescence and cartilage catabolism, relieve joint pain in H2O2- or IL-1β-stimulated C28/I2 cells and mouse primary chondrocytes, destabilization of the medial meniscus (DMM) mice. Conclusion This study explored that MAPK12 and FOS are involved in the occurrence and development of OA through modulating chondrocyte senescence. They might be biomarkers of OA chondrocyte senescence, and provides some evidence as subsequent possible therapeutic targets for OA. The translational potential of this article The translation potential of this article is that we revealed MAPK12 and FOS can effectively alleviate OA by regulating chondrocyte senescence, and thus provided potential therapeutic targets for prevention or treatment of OA in the future.
Collapse
Affiliation(s)
- Nana Geng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Menglin Xian
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Lin Deng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Biao Kuang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiming Pan
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Kaiwen Liu
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Yuanlan Ye
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Mengtian Fan
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Zhixun Bai
- Department of Nephrology, The First Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Fengjin Guo
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Rahman SMT, Zhou W, Deiters A, Haugh JM. Dissection of MKK6 and p38 Signaling Using Light-Activated Protein Kinases. Chembiochem 2024; 25:e202300551. [PMID: 37856284 DOI: 10.1002/cbic.202300551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023]
Abstract
Stress-activated signaling pathways orchestrate cellular behaviors and fates. Studying the precise role(s) of stress-activated protein kinases is challenging, because stress conditions induce adaptation and impose selection pressure. To meet this challenge, we have applied an optogenetic system with a single plasmid to express light-activated p38α or its upstream activator, MKK6, in conjunction with live-cell fluorescence microscopy. In starved cells, decaging of constitutively active p38α or MKK6 by brief exposure to UV light elicits rapid p38-mediated signaling, release of cytochrome c from mitochondria, and apoptosis with different kinetics. In parallel, light activation of p38α also suppresses autophagosome formation, similarly to stimulation with growth factors that activate PI3K/Akt/mTORC1 signaling. Active MKK6 negatively regulates serum-induced ERK activity, which is p38-independent as previously reported. Here, we reproduce that result with the one plasmid system and show that although decaging active p38α does not reduce basal ERK activity in our cells, it can block growth factor-stimulated ERK signaling in serum-starved cells. These results clarify the roles of MKK6 and p38α in dynamic signaling programs, which act in concert to actuate apoptotic death while suppressing cell survival mechanisms.
Collapse
Affiliation(s)
- Shah Md Toufiqur Rahman
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Wenyuan Zhou
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Jason M Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, 911 Partners Way, Raleigh, NC, 27695, USA
| |
Collapse
|
3
|
Phan T, Zhang XH, Rosen S, Melstrom LG. P38 kinase in gastrointestinal cancers. Cancer Gene Ther 2023; 30:1181-1189. [PMID: 37248432 PMCID: PMC10501902 DOI: 10.1038/s41417-023-00622-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 04/09/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023]
Abstract
Gastrointestinal cancers are a leading cause of cancer morbidity and mortality worldwide with 4.2 million new cases and 3.2 million deaths estimated in 2020. Despite the advances in primary and adjuvant therapies, patients still develop distant metastases and require novel therapies. Mitogen‑activated protein kinase (MAPK) cascades are crucial signaling pathways that regulate many cellular processes, including proliferation, differentiation, apoptosis, stress responses and cancer development. p38 Mitogen Activated Protein Kinases (p38 MAPKs) includes four isoforms: p38α (MAPK14), p38β (MAPK11), p38γ (MAPK12), and p38δ (MAPK13). p38 MAPK was first identified as a stress response protein kinase that phosphorylates different transcriptional factors. Dysregulation of p38 pathways, in particular p38γ, are associated with cancer development, metastasis, autophagy and tumor microenvironment. In this article, we provide an overview of p38 and p38γ with respect to gastrointestinal cancers. Furthermore, targeting p38γ is also discussed as a potential therapy for gastrointestinal cancers.
Collapse
Affiliation(s)
- Thuy Phan
- Department of Surgery, City of Hope Medical Center, Duarte, CA, USA
| | - Xu Hannah Zhang
- Department of Hematology, City of Hope Medical Center, Duarte, CA, USA
| | - Steven Rosen
- Department of Hematology, City of Hope Medical Center, Duarte, CA, USA
| | - Laleh G Melstrom
- Department of Surgery, City of Hope Medical Center, Duarte, CA, USA.
| |
Collapse
|
4
|
Xian Z, Tian J, Zhao Y, Yi Y, Li C, Han J, Zhang Y, Wang Y, Wang L, Liu S, Pan C, Liu C, Wang D, Meng J, Tang X, Wang F, Liang A. Differences in p38-STAT3-S100A11 signaling after the administration of aristolochic acid I and IVa may account for the disparity in their nephrotoxicity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154815. [PMID: 37062136 DOI: 10.1016/j.phymed.2023.154815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The safety of herbs containing aristolochic acids (AAs) has become a widespread concern. Previous reports indicate that AAs are highly nephrotoxic and carcinogenic, although there are more than 170 analogues of aristolochic acid. Not all AAs have the same degree of nephrotoxicity or carcinogenicity. Previous studies have found that aristolochic acid IVa (AA-IVa), the principal component of AAs within members of the Aristolochiaceae family, especially Asarum, a commonly used herb in China, has essentially no significant nephrotoxicity. However, several studies, including ours, have shown that aristolochic acid I (AA-I) is clearly nephrotoxic. PURPOSE The focus of the study was to elucidate the molecular mechanism responsible for the difference in nephrotoxicity between the AA-I and AA-IVa. STUDY DESIGN/METHOD Mice were administered with AA-I or AA-IVa for 22 weeks through the oral route, followed by a 50-week recovery time. The kidney tissues of mice were extracted at the end of 22 weeks. Pathological examination and proteomic detection (tandem mass tagging (TMT) and phosphorylated proteomics) were performed on the kidney tissue to investigate the key signaling pathways and targets of AAs-induced renal interstitial fibrosis (RIF). The key signaling pathways and targets were verified by Western blot (WB), siRNA transfection, and luciferase assays. RESULTS AA-I caused severe nephrotoxicity, high mortality, and extensive RIF. However, the same AA-IVa dosage exhibited almost no nephrotoxicity and does not trigger RIF. The activation of the p38-STAT3-S100A11 signaling pathway and upregulated expression of α smooth muscle actin (α-SMA) and Bcl2-associated agonist of cell death (Bad) proteins could be the molecular mechanism underlying AA-I-induced nephrotoxicity. On the other hand, AA-IVa did not regulate the activation of the p38-STAT3-S100A11 signaling pathway and had relatively little effect on the expression of α-SMA and Bad. Consequently, the difference in the regulation of p38-STAT3-S100A11 pathway, α-SMA, and Bad proteins between AA-I and AA-IVa may be responsible for the divergence in their level of nephrotoxicity. CONCLUSION This is the first study to reveal the molecular mechanism underlying the difference in nephrotoxicity between AA-I and AA-IVa. Whether STAT3 is activated or not may be the key factor leading to the difference in nephrotoxicity between AA-I and AA-IVa.
Collapse
Affiliation(s)
- Zhong Xian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Experimental Research Center, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Jingzhuo Tian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yong Zhao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yan Yi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chunying Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiayin Han
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yushi Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuan Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Pathology Department, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Lianmei Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Suyan Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chen Pan
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chenyue Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dunfang Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jing Meng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xuan Tang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fang Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Aihua Liang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
5
|
García-Flores N, Jiménez-Suárez J, Garnés-García C, Fernández-Aroca DM, Sabater S, Andrés I, Fernández-Aramburo A, Ruiz-Hidalgo MJ, Belandia B, Sanchez-Prieto R, Cimas FJ. P38 MAPK and Radiotherapy: Foes or Friends? Cancers (Basel) 2023; 15:861. [PMID: 36765819 PMCID: PMC9913882 DOI: 10.3390/cancers15030861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Over the last 30 years, the study of the cellular response to ionizing radiation (IR) has increased exponentially. Among the various signaling pathways affected by IR, p38 MAPK has been shown to be activated both in vitro and in vivo, with involvement in key processes triggered by IR-mediated genotoxic insult, such as the cell cycle, apoptosis or senescence. However, we do not yet have a definitive clue about the role of p38 MAPK in terms of radioresistance/sensitivity and its potential use to improve current radiotherapy. In this review, we summarize the current knowledge on this family of MAPKs in response to IR as well as in different aspects related to radiotherapy, such as their role in the control of REDOX, fibrosis, and in the radiosensitizing effect of several compounds.
Collapse
Affiliation(s)
- Natalia García-Flores
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Jaime Jiménez-Suárez
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Cristina Garnés-García
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Diego M. Fernández-Aroca
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Sebastia Sabater
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Servicio de Oncología Radioterápica, Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - Ignacio Andrés
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Servicio de Oncología Radioterápica, Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - Antonio Fernández-Aramburo
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Servicio de Oncología Médica, Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - María José Ruiz-Hidalgo
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Área de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Borja Belandia
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, 28029 Madrid, Spain
| | - Ricardo Sanchez-Prieto
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, 28029 Madrid, Spain
- Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Francisco J. Cimas
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Área de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| |
Collapse
|
6
|
Xu W, Liu R, Dai Y, Hong S, Dong H, Wang H. The Role of p38γ in Cancer: From review to outlook. Int J Biol Sci 2021; 17:4036-4046. [PMID: 34671218 PMCID: PMC8495394 DOI: 10.7150/ijbs.63537] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/16/2021] [Indexed: 01/20/2023] Open
Abstract
p38γ is a member of the p38 Mitogen Activated Protein Kinases (p38 MAPKs). It contains four subtypes in mammalian cells encoded by different genes including p38α (MAPK14), p38β (MAPK11), p38γ (MAPK12), and p38δ (MAPK13). Recent studies revealed that p38γ may exhibit a crucial role in tumorigenesis and cancer aggressiveness. Despite the large number of published literatures, further researches are demanded to clarify its role in cancer development, the tissue-specific function and associated novel treatment strategies. In this article, we provide the latest view on the connection between p38γ and malignant tumors, highlighting the function of p38γ. The clinical value of p38γ is also discussed, helping the translation into the remarkable therapeutic strategy in tumor diseases.
Collapse
Affiliation(s)
- Wentao Xu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.,First Clinical Medical College of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Rui Liu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Ying Dai
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Shaocheng Hong
- First Clinical Medical College of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Huke Dong
- First Clinical Medical College of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, Anhui, China
| |
Collapse
|
7
|
Zhang XH, Chen CH, Li H, Hsiang J, Wu X, Hu W, Horne D, Nam S, Shively J, Rosen ST. Targeting the non-ATP-binding pocket of the MAP kinase p38γ mediates a novel mechanism of cytotoxicity in cutaneous T-cell lymphoma (CTCL). FEBS Lett 2021; 595:2570-2592. [PMID: 34455585 PMCID: PMC8577799 DOI: 10.1002/1873-3468.14186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/31/2021] [Accepted: 08/19/2021] [Indexed: 02/01/2023]
Abstract
We describe here for the first time a lipid‐binding‐domain (LBD) in p38γ mitogen‐activated protein kinase (MAPK) involved in the response of T cells to a newly identified inhibitor, CSH71. We describe how CSH71, which binds to both the LBD and the ATP‐binding pocket of p38γ, is selectively cytotoxic to CTCL Hut78 cells but spares normal healthy peripheral blood mononuclear (PBMC) cells, and propose possible molecular mechanisms for its action. p38γ is a key player in CTCL development, and we expect that the ability to regulate its expression by specifically targeting the lipid‐binding domain will have important clinical relevance. Our findings characterize novel mechanisms of gene regulation in T lymphoma cells and validate the use of computational screening techniques to identify inhibitors for therapeutic development.
Collapse
Affiliation(s)
| | - Chih-Hong Chen
- Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Hongzhi Li
- Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Jack Hsiang
- Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Xiwei Wu
- Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Weidong Hu
- Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - David Horne
- Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Sangkil Nam
- Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Jack Shively
- Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Steven T Rosen
- Beckman Research Institute of City of Hope, Duarte, CA, USA
| |
Collapse
|
8
|
Zhang XH, Yin Z, Zhang A, Pillai R, Armstrong B, Rosen ST. DNMT1 and p38γ are inversely expressed in reactive non-metastatic lymph nodes burdened with colorectal adenocarcinoma. EJHAEM 2020; 1:300-303. [PMID: 35847731 PMCID: PMC9176054 DOI: 10.1002/jha2.50] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 02/03/2023]
Abstract
Lymph nodes are important front-line defense immune tissues, which also act against inflammatory diseases and cancer. Lymph nodes undergo extensive upheavals within newly formed germinal centers (GCs) when exposed to antigens, the molecular mechanisms of which remain elusive. Recently, p38γ was identified as an important target for multiple cancers, including cutaneous T-cell lymphoma (CTCL). We previously observed that p38γ is overexpressed in CTCL versus normal cells, but it is not clear if p38γ is expressed in B or T lymphocytes of GCs of patients in response to a stress such as cancer. Therefore, in this study, we obtained non-metastatic reactive lymph nodes adjacent to cancer lesions (colorectal adenocarcinoma), then performed multicolor immunohistochemical staining for p38γ and other relevant markers. We observed for the first time that p38γ was expressed in the light zone of activated B cells and T helper cells in GCs, whereas DNA-methyltransferase 1 (DNMT1), a marker for GC B cells, was highly expressed in centrocytes and in the dark zone of GCs. This inverse relationship suggests a novel function for p38γ in T cells that cross-talk to B cells in response to stress.
Collapse
Affiliation(s)
- Xu Hannah Zhang
- Department of HematologyCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Zhirong Yin
- Department of Pathology Solid Tumor CoreCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Aimin Zhang
- Department of Pathology Solid Tumor CoreCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Raju Pillai
- Department of Pathology Solid Tumor CoreCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Brian Armstrong
- Light microscopy coreCity of Hope National Medical Center, Duarte, California, City of Hope National Medical CenterBeckman Research InstituteDuarteCaliforniaUSA
| | - Steven T Rosen
- Department of HematologyCity of Hope National Medical CenterDuarteCaliforniaUSA
| |
Collapse
|
9
|
Zhang XH, Nam S, Wu J, Chen CH, Liu X, Li H, McKeithan T, Gong Q, Chan WC, Yin HH, Yuan YC, Pillai R, Querfeld C, Horne D, Chen Y, Rosen ST. Multi-Kinase Inhibitor with Anti-p38γ Activity in Cutaneous T-Cell Lymphoma. J Invest Dermatol 2018; 138:2377-2387. [PMID: 29758280 PMCID: PMC7269016 DOI: 10.1016/j.jid.2018.04.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 03/21/2018] [Accepted: 04/08/2018] [Indexed: 11/19/2022]
Abstract
Current cutaneous T-cell lymphoma (CTCL) therapies are marked by an abbreviated response, subsequent drug resistance, and poor prognosis for patients with advanced disease. An understanding of molecular regulators involved in CTCL is needed to develop effective targeted therapies. One candidate regulator is p38γ, a mitogen-activated protein kinase crucial for malignant T-cell activity and growth. p38γ gene expression is selectively increased in CTCL patient samples and cell lines but not in healthy T cells. In addition, gene silencing of p38γ reduced CTCL cell viability, showing a key role in CTCL pathogenesis. Screening p38γ inhibitors is critical for understanding the mechanism of CTCL tumorigenesis and developing therapeutic applications. We prioritized a potent p38γ inhibitor (F7, also known as PIK75) through a high-throughput kinase inhibitor screen. At nanomolar concentrations, PIK75, a multiple kinase inhibitor, selectively killed CD4+ malignant CTCL cells but spared healthy CD4+ cells; induced significant reduction of tumor size in mouse xenografts; and effectively inhibited p38γ enzymatic activity and phosphorylation of its substrate, DLGH1, in CTCL cells and mouse xenografts. Here, we report that PIK75 has a potential clinical application to serve as a scaffold molecule for the development of a more selective p38γ inhibitor.
Collapse
Affiliation(s)
- Xu Hannah Zhang
- Department of Hematology, City of Hope National Medical Center, Duarte, California, USA
| | - Sangkil Nam
- High-Throughput Screening Core, City of Hope National Medical Center, Duarte, California, USA
| | - Jun Wu
- Animal Tumor Models Core, City of Hope National Medical Center, Duarte, California, USA
| | - Chih-Hong Chen
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, California, USA
| | - Xuxiang Liu
- Department of Pathology, City of Hope National Medical Center, Duarte, California, USA; Computational Therapeutics Core, City of Hope National Medical Center, Duarte, California, USA
| | - Hongzhi Li
- Bioinformatics Core, City of Hope National Medical Center, Duarte, California, USA
| | - Timothy McKeithan
- Department of Pathology, City of Hope National Medical Center, Duarte, California, USA
| | - Qiang Gong
- Department of Pathology, City of Hope National Medical Center, Duarte, California, USA
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, California, USA
| | - Hongwei Holly Yin
- Department of Pathology, City of Hope National Medical Center, Duarte, California, USA
| | - Yate-Ching Yuan
- Synthetic and Biopolymer Chemistry Core, City of Hope National Medical Center, Duarte, California, USA
| | - Raju Pillai
- Department of Pathology, City of Hope National Medical Center, Duarte, California, USA
| | - Christiane Querfeld
- Department of Pathology, City of Hope National Medical Center, Duarte, California, USA
| | - David Horne
- Irell & Manella Graduate School of Biological Sciences and Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Yuan Chen
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, California, USA
| | - Steven T Rosen
- Department of Hematology, City of Hope National Medical Center, Duarte, California, USA.
| |
Collapse
|
10
|
Bhushan A, Singh A, Kapur S, Borthakar BB, Sharma J, Rai AK, Kataki AC, Saxena S. Identification and Validation of Fibroblast Growth Factor 12 Gene as a Novel Potential Biomarker in Esophageal Cancer Using Cancer Genomic Datasets. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 21:616-631. [PMID: 29049013 DOI: 10.1089/omi.2017.0116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) has a complex, multifactorial etiology in which environmental, geographical, and genetic factors play major roles. It is the second most common cancer among men and the fourth most common among women in India, with a particularly high prevalence in Northeast India. In this study, an integrative in silico [DAVID, NCG5.0, Oncomine, Cancer Cell Line Encyclopedia, and The Cancer Genome Atlas (TCGA)] approach was used to identify the potential biomarkers by using the available three genomic datasets on ESCC from Northeast India followed by its in vitro functional validation. Fibroblast Growth Factor 12 (FGF12) gene was overexpressed in ESCC. The upregulation of FGF12 was also observed on ESCC of TCGA OncoPrint portal, whereas very low expression of FGF12 gene was mapped in normal esophageal tissue on the GTEx database. Silencing of FGF12 showed significant inhibition in activity of tumor cell proliferation, colony formation, and cell migration. The upregulation of FGF12 showed significantly reduced survival in ESCC patients. The protein interaction analysis of FGF12 found the binding with MAPK8IP2 and MAPK13. High expression of FGF12 along with MAPK8IP2, and MAPK13 proteins correlate with poor survival in ESCC patients. Tissue microarray also showed expression of these proteins in patients with ESCC. These results indicate that FGF12 has a potential role in ESCC and suggest that cancer genomic datasets with application of in silico approaches are instrumental for biomarker discovery research broadly and specifically, for the identification of FGF12 as a putative biomarker in ESCC.
Collapse
Affiliation(s)
- Ashish Bhushan
- 1 National Institute of Pathology (ICMR) , New Delhi, India .,2 Faculty of Health and Biomedical Sciences, Symbiosis International University , Pune, India
| | - Avninder Singh
- 1 National Institute of Pathology (ICMR) , New Delhi, India
| | - Sujala Kapur
- 1 National Institute of Pathology (ICMR) , New Delhi, India
| | | | | | - Avdhesh K Rai
- 3 Dr. B. Borooah Cancer Institute (BBCI) , Guwahati, India
| | - Amal C Kataki
- 3 Dr. B. Borooah Cancer Institute (BBCI) , Guwahati, India
| | - Sunita Saxena
- 1 National Institute of Pathology (ICMR) , New Delhi, India
| |
Collapse
|
11
|
Wang L, Zhang H, Hasim A, Tuerhong A, Hou Z, Abdurahmam A, Sheyhidin I. Partition-Defective 3 (PARD3) Regulates Proliferation, Apoptosis, Migration, and Invasion in Esophageal Squamous Cell Carcinoma Cells. Med Sci Monit 2017; 23:2382-2390. [PMID: 28526815 PMCID: PMC5446977 DOI: 10.12659/msm.903380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Altered expression of partition-defective 3 (PARD3), a polarity-related gene associated with oncogenesis, has been identified in some cancers, but the role of PARD3 in esophageal squamous cell carcinoma (ESCC) remains unclear. Material/Methods PARD3 expression in Eca109 cells was silenced using siRNA and overexpressed using an expression vector. We investigated the role of PARD3 in ESCC growth and motility to evaluate its potential role in ESCC. Transwell assay was used to evaluated cell migration and invasion. PARD3 protein expression was assessed by Western blot. Results PARD3 overexpression promoted apoptosis, impaired proliferation, and inhibited cell migration and invasion in Eca109 cells, while PARD3 silencing promoted proliferation and increased migration and invasion. Overexpression of PARD3 exerted its antitumor activity in vitro by impairing cell proliferation, inducing apoptosis, and inhibiting migration and invasion of Eca109 cells, suggesting that PARD3 might play a tumor suppressor role in ESCC. Conclusions Overexpression of PARD3 could be a promising new therapeutic intervention against ESCC.
Collapse
Affiliation(s)
- Lei Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Haiping Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Ayshamgul Hasim
- Department of Pathology, Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Abuduaini Tuerhong
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Zhichao Hou
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Ablajan Abdurahmam
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Ilyar Sheyhidin
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| |
Collapse
|