1
|
Spiegel C, Coraça-Huber DC, Nogler M, Arora R, Putzer D. Cold Plasma Activity Against Biofilm Formation of Prosthetic Joint Infection Pathogens. Pathogens 2024; 14:10. [PMID: 39860971 PMCID: PMC11768226 DOI: 10.3390/pathogens14010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/25/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Periprosthetic joint infections occur in 1-2% of all patients undergoing prosthetic joint surgeries. Although strong efforts have been made to reduce infection rates, conventional therapies like one- or two-stage revisions have failed to lower the infection rates. Cold atmospheric plasma (CAP) has shown promising results in reducing bacterial loads on surfaces. In this study, we aimed to investigate the ability of CAP to reduce the bacterial load on metal surfaces with varying distances and different plasma compositions below a temperature suitable for in vivo applications. Methods: Biofilm was formed with Staphylococcus aureus ATCC 29213 and Staphylococcus epidermidis ATCC 12228 cultures on TMZF discs. Plasma treatments using air plasma and argon plasma were conducted on discs containing the established biofilm while the temperature was measured. During the experiments, the duration and the distance of plasma application varied. Afterwards, colony-forming units were counted. Results: The results of this study showed that air and argon plasma could be considered for applications during surgeries at a 1 cm distance. While air plasma showed the highest efficiency in CFU reduction, the temperature generation due to the presence of oxygen poses a limitation concerning the duration of application. The use of argon as a plasma generator does not show the temperature limitation in correlation to exposure time. The use of air plasma with a distance of 1 cm to the application site and an exposure time of 5 s showed the most effective bacterial reduction while not exceeding tissue-damaging temperatures.
Collapse
Affiliation(s)
- Christopher Spiegel
- Research Laboratory for Biofilms and Implant Associated Infections (BIOFILM LAB), Experimental Orthopaedics, University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria;
| | - Débora C. Coraça-Huber
- Research Laboratory for Biofilms and Implant Associated Infections (BIOFILM LAB), Experimental Orthopaedics, University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria;
| | - Michael Nogler
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (M.N.); (R.A.); (D.P.)
| | - Rohit Arora
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (M.N.); (R.A.); (D.P.)
| | - David Putzer
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (M.N.); (R.A.); (D.P.)
| |
Collapse
|
2
|
Heirman P, Verswyvel H, Bauwens M, Yusupov M, De Waele J, Lin A, Smits E, Bogaerts A. Effect of plasma-induced oxidation on NK cell immune checkpoint ligands: A computational-experimental approach. Redox Biol 2024; 77:103381. [PMID: 39395241 DOI: 10.1016/j.redox.2024.103381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024] Open
Abstract
Non-thermal plasma (NTP) shows promise as a potent anti-cancer therapy with both cytotoxic and immunomodulatory effects. In this study, we investigate the chemical and biological effects of NTP-induced oxidation on several key, determinant immune checkpoints of natural killer (NK) cell function. We used molecular dynamics (MD) and umbrella sampling simulations to investigate the effect of NTP-induced oxidative changes on the MHC-I complexes HLA-Cw4 and HLA-E. Our simulations indicate that these chemical alterations do not significantly affect the binding affinity of these markers to their corresponding NK cell receptor, which is supported with experimental read-outs of ligand expression on human head and neck squamous cell carcinoma cells after NTP application. Broadening our scope to other key ligands for NK cell reactivity, we demonstrate rapid reduction in CD155 and CD112, target ligands of the inhibitory TIGIT axis, and in immune checkpoint CD73 immediately after treatment. Besides these transient chemical alterations, the reactive species in NTP cause a cascade of downstream cellular reactions. This is underlined by the upregulation of the stress proteins MICA/B, potent ligands for NK cell activation, 24 h post treatment. Taken together, this work corroborates the immunomodulatory potential of NTP, and sheds light on the interaction mechanisms between NTP and cancer cells.
Collapse
Affiliation(s)
- Pepijn Heirman
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610, Antwerp, Wilrijk, Belgium.
| | - Hanne Verswyvel
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610, Antwerp, Wilrijk, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Antwerp, Wilrijk, Belgium.
| | - Mauranne Bauwens
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610, Antwerp, Wilrijk, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Antwerp, Wilrijk, Belgium
| | - Maksudbek Yusupov
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610, Antwerp, Wilrijk, Belgium; Institute of Fundamental and Applied Research, National Research University TIIAME, 100000, Tashkent, Uzbekistan; Laboratory of Experimental Biophysics, Center for Advanced Technologies, 100174, Tashkent, Uzbekistan
| | - Jorrit De Waele
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Antwerp, Wilrijk, Belgium
| | - Abraham Lin
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610, Antwerp, Wilrijk, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Antwerp, Wilrijk, Belgium
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Antwerp, Wilrijk, Belgium
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610, Antwerp, Wilrijk, Belgium
| |
Collapse
|
3
|
Liu H, Liang X, Teng M, Li Z, Peng Y, Wang P, Chen H, Cheng H, Liu G. Cold Atmospheric Plasma: An Emerging Immunomodulatory Therapy. ADVANCED THERAPEUTICS 2024; 7. [DOI: 10.1002/adtp.202300399] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Indexed: 01/16/2025]
Abstract
AbstractCold atmospheric plasma (CAP) is a novel technology that generates a unique combination of reactive oxygen and nitrogen species (ROS/RNS), electric fields, and UV radiation. CAP has shown promise in regulating the immune system and has potential clinical applications in wound healing, cancer treatment, and infection control. This review provides an overview of the immunological regulation activity of CAP, highlighting its substantial impact on cytokines production, immune cell phagocytosis, and immune cell proliferation. CAP has also been demonstrated to have potent therapeutic effect in anti‐inflammation, wound repair, viral and bacterial infections. Furthermore, CAP has been investigated as an adjuvant therapy for tumor treatment, eliciting a robust antitumor immune response and remarkable synergistic effects in diverse combination therapies. Further research is needed to fully understand the mechanisms underlying the effects of CAP on the immune system and to optimize its clinical application.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Xiaoliu Liang
- State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Minglei Teng
- State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Zhenjie Li
- State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Yisheng Peng
- State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Peiyu Wang
- State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Hu Chen
- State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Hongwei Cheng
- State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 China
- University of Macau Macau SAR 999078 China
| | - Gang Liu
- State Key Laboratory of Infectious Disease Vaccine Development Xiang An Biomedicine Laboratory National Innovation Platform for Industry‐Education Integration in Vaccine Research State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 China
| |
Collapse
|
4
|
Marx AH, Oltmanns H, Meißner J, Verspohl J, Fuchsluger T, Busse C. Argon cold atmospheric plasma eradicates pathogens in vitro that are commonly associated with canine bacterial keratitis. Front Vet Sci 2024; 10:1320145. [PMID: 38264471 PMCID: PMC10803497 DOI: 10.3389/fvets.2023.1320145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
Purpose To investigate the antimicrobial effect of cold atmospheric plasma (CAP) on pathogens associated with canine bacterial keratitis. Materials and methods Pseudomonas aeruginosa, Staphylococcus pseudintermedius, and Streptococcus canis strains, which were obtained from dogs with infectious keratitis, were subjected to testing. For each species, four isolates and a reference strain were cultivated on Columbia sheep blood agar and treated with the kiNPen Vet® plasma pen from Neoplas GmbH, Greifswald, Germany. Various continuous treatment durations (0.5, 2, and 5 min) were applied, along with a 0.5-min treatment repeated four times at short intervals. These treatments were conducted at distances of 3 and 18 mm between the agar surface and the pen. Results CAP treatment reduced bacterial growth in all three species. The most effective treatment duration was 5 min at 3 mm distance, resulting in inhibition zones ranging from 19 to 22 mm for P. aeruginosa, 26-45 mm for S. pseudintermedius and an overall reduction of bacterial growth for Str. canis. Inhibition zones were smaller with decreasing treatment duration and larger distance. Treatment times of 30 s repeated four times and 2 min showed comparable results. Treatment with argon alone did not lead to visible reduction of bacterial growth. Conclusion Argon cold atmospheric plasma demonstrated a potent in vitro antimicrobial effect on P. aeruginosa, S. pseudintermedius and Str. canis strains with the latter showing the highest sensitivity.
Collapse
Affiliation(s)
- Anne Helene Marx
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Hilke Oltmanns
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jessica Meißner
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jutta Verspohl
- Department of Microbiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Thomas Fuchsluger
- Department of Ophthalmology, University of Rostock, Rostock, Germany
| | - Claudia Busse
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
5
|
Low temperature plasma suppresses proliferation, invasion, migration and survival of SK-BR-3 breast cancer cells. Mol Biol Rep 2023; 50:2025-2031. [PMID: 36538172 DOI: 10.1007/s11033-022-08026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Low temperature plasma (LTP) is a developing field in recent years to play important roles of sterilization, material modification and wound healing. Breast cancer is a common gynecological malignant tumor. Recent studies have shown that LTP is a promising selective anti-cancer treatment. The effect of LTP on breast cancer is still unclear. In this study, We treated breast cancer cell lines with low temperature plasma for different periods of time and analyzed the relevant differences. METHODS AND RESULTS SK-BR-3 cell nutrient solution was firstly treated by ACP for 0, 10, 20, 40, 80 and 120 s, which was next used to cultivateSK-BR-3cells for overnight.we found that LTP was able to suppress cell vitality, proliferation, invasion and migration of SK-BR-3 cells. Also, SK-BR-3 apoptosis was induced by LTP in a time-dependent manner. CONCLUSION These evidences suggest the negative effect of LTP on malignant development of SK-BR-3 cells, and LTP has the potential clinical application for breast cancer treatment.
Collapse
|
6
|
Yu S, Zhang X, Sun T, Wang D, Wei Z. Low temperature plasma protects against inflammatory agents-mediated dysfunction of theca cells via enhancing MANF expression. Mol Biol Rep 2023; 50:3085-3097. [PMID: 36689049 DOI: 10.1007/s11033-022-08185-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/07/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Low temperature plasma (LTP) exerts a protective effect in inflammation via enhancing MANF expression. Hyperactivation and dysfunction of theca cells induced by inflammatory agents is accompanied by polycystic ovary syndrome (PCOS), which is a common reproductive and endocrine disorder. However, the effect of LTP on theca cells is still unknown. METHODS AND RESULTS Theca cells were stimulated with IL-1β or TNF-α for 12 h, then treated with LTP for 100 s. After 8 h, medium supernatant and theca cells were collected. Production of androgen from theca cells were detected by ELISA. The PCNA and Annexin V levels in theca cells were detected by using immunofluorescent staining. The levels of PCNA, BCL-2 and BAX were evaluated by western blot and qPCR. MTT assay was used to detect the viability of theca cells. The proportions of apoptosis of theca cells were detected by Flow cytometry. The mRNA levels of androgenic genes were detected by qPCR. The MANF levels in medium supernatant and cell lysate were detected by using ELISA, western and qPCR. BIP and CHOP expressions were detected by using western blot and qPCR. We found that LTP irradiation decreased inflammatory agents-induced upregulation of androgen and androgenic genes in theca cells. And LTP irradiation relieves IL-1β or TNF-α-induced pathological proliferation and apoptosis in theca cells. In terms of mechanism, LTP irradiation increased MANF level in theca cells to inhibit BIP and CHOP expression. CONCLUSION These evidences suggest the protective effect of LTP on theca cells in inflammatory microenvironment, and LTP has the potential clinical application of PCOS.
Collapse
Affiliation(s)
- ShuJun Yu
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - XinRu Zhang
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tao Sun
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Dong Wang
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - ZhaoLian Wei
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China. .,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China. .,Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
7
|
Kim SJ, Seong MJ, Mun JJ, Bae JH, Joh HM, Chung TH. Differential Sensitivity of Melanoma Cells and Their Non-Cancerous Counterpart to Cold Atmospheric Plasma-Induced Reactive Oxygen and Nitrogen Species. Int J Mol Sci 2022; 23:ijms232214092. [PMID: 36430569 PMCID: PMC9698967 DOI: 10.3390/ijms232214092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Despite continuous progress in therapy, melanoma is one of the most aggressive and malignant human tumors, often relapsing and metastasizing to almost all organs. Cold atmospheric plasma (CAP) is a novel anticancer tool that utilizes abundant reactive oxygen and nitrogen species (RONS) being deposited on the target cells and tissues. CAP-induced differential effects between non-cancerous and cancer cells were comparatively examined. Melanoma and non-cancerous skin fibroblast cells (counterparts; both cell types were isolated from the same patient) were used for plasma-cell interactions. The production of intracellular RONS, such as nitric oxide (NO), hydroxyl radical (•OH), and hydrogen peroxide (H2O2), increased remarkably only in melanoma cancer cells. It was observed that cancer cells morphed from spread to round cell shapes after plasma exposure, suggesting that they were more affected than non-cancerous cells in the same plasma condition. Immediately after both cell types were treated with plasma, there were no differences in the amount of extracellular H2O2 production, while Hanks' balanced salt solution-containing cancer cells had lower concentrations of H2O2 than that of non-cancerous cells at 1 h after treatment. The melanoma cells seemed to respond to CAP treatment with a greater rise in RONS and a higher consumption rate of H2O2 than homologous non-cancerous cells. These results suggest that differential sensitivities of non-cancerous skin and melanoma cells to CAP-induced RONS can enable the applicability of CAP in anticancer therapy.
Collapse
|
8
|
Qi M, Zhao X, Fan R, Zhang X, Peng S, Xu D, Yang Y. Cold Atmospheric Plasma Suppressed MM In Vivo Engraftment by Increasing ROS and Inhibiting the Notch Signaling Pathway. Molecules 2022; 27:molecules27185832. [PMID: 36144566 PMCID: PMC9501839 DOI: 10.3390/molecules27185832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy. MM stem cells (MMSCs) are thought to be the main causes of in vivo engraftment and eventual recurrence. As a notable new technology, cold atmospheric plasmas (CAPs) show a promising anti-tumor effect, due to their production of various ROS. In this study, we found that different types of plasma could inhibit MM’s ability to form cell colonies, suppress MM in vivo engraftment, and extend survival times. We demonstrated that NAC (a ROS scavenger) could block ROS increases and reverse the inhibition of MM’s cell-colony-formation ability, which was induced by the plasma treatment. By using a stem cell signaling array, we found that the Notch pathway was inhibited by the plasma treatment; this was further confirmed by conducting real-time PCRs of three MM cell lines. Together, these results constitute the first report of plasma treatment inhibiting MM in vivo engraftment and prolonging survival time by suppressing the Notch pathway via ROS regulation.
Collapse
Affiliation(s)
- Miao Qi
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China
- The School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xinyi Zhao
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China
- The School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Runze Fan
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xinying Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China
| | - Sansan Peng
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China
| | - Dehui Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China
- Correspondence: (D.X.); (Y.Y.)
| | - Yanjie Yang
- Department of Cardiovascular Medicine, First Affiliated Hospital of the Medical School, Xi’an Jiaotong University, Xi’an 710049, China
- Correspondence: (D.X.); (Y.Y.)
| |
Collapse
|
9
|
Limanowski R, Yan D, Li L, Keidar M. Preclinical Cold Atmospheric Plasma Cancer Treatment. Cancers (Basel) 2022; 14:cancers14143461. [PMID: 35884523 PMCID: PMC9316208 DOI: 10.3390/cancers14143461] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Cold atmospheric plasma (CAP) is generated in a rapid yet low-energy input streamer-discharge process at atmospheric pressure conditions. CAP is an ionized gas with a low ionization level and plenty of reactive species and radicals. These reactive components, and their near-room temperature nature, make CAP a powerful tool in medical applications, particularly cancer therapy. Here, we summarized the latest development and status of preclinical applications of CAP in cancer therapy, which may guide further clinical studies of CAP-based cancer therapy. Abstract CAP is an ionized gas generated under atmospheric pressure conditions. Due to its reactive chemical components and near-room temperature nature, CAP has promising applications in diverse branches of medicine, including microorganism sterilization, biofilm inactivation, wound healing, and cancer therapy. Currently, hundreds of in vitro demonstrations of CAP-based cancer treatments have been reported. However, preclinical studies, particularly in vivo studies, are pivotal to achieving a final clinical application. Here, we comprehensively introduced the research status of the preclinical usage of CAP in cancer treatment, by primarily focusing on the in vivo studies over the past decade. We summarized the primary research strategies in preclinical and clinical studies, including transdermal CAP treatment, post-surgical CAP treatment, CAP-activated solutions treatment, and sensitization treatment to drugs. Finally, the underlying mechanism was discussed based on the latest understanding.
Collapse
Affiliation(s)
- Ruby Limanowski
- Department of Biomedical Engineering, George Washington University, Washington, DC 20052, USA;
| | - Dayun Yan
- Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC 20052, USA;
- Correspondence: (D.Y.); (M.K.)
| | - Lin Li
- Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC 20052, USA;
| | - Michael Keidar
- Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC 20052, USA;
- Correspondence: (D.Y.); (M.K.)
| |
Collapse
|
10
|
Martusevich AK, Surovegina AV, Bocharin IV, Nazarov VV, Minenko IA, Artamonov MY. Cold Argon Athmospheric Plasma for Biomedicine: Biological Effects, Applications and Possibilities. Antioxidants (Basel) 2022; 11:antiox11071262. [PMID: 35883753 PMCID: PMC9311881 DOI: 10.3390/antiox11071262] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 01/21/2023] Open
Abstract
Currently, plasma medicine is a synthetic direction that unites the efforts of specialists of various profiles. For the successful formation of plasma medicine, it is necessary to solve a large complex of problems, including creating equipment for generating cold plasma, revealing the biological effects of this effect, as well as identifying and justifying the most promising areas of its application. It is known that these biological effects include antibacterial and antiviral activity, the ability to stimulate hemocoagulation, pro-regenerative properties, etc. The possibility of using the factor in tissue engineering and implantology is also shown. Based on this, the purpose of this review was to form a unified understanding of the biological effects and biomedical applications of argon cold plasma. The review shows that cold plasma, like any other physical and chemical factors, has dose dependence, and the variable parameter in this case is the exposure of its application. One of the significant characteristics determining the specificity of the cold plasma effect is the carrier gas selection. This gas carrier is not just an ionized medium but modulates the response of biosystems to it. Finally, the perception of cold plasma by cellular structures can be carried out by activating a special molecular biosensor, the functioning of which significantly depends on the parameters of the medium (in the field of plasma generation and the cell itself). Further research in this area can open up new prospects for the effective use of cold plasma.
Collapse
Affiliation(s)
- Andrew K. Martusevich
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia; (A.V.S.); (V.V.N.); (I.A.M.); (M.Y.A.)
- MJA Research and Development, Inc., East Stroudsburg, PA 18301, USA
- Laboratory of Medical Biophysics, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia;
- Nizhny Novgorod State Agricultural Academy, 603117 Nizhny Novgorod, Russia
- Correspondence: ; Tel.: +7-909-144-9182
| | - Alexandra V. Surovegina
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia; (A.V.S.); (V.V.N.); (I.A.M.); (M.Y.A.)
| | - Ivan V. Bocharin
- Laboratory of Medical Biophysics, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia;
- Nizhny Novgorod State Agricultural Academy, 603117 Nizhny Novgorod, Russia
| | - Vladimir V. Nazarov
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia; (A.V.S.); (V.V.N.); (I.A.M.); (M.Y.A.)
- Laboratory of Medical Biophysics, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia;
- Institute of Applied Physics, 603950 Nizhny Novgorod, Russia
| | - Inessa A. Minenko
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia; (A.V.S.); (V.V.N.); (I.A.M.); (M.Y.A.)
- MJA Research and Development, Inc., East Stroudsburg, PA 18301, USA
| | - Mikhail Yu. Artamonov
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia; (A.V.S.); (V.V.N.); (I.A.M.); (M.Y.A.)
- MJA Research and Development, Inc., East Stroudsburg, PA 18301, USA
| |
Collapse
|
11
|
Insight into the Impact of Oxidative Stress on the Barrier Properties of Lipid Bilayer Models. Int J Mol Sci 2022; 23:ijms23115932. [PMID: 35682621 PMCID: PMC9180489 DOI: 10.3390/ijms23115932] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/10/2022] Open
Abstract
As a new field of oxidative stress-based therapy, cold physical plasma is a promising tool for several biomedical applications due to its potential to create a broad diversity of reactive oxygen and nitrogen species (RONS). Although proposed, the impact of plasma-derived RONS on the cell membrane lipids and properties is not fully understood. For this purpose, the changes in the lipid bilayer functionality under oxidative stress generated by an argon plasma jet (kINPen) were investigated by electrochemical techniques. In addition, liquid chromatography-tandem mass spectrometry was employed to analyze the plasma-induced modifications on the model lipids. Various asymmetric bilayers mimicking the structure and properties of the erythrocyte cell membrane were transferred onto a gold electrode surface by Langmuir-Blodgett/Langmuir-Schaefer deposition techniques. A strong impact of cholesterol on membrane permeabilization by plasma-derived species was revealed. Moreover, the maintenance of the barrier properties is influenced by the chemical composition of the head group. Mainly the head group size and its hydrogen bonding capacities are relevant, and phosphatidylcholines are significantly more susceptible than phosphatidylserines and other lipid classes, underlining the high relevance of this lipid class in membrane dynamics and cell physiology.
Collapse
|
12
|
Kugler P, Becker S, Welz C, Wiesmann N, Sax J, Buhr CR, Thoma MH, Brieger J, Eckrich J. Cold Atmospheric Plasma Reduces Vessel Density and Increases Vascular Permeability and Apoptotic Cell Death in Solid Tumors. Cancers (Basel) 2022; 14:cancers14102432. [PMID: 35626037 PMCID: PMC9139209 DOI: 10.3390/cancers14102432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Cold atmospheric plasma (CAP) resembles a physical state of matter, best described as ionized gas. CAP has demonstrated promising anti-cancer effects. Despite their relevance for the treatment of solid tumors, effects of CAP on tumor vessels and tumor-blood-circulation are still insufficiently investigated. CAP exposure reduced the vessel network inside the tumor and increased vascular leakiness, leading to an elevated tumor cell death and bleeding into the tumor tissue. These effects highlight the potential of CAP as a promising and yet underrated therapeutic modality for addressing the tumor vasculature in the treatment of solid tumors. Abstract Cold atmospheric plasma (CAP) has demonstrated promising anti-cancer effects in numerous in vitro and in vivo studies. Despite their relevance for the treatment of solid tumors, effects of CAP on tumor vasculature and microcirculation have only rarely been investigated. Here, we report the reduction of vessel density and an increase in vascular permeability and tumor cell apoptosis after CAP application. Solid tumors in the chorioallantoic membrane of chicken embryos were treated with CAP and evaluated with respect to effects of CAP on embryo survival, tumor size, and tumor morphology. Furthermore, intratumoral blood vessel density, apoptotic cell death and the tumor-associated microcirculation were investigated and compared to sham treatment. Treatment with CAP significantly reduced intratumoral vessel density while increasing the rate of intratumoral apoptosis in solid tumors. Furthermore, CAP treatment increased vascular permeability and attenuated the microcirculation by causing vessel occlusions in the tumor-associated vasculature. These effects point out the potential of CAP as a promising and yet underrated therapeutic modality for addressing the tumor vasculature in the treatment of solid tumors.
Collapse
Affiliation(s)
- Philipp Kugler
- Department of Otorhinolaryngology, University Medical Center Mainz, 55131 Mainz, Germany; (P.K.); (N.W.); (C.R.B.); (J.B.)
| | - Sven Becker
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Tübingen Medical Center, 72016 Tübingen, Germany;
| | - Christian Welz
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Nadine Wiesmann
- Department of Otorhinolaryngology, University Medical Center Mainz, 55131 Mainz, Germany; (P.K.); (N.W.); (C.R.B.); (J.B.)
- Department of Oral and Maxillofacial Surgery—Plastic Surgery, University Medical Center Mainz, 55131 Mainz, Germany;
| | - Jonas Sax
- Department of Oral and Maxillofacial Surgery—Plastic Surgery, University Medical Center Mainz, 55131 Mainz, Germany;
| | - Christoph R. Buhr
- Department of Otorhinolaryngology, University Medical Center Mainz, 55131 Mainz, Germany; (P.K.); (N.W.); (C.R.B.); (J.B.)
| | - Markus H. Thoma
- Institute of Experimental Physics I, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Juergen Brieger
- Department of Otorhinolaryngology, University Medical Center Mainz, 55131 Mainz, Germany; (P.K.); (N.W.); (C.R.B.); (J.B.)
| | - Jonas Eckrich
- Department of Otorhinolaryngology, University Medical Center Mainz, 55131 Mainz, Germany; (P.K.); (N.W.); (C.R.B.); (J.B.)
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), 53127 Bonn, Germany
- Correspondence: ; Tel.: +49-228-287-13712
| |
Collapse
|
13
|
Min T, Xie X, Ren K, Sun T, Wang H, Dang C, Zhang H. Therapeutic Effects of Cold Atmospheric Plasma on Solid Tumor. Front Med (Lausanne) 2022; 9:884887. [PMID: 35646968 PMCID: PMC9139675 DOI: 10.3389/fmed.2022.884887] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/13/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer is a devastating disease, and there is no particularly effective treatment at present. Recently, a new treatment, cold atmospheric plasma (CAP), has been proposed. At present, CAP is confirmed to have selective killing effect on tumor by many studies in vitro and in vivo. A targeted literature search was carried out on the study of cold atmospheric plasma. Through analysis and screening, a narrative review approach was selected to describe therapeutic effects of cold atmospheric plasma on solid tumor. According to the recent studies on plasma, some hypothetical therapeutic schemes of CAP are proposed in this paper. The killing mechanism of CAP on solid tumor is expounded in terms of the selectivity of CAP to tumor, the effects of CAP on cells, tumor microenvironment (TME) and immune system. CAP has many effects on solid tumors, and these effects are dose-dependent. The effects of optimal doses of CAP on solid tumors include killing tumor cells, inhibiting non-malignant cells and ECM in TME, affecting the communication between tumor cells, and inducing immunogenic death of tumor cells. In addition, several promising research directions of CAP are proposed in this review, which provide guidance for future research.
Collapse
Affiliation(s)
- Tianhao Min
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kaijie Ren
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tuanhe Sun
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Haonan Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- *Correspondence: Chengxue Dang
| | - Hao Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Hao Zhang
| |
Collapse
|
14
|
Applications of Plasma Produced with Electrical Discharges in Gases for Agriculture and Biomedicine. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The use of thermal and non-thermal atmospheric pressure plasma to solve problems related to agriculture and biomedicine is the focus of this paper. Plasma in thermal equilibrium is used where heat is required. In agriculture, it is used to treat soil and land contaminated by the products of biomass, plastics, post-hospital and pharmaceutical waste combustion, and also by ecological phenomena that have recently been observed, such as droughts, floods and storms, leading to environmental pollution. In biomedical applications, thermal plasma is used in so-called indirect living tissue treatment. The sources of thermal plasma are arcs, plasma torches and microwave plasma reactors. In turn, atmospheric pressure cold (non-thermal) plasma is applied in agriculture and biomedicine where heat adversely affects technological processes. The thermodynamic imbalance of cold plasma makes it suitable for organic syntheses due its low power requirements and the possibility of conducting chemical reactions in gas at relatively low and close to ambient temperatures. It is also suitable in the treatment of living tissues and sterilisation of medical instruments made of materials that are non-resistant to high temperatures. Non-thermal and non-equilibrium discharges at atmospheric pressure that include dielectric barrier discharges (DBDs) and atmospheric pressure plasma jets (APPJs), as well as gliding arc (GAD), can be the source of cold plasma. This paper presents an overview of agriculture and soil protection problems and biomedical and health protection problems that can be solved with the aid of plasma produced with electrical discharges. In particular, agricultural processes related to water, sewage purification with ozone and with advanced oxidation processes, as well as those related to contaminated soil treatment and pest control, are presented. Among the biomedical applications of cold plasma, its antibacterial activity, wound healing, cancer treatment and dental problems are briefly discussed.
Collapse
|
15
|
Erfani R, Carmichael C, Sofokleous T, Wang Q. Nanosecond-pulsed DBD plasma treatment on human leukaemia Jurkat cells and monoblastic U937 cells in vitro. Sci Rep 2022; 12:6270. [PMID: 35428374 PMCID: PMC9012873 DOI: 10.1038/s41598-022-10056-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/24/2022] [Indexed: 11/09/2022] Open
Abstract
Plasma therapy offers an exciting and novel way of cancer treatment. Specifically, it is shown that Jurkat death rates are closely governed by the plasma treatment time. However, apart from time, alterations to different parameters of treatment process may yield better results. Here, Dielectric barrier discharge (DBD) reactors excited by a nanosecond-pulse energy source are used to investigate cell viability for longer exposure times as well as the effects of polarity of reactor on treatment. Plasma discharge regimes are discussed and assessed using imaging and thermal imaging methods. We found that by changing the polarity of reactor i.e. changing the direction of plasma discharge, the plasma discharge regime changes influencing directly the effectiveness of treatment. Our results showed that ns-DBD- reactor could induce both apoptosis and necrosis of human Jurkat and U937 cells, and this cytotoxic effect of plasma was not completely antagonized by N-acetyl cysteine. It indicates that plasma could induce ROS-independent cell death. Gene expression analyses revealed that p53, BAD, BID and caspase 9 may play vital roles in plasma caused cell death. In addition, our findings demonstrate how different parameters can influence the effectiveness of our reactors. Our assay reveals the custom ability nature of plasma reactors for hematologic cancer therapy and our findings can be used for further development of such reactors using multi-objective optimisation techniques.
Collapse
Affiliation(s)
- Rasool Erfani
- Department of Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK. .,Department of Civil, Environmental and Geomatic Engineering, UCL, London, WC1E 6BT, UK.
| | - Cameron Carmichael
- Department of Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Thea Sofokleous
- Department of Life Sciences, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Qiuyu Wang
- Department of Life Sciences, Manchester Metropolitan University, Manchester, M1 5GD, UK
| |
Collapse
|
16
|
Nasri Z, Memari S, Striesow J, Weltmann KD, von Woedtke T, Wende K. Application of scanning electrochemical microscopy for topography imaging of supported lipid bilayers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1077-1082. [PMID: 35201253 DOI: 10.1039/d2ay00154c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Oxidative stress in cellular environments may cause lipid oxidation and membrane degradation. Therefore, studying the degree of lipid membrane morphological changes by reactive oxygen and nitrogen species will be informative in oxidative stress-based therapies. This study introduces the possibility of using scanning electrochemical microscopy as a powerful imaging technique to follow the topographical changes of a solid-supported lipid bilayer model induced by reactive species produced from gas plasma. The introduced strategy is not limited to investigating the effect of reactive species on the lipid bilayer but could be extended to understand the morphological changes of the lipid bilayer due to the action of membrane proteins or antimicrobial peptides.
Collapse
Affiliation(s)
- Zahra Nasri
- Center for Innovation Competence (ZIK) plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany.
| | - Seyedali Memari
- Center for Innovation Competence (ZIK) plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany.
- Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Johanna Striesow
- Center for Innovation Competence (ZIK) plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany.
| | - Klaus-Dieter Weltmann
- Center for Innovation Competence (ZIK) plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany.
| | - Thomas von Woedtke
- Center for Innovation Competence (ZIK) plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany.
- Institute for Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Kristian Wende
- Center for Innovation Competence (ZIK) plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany.
| |
Collapse
|
17
|
Qi M, Xu D, Wang S, Li B, Peng S, Li Q, Zhang H, Fan R, Chen H, Kong MG. In Vivo Metabolic Analysis of the Anticancer Effects of Plasma-Activated Saline in Three Tumor Animal Models. Biomedicines 2022; 10:biomedicines10030528. [PMID: 35327329 PMCID: PMC8945198 DOI: 10.3390/biomedicines10030528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/12/2022] [Accepted: 02/20/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, the emerging technology of cold atmospheric pressure plasma (CAP) has grown rapidly along with the many medical applications of cold plasma (e.g., cancer, skin disease, tissue repair, etc.). Plasma-activated liquids (e.g., culture media, water, or normal saline, previously exposed to plasma) are being studied as cancer treatments, and due to their advantages, many researchers prefer plasma-activated liquids as an alternative to CAP in the treatment of cancer. In this study, we showed that plasma-activated-saline (PAS) treatment significantly inhibited tumor growth, as compared with saline, in melanoma, and a low-pH environment had little effect on tumor growth in vivo. In addition, based on an ultra-high-performance liquid tandem chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) analysis of tumor cell metabolism, the glycerophospholipid metabolic pathway was the most susceptible metabolic pathway to PAS treatment in melanoma in vitro and in vivo. Furthermore, PAS also inhibited cell proliferation in vivo in oral tongue squamous-cell cancer and non-small-cell lung cancer. There were few toxic side effects in the three animal models, and the treatment was deemed safe to use. In the future, plasma-activated liquids may serve as a potential therapeutic approach in the treatment of cancer.
Collapse
Affiliation(s)
- Miao Qi
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (M.Q.); (S.P.); (Q.L.); (H.Z.); (R.F.)
- The School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (S.W.); (B.L.)
| | - Dehui Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (M.Q.); (S.P.); (Q.L.); (H.Z.); (R.F.)
- Correspondence: (D.X.); (M.G.K.)
| | - Shuai Wang
- The School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (S.W.); (B.L.)
| | - Bing Li
- The School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (S.W.); (B.L.)
| | - Sansan Peng
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (M.Q.); (S.P.); (Q.L.); (H.Z.); (R.F.)
| | - Qiaosong Li
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (M.Q.); (S.P.); (Q.L.); (H.Z.); (R.F.)
| | - Hao Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (M.Q.); (S.P.); (Q.L.); (H.Z.); (R.F.)
| | - Runze Fan
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (M.Q.); (S.P.); (Q.L.); (H.Z.); (R.F.)
| | - Hailan Chen
- Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA;
| | - Michael G. Kong
- Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA;
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529, USA
- Correspondence: (D.X.); (M.G.K.)
| |
Collapse
|
18
|
Rebl H, Sawade M, Hein M, Bergemann C, Wende M, Lalk M, Langer P, Emmert S, Nebe B. Synergistic effect of plasma-activated medium and novel indirubin derivatives on human skin cancer cells by activation of the AhR pathway. Sci Rep 2022; 12:2528. [PMID: 35169210 PMCID: PMC8847430 DOI: 10.1038/s41598-022-06523-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 01/27/2022] [Indexed: 01/07/2023] Open
Abstract
Due to the increasing number of human skin cancers and the limited effectiveness of therapies, research into innovative therapeutic approaches is of enormous clinical interest. In recent years, the use of cold atmospheric pressure plasma has become increasingly important as anti-cancer therapy. The combination of plasma with small molecules offers the potential of an effective, tumour-specific, targeted therapy. The synthesised glycosylated and non glycosylated thia-analogous indirubin derivatives KD87 and KD88, respectively, were first to be investigated for their pharmaceutical efficacy in comparison with Indirubin-3'-monoxime (I3M) on human melanoma (A375) and squamous cell carcinoma (A431) cells. In combinatorial studies with plasma-activated medium (PAM) and KD87 we determined significantly decreased cell viability and cell adhesion. Cell cycle analyses revealed a marked G2/M arrest by PAM and a clear apoptotic effect by the glycosylated indirubin derivative KD87 in both cell lines and thus a synergistic anti-cancer effect. I3M had a pro-apoptotic effect only in A431 cells, so we hypothesize a different mode of action of the indirubin derivatives in the two skin cancer cells, possibly due to a different level of the aryl hydrocarbon receptor and an activation of this pathway by nuclear translocation of this receptor and subsequent activation of gene expression.
Collapse
Affiliation(s)
- Henrike Rebl
- grid.413108.f0000 0000 9737 0454Department of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Marie Sawade
- grid.413108.f0000 0000 9737 0454Department of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Martin Hein
- grid.10493.3f0000000121858338Institute for Chemistry, University of Rostock, 18059 Rostock, Germany
| | - Claudia Bergemann
- grid.413108.f0000 0000 9737 0454Department of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Manuela Wende
- grid.5603.0Institute for Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | - Michael Lalk
- grid.5603.0Institute for Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | - Peter Langer
- grid.10493.3f0000000121858338Institute for Chemistry, University of Rostock, 18059 Rostock, Germany
| | - Steffen Emmert
- grid.413108.f0000 0000 9737 0454Clinic and Polyclinic for Dermatology and Venerology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Barbara Nebe
- grid.413108.f0000 0000 9737 0454Department of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
19
|
Targeted Protein Profiling of In Vivo NIPP-Treated Tissues Using DigiWest Technology. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Non-invasive physical plasma (NIPP) is a novel therapeutic tool, currently being evaluated for the treatment of cancer and precancerous lesions in gynecology and other disciplines. Additionally, patients with cervical intraepithelial neoplasia (CIN) may benefit from NIPP treatment due to its non-invasive, side-effect-free, and tissue-sparing character. However, the molecular impact of in vivo NIPP treatment needs to be further investigated. For this purpose, usually only very small tissue biopsies are available after NIPP treatment. Here, we adapted DigiWest technology, a high-throughput bead-based Western blot, for the analysis of formalin-fixed paraffin-embedded (FFPE) cervical punch biopsies with a minimal sample amount. We investigated the molecular effects of NIPP treatment directly after (0 h) and 24 h after in vivo application. Results were compared to in vitro NIPP-treated human malignant cervical cells. NIPP effects were primarily based on an inhibitory impact on the cell cycle and cell growth factors. DigiWest technology was suitable for detailed protein profiling of small, primary FFPE biopsies.
Collapse
|
20
|
Ma M, Cheng H, Sun F, Lu X, He G, Laroussi M. Differences in Cytotoxicity Induced by Cold Atmospheric Plasma and Exogenous RONS Solutions on Human Keratinocytes and Melanoma Cells. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.3043540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Arndt S, Unger P, Bosserhoff AK, Berneburg M, Karrer S. The Anti-Fibrotic Effect of Cold Atmospheric Plasma on Localized Scleroderma In Vitro and In Vivo. Biomedicines 2021; 9:biomedicines9111545. [PMID: 34829774 PMCID: PMC8615017 DOI: 10.3390/biomedicines9111545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 02/06/2023] Open
Abstract
Cold Atmospheric Plasma (CAP) has shown promising results in the treatment of various skin diseases. The therapeutic effect of CAP on localized scleroderma (LS), however, has not yet been evaluated. We investigated the effects of CAP on LS by comparing human normal fibroblasts (hNF), human TGF-β-activated fibroblasts (hAF), and human localized scleroderma-derived fibroblasts (hLSF) after direct CAP treatment, co-cultured with plasma-treated human epidermal keratinocytes (hEK) and with an experimental murine model of scleroderma. In hAF and hLSF, 2 min CAP treatment with the MicroPlaSterβ® plasma torch did not affect pro-fibrotic gene expression of alpha smooth muscle actin, fibroblast activating protein, and collagen type I, however, it promoted re-expression of matrix metalloproteinase 1. Functionally, CAP treatment reduced cell migration and stress fiber formation in hAF and hLSF. The relevance of CAP treatment was confirmed in an in vivo model of bleomycin-induced dermal fibrosis. In this model, CAP-treated mice showed significantly reduced dermal thickness and collagen deposition as well as a decrease in both alpha smooth muscle actin-positive myofibroblasts and CD68-positive macrophages in the affected skin in comparison to untreated fibrotic tissue. In conclusion, this study provides the first evidence for the successful use of CAP for treating LS and may be the basis for clinical trials including patients with LS.
Collapse
Affiliation(s)
- Stephanie Arndt
- Department of Dermatology, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, 93053 Regensburg, Germany; (P.U.); (M.B.); (S.K.)
- Correspondence: ; Tel.: +49-941-944-9650
| | - Petra Unger
- Department of Dermatology, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, 93053 Regensburg, Germany; (P.U.); (M.B.); (S.K.)
| | - Anja-Katrin Bosserhoff
- Institute of Biochemistry, University of Erlangen-Nuernberg (FAU), 91054 Erlangen, Germany;
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | - Mark Berneburg
- Department of Dermatology, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, 93053 Regensburg, Germany; (P.U.); (M.B.); (S.K.)
| | - Sigrid Karrer
- Department of Dermatology, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, 93053 Regensburg, Germany; (P.U.); (M.B.); (S.K.)
| |
Collapse
|
22
|
Eggers B, Marciniak J, Memmert S, Wagner G, Deschner J, Kramer FJ, Nokhbehsaim M. Influences of cold atmospheric plasma on apoptosis related molecules in osteoblast-like cells in vitro. Head Face Med 2021; 17:37. [PMID: 34479596 PMCID: PMC8414668 DOI: 10.1186/s13005-021-00287-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/05/2021] [Indexed: 12/26/2022] Open
Abstract
Background Cold atmospheric plasma (CAP) has recently been identified as a novel therapeutic strategy for supporting processes of wound healing. Since CAP is additionally known to kill malignant cells, our study intends to determine the influence of CAP on crucial molecules involved in the molecular mechanism of apoptosis in osteoblast-like cells. Methods Human osteoblast-like cells were CAP-treated for 30 and 60 s. CAP effects on critical factors related to apoptosis were studied at transcriptional and protein level using real time-PCR, immunofluorescence staining and western blot. Phalloidin / DAPI staining was used for analyzing the cell morphology. In addition, apoptotic outcomes of CAP were displayed using flow cytometry analysis. For studying intracellular signaling pathways, MAP kinase MEK 1/2 and PI3K were blocked. Finally, the effects of CAP on caspase-3 activity were examined using a caspase-3 assay. Results CAP treatment resulted in a significant downregulation of p53 and apoptotic protease activating factor (APAF)-1, caspase (CASP)9, CASP3, BCL2 Antagonist/Killer (BAK)1, and B-Cell Lymphoma (BCL)2 mRNA expression at 1 d. An inhibitory effect of CAP on apoptotic genes was also shown under inflammatory and apoptotic conditions. Nuclear translocation of p53 was determined in CAP treated cells at the early and late stage, after 15 min, 30 min, and 1 h. p53 and APAF-1 protein levels were reduced at 1 d, visualized by immunofluorescence and western blot, respectively. Moreover, a morphological cytoskeleton modification was observed after CAP treatment at 1 d. Further, both CAP-treated and untreated (control) cells remained equally vital as detected by flow cytometry analysis. Interestingly, CAP-associated downregulation of CASP9 and CASP3 mRNA gene expression was also visible after blocking MAP kinase and PI3K. Finally, CAP led to a decrease in CASP3 activity in osteoblast-like cells under normal and apoptotic conditions. Conclusions Our in vitro-study demonstrated, that CAP decreases apoptosis related molecules in osteoblast-like cells, underlining a beneficial effect on hard-tissue cells.
Collapse
Affiliation(s)
- Benedikt Eggers
- Department of Oral, Maxillofacial and Plastic Surgery, Center of Dento-Maxillo-Facial Medicine, University Hospital Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany.
| | - Jana Marciniak
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University Hospital Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany.,Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University Hospital Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - Svenja Memmert
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University Hospital Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany.,Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University Hospital Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - Gunar Wagner
- Department of Periodontology, Operative and Preventive Dentistry, Center of Dento-Maxillo-Facial Medicine, University Hospital Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Augustusplatz 2, 55131, Mainz, Germany
| | - Franz-Josef Kramer
- Department of Oral, Maxillofacial and Plastic Surgery, Center of Dento-Maxillo-Facial Medicine, University Hospital Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - Marjan Nokhbehsaim
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University Hospital Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| |
Collapse
|
23
|
Hamouda I, Labay C, Cvelbar U, Ginebra MP, Canal C. Selectivity of direct plasma treatment and plasma-conditioned media in bone cancer cell lines. Sci Rep 2021; 11:17521. [PMID: 34471164 PMCID: PMC8410816 DOI: 10.1038/s41598-021-96857-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/10/2021] [Indexed: 11/09/2022] Open
Abstract
Atmospheric pressure plasma jets have been shown to impact several cancer cell lines, both in vitro and in vivo. These effects are based on the biochemistry of the reactive oxygen and nitrogen species generated by plasmas in physiological liquids, referred to as plasma-conditioned liquids. Plasma-conditioned media are efficient in the generation of reactive species, inducing selective cancer cell death. However, the concentration of reactive species generated by plasma in the cell culture media of different cell types can be highly variable, complicating the ability to draw precise conclusions due to the differential sensitivity of different cells to reactive species. Here, we compared the effects of direct and indirect plasma treatment on non-malignant bone cells (hOBs and hMSCs) and bone cancer cells (SaOs-2s and MG63s) by treating the cells directly or exposing them to previously treated cell culture medium. Biological effects were correlated with the concentrations of reactive species generated in the liquid. A linear increase in reactive species in the cell culture medium was observed with increased plasma treatment time independent of the volume treated. Values up to 700 µM for H2O2 and 140 µM of NO2- were attained in 2 mL after 15 min of plasma treatment in AdvDMEM cell culture media. Selectivity towards bone cancer cells was observed after both direct and indirect plasma treatments, leading to a decrease in bone cancer cell viability at 72 h to 30% for the longest plasma treatment times while maintaining the survival of non-malignant cells. Therefore, plasma-conditioned media may represent the basis for a potentially novel non-invasive technique for bone cancer therapy.
Collapse
Affiliation(s)
- Inès Hamouda
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, and Research Centre for Biomedical Engineering (CREB), Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 10-14, 08019, Barcelona, Spain
- Barcelona Research Centre in Multiscale Science and Engineering, UPC, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, 08034, Barcelona, Spain
| | - Cédric Labay
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, and Research Centre for Biomedical Engineering (CREB), Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 10-14, 08019, Barcelona, Spain
- Barcelona Research Centre in Multiscale Science and Engineering, UPC, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, 08034, Barcelona, Spain
| | - Uroš Cvelbar
- Department of Gaseous Electronics (F-6), Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, and Research Centre for Biomedical Engineering (CREB), Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 10-14, 08019, Barcelona, Spain
- Barcelona Research Centre in Multiscale Science and Engineering, UPC, Barcelona, Spain
- Institute for Bioengineering of Catalonia, c/Baldiri i Reixach 10-12, 08028, Barcelona, Spain
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, and Research Centre for Biomedical Engineering (CREB), Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 10-14, 08019, Barcelona, Spain.
- Barcelona Research Centre in Multiscale Science and Engineering, UPC, Barcelona, Spain.
- Institut de Recerca Sant Joan de Déu, 08034, Barcelona, Spain.
| |
Collapse
|
24
|
Abstract
Cold atmospheric plasma (CAP) is an ionized gas, the product of a non-equilibrium discharge at atmospheric conditions. Both chemical and physical factors in CAP have been demonstrated to have unique biological impacts in cancer treatment. From a chemical-based perspective, the anti-cancer efficacy is determined by the cellular sensitivity to reactive species. CAP may also be used as a powerful anti-cancer modality based on its physical factors, mainly EM emission. Here, we delve into three CAP cancer treatment approaches, chemically based direct/indirect treatment and physical-based treatment by discussing their basic principles, features, advantages, and drawbacks. This review does not focus on the molecular mechanisms, which have been widely introduced in previous reviews. Based on these approaches and novel adaptive plasma concepts, we discuss the potential clinical application of CAP cancer treatment using a critical evaluation and forward-looking perspectives.
Collapse
|
25
|
Tan F, Rui X, Xiang X, Yu Z, Al-Rubeai M. Multimodal treatment combining cold atmospheric plasma and acidic fibroblast growth factor for multi-tissue regeneration. FASEB J 2021; 35:e21442. [PMID: 33774850 DOI: 10.1096/fj.202002611r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Cold atmospheric plasma (CAP) is an emerging technology for biomedical applications, exemplified by its antimicrobial and antineoplastic potentials. On the contrary, acidic fibroblast growth factor (aFGF) has been a long-standing potent mitogen for cells from various origins. In this study, we are the first to develop a multimodal treatment combining the aforementioned physicochemical and pharmacological treatments and investigated their individual and combined effects on wound healing, angiogenesis, neurogenesis, and osteogenesis. This work was performed at the tissue, cellular, protein, and gene levels, using histochemical staining, flow cytometry, ELISA, and PCR, respectively. Depending on the type of target tissue, various combinations of aforementioned methods were used. The results showed that the enhancement on would healing and angiogenesis by CAP and aFGF were synergistic. The former was manifested by increased murine fibroblast proliferation and reduced cutaneous tissue inflammation, whereas the latter by upregulated proangiogenic markers in vivo, for example, CD31, VEGF, and TGF-β, and downregulated antiangiogenic proteins in vitro, for example, angiostatin and angiopoietin-2, respectively. In addition, aFGF outperformed CAP during neurogenesis, which was evidenced by superior neurite outgrowth, while CAP exceeded aFGF in osteogenesis which was demonstrated by more substantial bone nodule formation. These novel findings not only support the fact that CAP and aFGF are both multipotent agents during tissue regeneration, but also highlight the potential of our multimodal treatment combining the individual advantages of CAP and aFGF. The versatile administration route, that is, topical and/or systemic, might further broaden its applications.
Collapse
Affiliation(s)
- Fei Tan
- Department of ORL-HNS, Shanghai East Hospital, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China.,The Royal College of Surgeons of England, London, UK
| | - Xiaoqing Rui
- Department of ORL-HNS, Shanghai East Hospital, Shanghai, China
| | - Xue Xiang
- Research Center for Translational Medicine, Shanghai East Hospital, Shanghai, China
| | - Zuoren Yu
- School of Medicine, Tongji University, Shanghai, China.,Research Center for Translational Medicine, Shanghai East Hospital, Shanghai, China
| | - Mohamed Al-Rubeai
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
26
|
Oliveira MC, Yusupov M, Bogaerts A, Cordeiro RM. Lipid Oxidation: Role of Membrane Phase-Separated Domains. J Chem Inf Model 2021; 61:2857-2868. [PMID: 34080860 DOI: 10.1021/acs.jcim.1c00104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lipid oxidation is associated with several inflammatory and neurodegenerative diseases, but many questions to unravel its effects on biomembranes are still open due to the complexity of the topic. For instance, recent studies indicated that phase-separated domains can have a significant effect on membrane function. It is reported that domain interfaces are "hot spots" for pore formation, but the underlying mechanisms and the effect of oxidation-induced phase separation on membranes remain elusive. Thus, to evaluate the permeability of the membrane coexisting of liquid-ordered (Lo) and liquid-disordered (Ld) domains, we performed atomistic molecular dynamics simulations. Specifically, we studied the membrane permeability of nonoxidized or oxidized homogeneous membranes (single-phase) and at the Lo/Ld domain interfaces of heterogeneous membranes, where the Ld domain is composed of either oxidized or nonoxidized lipids. Our simulation results reveal that the addition of only 1.5% of lipid aldehyde molecules at the Lo/Ld domain interfaces of heterogeneous membranes increases the membrane permeability, whereas their addition at homogeneous membranes does not have any effect. This study is of interest for a better understanding of cancer treatment methods based on oxidative stress (causing among others lipid oxidation), such as plasma medicine and photodynamic therapy.
Collapse
Affiliation(s)
- Maria C Oliveira
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, CEP 09210-580 Santo André, SP, Brazil.,Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Maksudbek Yusupov
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Rodrigo M Cordeiro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, CEP 09210-580 Santo André, SP, Brazil
| |
Collapse
|
27
|
The amino acid metabolism is essential for evading physical plasma-induced tumour cell death. Br J Cancer 2021; 124:1854-1863. [PMID: 33767419 PMCID: PMC8144554 DOI: 10.1038/s41416-021-01335-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/10/2021] [Accepted: 02/26/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Recent studies have emphasised the important role of amino acids in cancer metabolism. Cold physical plasma is an evolving technology employed to target tumour cells by introducing reactive oxygen species (ROS). However, limited understanding is available on the role of metabolic reprogramming in tumour cells fostering or reducing plasma-induced cancer cell death. METHODS The utilisation and impact of major metabolic substrates of fatty acid, amino acid and TCA pathways were investigated in several tumour cell lines following plasma exposure by qPCR, immunoblotting and cell death analysis. RESULTS Metabolic substrates were utilised in Panc-1 and HeLa but not in OVCAR3 and SK-MEL-28 cells following plasma treatment. Among the key genes governing these pathways, ASCT2 and SLC3A2 were consistently upregulated in Panc-1, Miapaca2GR, HeLa and MeWo cells. siRNA-mediated knockdown of ASCT2, glutamine depletion and pharmacological inhibition with V9302 sensitised HeLa cells to the plasma-induced cell death. Exogenous supplementation of glutamine, valine or tyrosine led to improved metabolism and viability of tumour cells following plasma treatment. CONCLUSION These data suggest the amino acid influx driving metabolic reprogramming in tumour cells exposed to physical plasma, governing the extent of cell death. This pathway could be targeted in combination with existing anti-tumour agents.
Collapse
|
28
|
Gan L, Jiang J, Duan JW, Wu XJZ, Zhang S, Duan XR, Song JQ, Chen HX. Cold atmospheric plasma applications in dermatology: A systematic review. JOURNAL OF BIOPHOTONICS 2021; 14:e202000415. [PMID: 33231354 DOI: 10.1002/jbio.202000415] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
Cold atmospheric plasma (CAP) applications can potentially lead to effective therapy for numerous skin diseases. Our aim is to systematically review the available data and map the use of CAP in dermatology. PubMed, Embase and Web of science were explored before 2020 for studies regarding the use of CAP in dermatology. A total of 166 studies were finally included. 74.1% of these studies used indirect CAP sources. Most studies used plasma jet (67.5%). Argon was the mostly used working gas (48.2%). Plasma application itself could be direct (89.2%) and indirect (16.3%). The proportion of studies with in vivo results remained 57.2%, of which most concerned direct plasma treatment (97.9%). Analyses performed indicate that CAP has been beneficial in many skin disorders. While, most CAP applications were focused on wound healing and melanoma treatment. This study provides a brief overview of CAP sources and relative medical applications in dermatology.
Collapse
Affiliation(s)
- Lu Gan
- Department of Dermatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jian Jiang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Wei Duan
- The International Joint Research Laboratory for Innovative Design and Manufacturing of Advanced Mechanical Systems, Jihua Laboratory, Foshan, China
| | - Xue Jing Zi Wu
- Department of Dermatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Song Zhang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Ru Duan
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji Quan Song
- Department of Dermatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hong Xiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
29
|
Sklias K, Santos Sousa J, Girard PM. Role of Short- and Long-Lived Reactive Species on the Selectivity and Anti-Cancer Action of Plasma Treatment In Vitro. Cancers (Basel) 2021; 13:cancers13040615. [PMID: 33557129 PMCID: PMC7913865 DOI: 10.3390/cancers13040615] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary One fundamental feature that has emerged from in vitro application of cold plasmas in cancer treatment is the key role of the liquid phase covering the cells. In the present work, we investigated the effect of direct and indirect plasma treatments on two cancer and three normal cell lines to assess the benefits of one treatment over the other in terms of death of tumor versus healthy cells. Our results demonstrate that indirect plasma treatment is as efficient at killing tumor cells as an appropriate combination of H2O2, NO2− and acidic pH in ad hoc solutions, while sparing normal cells. However, direct plasma treatment is far more efficient at killing normal than tumor cells, and we provide evidence that short- and long-lived reactive species contribute synergistically to kill normal cells, while having an additive effect regarding tumor cell death. Collectively, our results call the use of plasma-activated liquid in cancer treatment into question. Abstract (1) Plasma-activated liquids (PAL) have been extensively studied for their anti-cancer properties. Two treatment modalities can be applied to the cells, direct and indirect plasma treatments, which differ by the environment to which the cells are exposed. For direct plasma treatment, the cells covered by a liquid are present during the plasma treatment time (phase I, plasma ON) and the incubation time (phase II, plasma OFF), while for indirect plasma treatment, phase I is cell-free and cells are only exposed to PAL during phase II. The scope of this work was to study these two treatment modalities to bring new insights into the potential use of PAL for cancer treatment. (2) We used two models of head and neck cancer cells, CAL27 and FaDu, and three models of normal cells (1Br3, NHK, and RPE-hTERT). PBS was used as the liquid of interest, and the concentration of plasma-induced H2O2, NO2− and NO3−, as well as pH change, were measured. Cells were exposed to direct plasma treatment, indirect plasma treatment or reconstituted buffer (PBS adjusted with plasma-induced concentrations of H2O2, NO2−, NO3− and pH). Metabolic cell activity, cell viability, lipid peroxidation, intracellular ROS production and caspase 3/7 induction were quantified. (3) If we showed that direct plasma treatment is slightly more efficient than indirect plasma treatment and reconstituted buffer at inducing lipid peroxidation, intracellular increase of ROS and cancer cell death in tumor cells, our data also revealed that reconstituted buffer is equivalent to indirect plasma treatment. In contrast, normal cells are quite insensitive to these two last treatment modalities. However, they are extremely sensitive to direct plasma treatment. Indeed, we found that phase I and phase II act in synergy to trigger cell death in normal cells and are additive concerning tumor cell death. Our data also highlight the presence in plasma-treated PBS of yet unidentified short-lived reactive species that contribute to cell death. (4) In this study, we provide strong evidence that, in vitro, the concentration of RONS (H2O2, NO2− and NO3−) in combination with the acidic pH are the main drivers of plasma-induced PBS toxicity in tumor cells but not in normal cells, which makes ad hoc reconstituted solutions powerful anti-tumor treatments. In marked contrast, direct plasma treatment is deleterious for normal cells in vitro and should be avoided. Based on our results, we discuss the limitations to the use of PAL for cancer treatments.
Collapse
Affiliation(s)
- Kyriakos Sklias
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Gaz et des Plasmas, 91405 Orsay, France;
| | - João Santos Sousa
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Gaz et des Plasmas, 91405 Orsay, France;
- Correspondence: (J.S.S.); (P.-M.G.); Tel.: +33-(0)1-69-15-54-12 (J.S.S.); +33-(0)1-69-86-31-31 (P.-M.G.)
| | - Pierre-Marie Girard
- Institut Curie, PSL Research University, CNRS, INSERM, UMR 3347, 91405 Orsay, France
- Université Paris-Saclay, CNRS, UMR 3347, 91405 Orsay, France
- Correspondence: (J.S.S.); (P.-M.G.); Tel.: +33-(0)1-69-15-54-12 (J.S.S.); +33-(0)1-69-86-31-31 (P.-M.G.)
| |
Collapse
|
30
|
Application of Y–ZrO2 microtubes as dielectric barrier material in a He atmospheric pressure micro-plasma jet. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-020-03981-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
AbstractThis work focused on the application of novel 8% yttria-stabilized Zr2O3 (YSZ) microtubes with an inner diameter of 60 µm as dielectric material in an atmospheric pressure micro-plasma jet (APPJ). Furthermore, a comparison with quartz microtubes allowed to study the effect of tube material on plasma properties. Optical emission spectroscopy was employed to determine various spectral line ratios including ratios of He lines 667 nm (31D-21P) to 728 nm (31S-21P) which is indicative of electric field strength. The 667/728 nm line ratio in the YSZ microtube was about 2/3 the value in the 60-µm quartz tube. However, increasing the quartz tube’s inner diameter from 60 to 500 µm decreased the 667/728 nm line ratio 40 times. Additionally, the spatio-temporal evolution of the ionization wave was measured in the YSZ microtube and the velocity of the ionization wave was determined to accelerate from 67 km/s near the powered electrode to 161 km/s near the tube orifice.
Collapse
|
31
|
Distinct Chemistries Define the Diverse Biological Effects of Plasma Activated Water Generated with Spark and Glow Plasma Discharges. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The spread of multidrug-resistant bacteria poses a significant threat to human health. Plasma activated liquids (PAL) could be a promising alternative for microbial decontamination, where different PAL can possess diverse antimicrobial efficacies and cytotoxic profiles, depending on the range and concentration of their reactive chemical species. In this research, the biological activity of plasma activated water (PAW) on different biological targets including both microbiological and mammalian cells was investigated in vitro. The aim was to further an understanding of the specific role of distinct plasma reactive species, which is required to tailor plasma activated liquids for use in applications where high antimicrobial activity is required without adversely affecting the biology of eukaryotic cells. PAW was generated by glow and spark discharges, which provide selective generation of hydrogen peroxide, nitrite and nitrate in the liquid. The PAW made by either spark or glow discharges showed similar antimicrobial efficacy and stability of activity, despite the very different reactive oxygen species (ROS) and reactive nitrogen species profiles (RNS). However, different trends were observed for cytotoxic activities and effects on enzyme function, which were translated through the selective chemical species generation. These findings indicate very distinct mechanisms of action which may be exploited when tailoring plasma activated liquids to various applications. A remarkable stability to heat and pressure was noted for PAW generated with this set up, which broadens the application potential. These features also suggest that post plasma modifications and post generation stability can be harnessed as a further means of modulating the chemistry, activity and mode of delivery of plasma functionalised liquids. Overall, these results further understanding on how PAL generation may be tuned to provide candidate disinfectant agents for biomedical application or for bio-decontamination in diverse areas.
Collapse
|
32
|
Busco G, Robert E, Chettouh-Hammas N, Pouvesle JM, Grillon C. The emerging potential of cold atmospheric plasma in skin biology. Free Radic Biol Med 2020; 161:290-304. [PMID: 33039651 DOI: 10.1016/j.freeradbiomed.2020.10.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 12/25/2022]
Abstract
The maintenance of skin integrity is crucial to ensure the physiological barrier against exogenous compounds, microorganisms and dehydration but also to fulfill social and aesthetic purposes. Besides the development of new actives intended to enter a formulation, innovative technologies based on physical principles have been proposed in the last years. Among them, Cold Atmospheric Plasma (CAP) technology, which already showed interesting results in dermatology, is currently being studied for its potential in skin treatments and cares. CAP bio-medical studies gather several different expertise ranging from physics to biology through chemistry and biochemistry, making this topic hard to pin. In this review we provide a broad survey of the interactions between CAP and skin. In the first section, we tried to give some fundamentals on skin structure and physiology, related to its essential functions, together with the main bases on cold plasma and its physicochemical properties. In the following parts we dissected and analyzed each CAP parameter to highlight the already known and the possible effects they can play on skin. This overview aims to get an idea of the potential of cold atmospheric plasma technology in skin biology for the future developments of dermo-cosmetic treatments, for example in aging prevention.
Collapse
Affiliation(s)
- Giovanni Busco
- Centre de Biophysique Moléculaire, UPR4301, CNRS, 45071, Orléans, France; Groupe de Recherches sur l'Énergétique des Milieux Ionisés, UMR 7344, Université d'Orléans/CNRS, 45067, Orléans, France.
| | - Eric Robert
- Groupe de Recherches sur l'Énergétique des Milieux Ionisés, UMR 7344, Université d'Orléans/CNRS, 45067, Orléans, France
| | | | - Jean-Michel Pouvesle
- Groupe de Recherches sur l'Énergétique des Milieux Ionisés, UMR 7344, Université d'Orléans/CNRS, 45067, Orléans, France
| | - Catherine Grillon
- Centre de Biophysique Moléculaire, UPR4301, CNRS, 45071, Orléans, France.
| |
Collapse
|
33
|
Plasma-Treated Flammulina velutipes-Derived Extract Showed Anticancer Potential in Human Breast Cancer Cells. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Natural products with medicinal properties are among alternative therapies of interest due to their high body tolerance. We aimed to determine whether nonthermal gas plasma could enhance the medicinal value of Flammulina velutipes mushrooms. Generated gas plasma was characterized by its emission spectrum in ambient air, pH, temperature, and H2O2 and NOx concentrations after exposure for various periods. Phenolic and flavonoid contents in the extracts were measured using antioxidant assays and Fourier transform infrared and ultraviolet-visible spectroscopy. We analyzed the effects of the plasma-treated mushroom-derived extracts against breast carcinoma using the MCF7 and MDA-MB231 cell lines. The extracts significantly and concentration dependently inhibited the growth of breast cancer cells without inducing toxicity in normal MCF10A cells, and induced apoptosis via oxidative stress, evidenced by DNA damage (γ-H2AX foci formation), and increased the population of MCF7 breast cancer cells arrested in the G2/M phase of the cell cycle. The extracts also induced mitochondrion-mediated apoptosis of MCF7 cells through cytochrome c release and caspase cleavage activity. The plasma improved the biological activity of mushrooms by increasing their phenolic compounds that prevented the growth of breast cancer cells in vitro.
Collapse
|
34
|
Advances in Plasma Oncology toward Clinical Translation. Cancers (Basel) 2020; 12:cancers12113283. [PMID: 33171984 PMCID: PMC7694599 DOI: 10.3390/cancers12113283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/29/2020] [Indexed: 12/28/2022] Open
Abstract
This Special Issue on "Advances in Plasma Oncology Toward Clinical Translation" aims to bring together cutting-edge research papers within the field in the context of clinical translation and application [...].
Collapse
|
35
|
Verloy R, Privat-Maldonado A, Smits E, Bogaerts A. Cold Atmospheric Plasma Treatment for Pancreatic Cancer-The Importance of Pancreatic Stellate Cells. Cancers (Basel) 2020; 12:cancers12102782. [PMID: 32998311 PMCID: PMC7601057 DOI: 10.3390/cancers12102782] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/17/2020] [Accepted: 09/26/2020] [Indexed: 01/18/2023] Open
Abstract
Simple Summary This review aims to highlight the potential of cold plasma, the fourth state of matter, as anti-cancer treatment for pancreatic cancer, and the importance of pancreatic stellate cells in the response to this treatment. Currently, a significant lack of basic research on cold plasma considering both pancreatic cancer and stellate cells exists. However, co-cultures of these populations can be advantageous, as they resemble the cell-to-cell interactions occurring in a tumor in response to therapy. Even more, these studies should be performed prior to clinical trials of cold plasma to avoid unforeseen responses to treatment. This review article provides a framework for future research of cold plasma therapies for pancreatic cancer, considering the critical role of pancreatic stellate cells in the disease and treatment outcome. Abstract Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with low five-year survival rates of 8% by conventional treatment methods, e.g., chemotherapy, radiotherapy, and surgery. PDAC shows high resistance towards chemo- and radiotherapy and only 15–20% of all patients can have surgery. This disease is predicted to become the third global leading cause of cancer death due to its significant rise in incidence. Therefore, the development of an alternative or combinational method is necessary to improve current approaches. Cold atmospheric plasma (CAP) treatments could offer multiple advantages to this emerging situation. The plasma-derived reactive species can induce oxidative damage and a cascade of intracellular signaling pathways, which could lead to cell death. Previous reports have shown that CAP treatment also influences cells in the tumor microenvironment, such as the pancreatic stellate cells (PSCs). These PSCs, when activated, play a crucial role in the propagation, growth and survival of PDAC tumors. However, the effect of CAP on PSCs is not yet fully understood. This review focuses on the application of CAP for PDAC treatment and the importance of PSCs in the response to treatment.
Collapse
Affiliation(s)
- Ruben Verloy
- Plasma Lab for Applications in Sustainability and Medicine-ANTwerp, University of Antwerp, 2610 Wilrijk, Belgium;
- Center for Oncological Research, University of Antwerp, 2610 Wilrijk, Belgium;
- Correspondence: (R.V.); (A.P.-M.); Tel.: +32-3265-2343 (R.V. & A.P.-M.)
| | - Angela Privat-Maldonado
- Plasma Lab for Applications in Sustainability and Medicine-ANTwerp, University of Antwerp, 2610 Wilrijk, Belgium;
- Center for Oncological Research, University of Antwerp, 2610 Wilrijk, Belgium;
- Correspondence: (R.V.); (A.P.-M.); Tel.: +32-3265-2343 (R.V. & A.P.-M.)
| | - Evelien Smits
- Center for Oncological Research, University of Antwerp, 2610 Wilrijk, Belgium;
| | - Annemie Bogaerts
- Plasma Lab for Applications in Sustainability and Medicine-ANTwerp, University of Antwerp, 2610 Wilrijk, Belgium;
| |
Collapse
|
36
|
Riedel F, Golda J, Held J, Davies HL, van der Woude MW, Bredin J, Niemi K, Gans T, Schulz-von der Gathen V, O'Connell D. Reproducibility of 'COST reference microplasma jets'. PLASMA SOURCES SCIENCE & TECHNOLOGY 2020; 29:095018. [PMID: 34149205 PMCID: PMC8208597 DOI: 10.1088/1361-6595/abad01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/28/2020] [Accepted: 08/06/2020] [Indexed: 06/12/2023]
Abstract
Atmospheric pressure plasmas have been ground-breaking for plasma science and technologies, due to their significant application potential in many fields, including medicinal, biological, and environmental applications. This is predominantly due to their efficient production and delivery of chemically reactive species under ambient conditions. One of the challenges in progressing the field is comparing plasma sources and results across the community and the literature. To address this a reference plasma source was established during the 'biomedical applications of atmospheric pressure plasmas' EU COST Action MP1101. It is crucial that reference sources are reproducible. Here, we present the reproducibility and variance across multiple sources through examining various characteristics, including: absolute atomic oxygen densities, absolute ozone densities, electrical characteristics, optical emission spectroscopy, temperature measurements, and bactericidal activity. The measurements demonstrate that the tested COST jets are mainly reproducible within the intrinsic uncertainty of each measurement technique.
Collapse
Affiliation(s)
- F Riedel
- York Plasma Institute, Department of Physics, University of York, York YO10 5DD, United Kingdom
| | - J Golda
- Institute of Experimental and Applied Physics, Kiel University, 24098 Kiel, Germany
- Experimental Physics II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - J Held
- Experimental Physics II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - H L Davies
- York Plasma Institute, Department of Physics, University of York, York YO10 5DD, United Kingdom
- York Biomedical Research Institute, Hull York Medical School, University of York, York YO10 5DD, United Kingdom
| | - M W van der Woude
- York Biomedical Research Institute, Hull York Medical School, University of York, York YO10 5DD, United Kingdom
| | - J Bredin
- York Plasma Institute, Department of Physics, University of York, York YO10 5DD, United Kingdom
| | - K Niemi
- York Plasma Institute, Department of Physics, University of York, York YO10 5DD, United Kingdom
| | - T Gans
- York Plasma Institute, Department of Physics, University of York, York YO10 5DD, United Kingdom
| | | | - D O'Connell
- York Plasma Institute, Department of Physics, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
37
|
Tan F, Fang Y, Zhu L, Al-Rubeai M. Controlling stem cell fate using cold atmospheric plasma. Stem Cell Res Ther 2020; 11:368. [PMID: 32847625 PMCID: PMC7449033 DOI: 10.1186/s13287-020-01886-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/06/2020] [Accepted: 08/14/2020] [Indexed: 12/25/2022] Open
Abstract
The stem cell is the foundation of regenerative medicine and tissue engineering. Regulating specific stem cell fate, such as cell attachment, proliferation, differentiation, and even death, undergoes continuous development. Cold atmospheric plasma (CAP), the core technology of plasma medicine, is attracting tremendous attention due to its ability and versatility to manipulate various types of cells, including stem cells. Specifically, the direct and indirect applications of CAP in controlling cell fate are best exemplified by upfront irradiation of the stem cells and modification of the stem cell niche, respectively. This review will describe the recent advances in various CAP strategies, both direct and indirect, and their influence on the fate of healthy and cancer stem cells. Particular emphasis will be placed on the mechanism of connecting the physical and chemical cues carried by the plasma and biological changes presented by the cells, especially at the transcriptomic level. The ultimate goal is to exploit CAP’s potential in regenerative medicine.
Collapse
Affiliation(s)
- Fei Tan
- Department of ORL-HNS, Affiliated East Hospital of Tongji University, Shanghai, China. .,School of Medicine and Institute for Advanced Study, Tongji University, Shanghai, China. .,The Royal College of Surgeons of England, London, UK.
| | - Yin Fang
- School of Medicine and Institute for Advanced Study, Tongji University, Shanghai, China
| | - Liwei Zhu
- Department of ORL-HNS, Affiliated East Hospital of Tongji University, Shanghai, China
| | - Mohamed Al-Rubeai
- School of Chemical and Bioprocess Engineering, and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
38
|
The Hyaluronan Pericellular Coat and Cold Atmospheric Plasma Treatment of Cells. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In different tumors, high amounts of hyaluronan (HA) are correlated with tumor progression. Therefore, new tumor therapy strategies are targeting HA production and degradation. In plasma medicine research, antiproliferative and apoptosis-inducing effects on tumor cells were observed using cold atmospheric plasma (CAP) or plasma-activated media (PAM). Until now, the influence of PAM on the HA pericellular coat has not been the focus of research. PAM was generated by argon-plasma treatment of Dulbecco’s modified Eagle’s Medium via the kINPen®09 plasma jet. The HA expression on PAM-treated HaCaT cells was determined by flow cytometry and confocal laser scanning microscopy. Changes in the adhesion behavior of vital cells in PAM were observed by impedance measurement using the xCELLigence system. We found that PAM treatment impaired the HA pericellular coat of HaCaT cells. The time-dependent adhesion was impressively diminished. However, a disturbed HA coat alone was not the reason for the inhibition of cell adhesion because cells enzymatically treated with HAdase did not lose their adhesion capacity completely. Here, we showed for the first time that the plasma-activated medium (PAM) was able to influence the HA pericellular coat.
Collapse
|
39
|
Lee J, Moon H, Ku B, Lee K, Hwang CY, Baek SJ. Anticancer Effects of Cold Atmospheric Plasma in Canine Osteosarcoma Cells. Int J Mol Sci 2020; 21:E4556. [PMID: 32604902 PMCID: PMC7349329 DOI: 10.3390/ijms21124556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/13/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is known to be one of the frequently occurring cancers in dogs. Its prognosis is usually very poor, with a high incidence of lung metastasis. Although radiation therapy has become a major therapeutic choice for canine osteosarcoma, the high costs and unexpected side effects prevent some patients from considering this treatment. Cold atmospheric plasma (CAP) is an ionized gas with high energy at low temperatures, and it produces reactive oxygen species that mediate many signaling pathways. Although many researchers have used CAP as an anticancer therapeutic approach in humans, its importance has been neglected in veterinary medicine. In this study, D-17 and DSN canine osteosarcoma cell lines were treated with CAP to observe its anticancer activity. By high-content screening and flow cytometry, CAP-treated cells showed growth arrest and apoptosis induction. Moreover, the osteosarcoma cells exhibited reduced migration and invasion activity when treated with CAP. Overall, CAP exerted an anticancer effect on canine osteosarcoma cell lines. CAP may have the potential to be used as a novel modality for treating cancer in veterinary medicine.
Collapse
Affiliation(s)
- Jaehak Lee
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (J.L.); (H.M.); (C.-Y.H.)
| | - Hyunjin Moon
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (J.L.); (H.M.); (C.-Y.H.)
| | - Bonghye Ku
- R&D Center, PSM Inc. Jungwon-gu, Seongnam-si, Gyeonggi-do 13207, Korea; (B.K.); (K.L.)
| | - Keunho Lee
- R&D Center, PSM Inc. Jungwon-gu, Seongnam-si, Gyeonggi-do 13207, Korea; (B.K.); (K.L.)
| | - Cheol-Yong Hwang
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (J.L.); (H.M.); (C.-Y.H.)
| | - Seung Joon Baek
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (J.L.); (H.M.); (C.-Y.H.)
| |
Collapse
|
40
|
Cancer-Selective Treatment of Cancerous and Non-Cancerous Human Cervical Cell Models by a Non-Thermally Operated Electrosurgical Argon Plasma Device. Cancers (Basel) 2020; 12:cancers12041037. [PMID: 32340164 PMCID: PMC7226384 DOI: 10.3390/cancers12041037] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 12/14/2022] Open
Abstract
Cold atmospheric plasma (CAP) treatment is developing as a promising option for local anti-neoplastic treatment of dysplastic lesions and early intraepithelial cancer. Currently, high-frequency electrosurgical argon plasma sources are available and well established for clinical use. In this study, we investigated the effects of treatment with a non-thermally operated electrosurgical argon plasma source, a Martin Argon Plasma Beamer System (MABS), on cell proliferation and metabolism of a tissue panel of human cervical cancer cell lines as well as on non-cancerous primary cells of the cervix uteri. Similar to conventional CAP sources, we were able to show that MABS was capable of causing antiproliferative and cytotoxic effects on cervical squamous cell and adenocarcinoma as well as on non-neoplastic cervical tissue cells due to the generation of reactive species. Notably, neoplastic cells were more sensitive to the MABS treatment, suggesting a promising new and non-invasive application for in vivo treatment of precancerous and cancerous cervical lesions with non-thermally operated electrosurgical argon plasma sources.
Collapse
|
41
|
Yadav DK, Kumar S, Choi EH, Kim MH. Electric-field-induced electroporation and permeation of reactive oxygen species across a skin membrane. J Biomol Struct Dyn 2020; 39:1343-1353. [PMID: 32072876 DOI: 10.1080/07391102.2020.1730972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Electroporation processes affect the permeability of cell membranes, which can be utilized for the delivery of plasma species in cancer therapy. By means of computational dynamics, many aspects of membrane electroporation have been unveiled at the atomic level for lipid membranes. Herein, a molecular dynamics simulation study was performed on native and oxidized membrane systems with transversal electric fields. The simulation result shows that the applied electric field mainly affects the membrane properties so that electroporation takes place and these pores are lined by hydrophilic headgroups of the lipid components. The calculated hydrophobic thickness, lateral diffusion and pair correlation revealed the role of 5α-CH in creation of water-pore in an oxidized membrane. Additionally, the permeability of reactive oxygen species was examined through these electroporated systems. The permeability study suggested that water pores in the membrane facilitate the penetration of these species across the membrane to the interior of the cell. These findings may have significance in experimental applications in vivo as once the reactive oxygen species reaches the interior of the cell, they may cause oxidative stress and induce apoptosis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Incheon, South Korea.,Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, South Korea
| | - Surendra Kumar
- College of Pharmacy, Gachon University of Medicine and Science, Incheon, South Korea.,Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, South Korea
| | - Eun-Ha Choi
- Plasma Bioscience Research Center/PDP Research Center, Kwangwoon University, Seoul, South Korea
| | - Mi-Hyun Kim
- College of Pharmacy, Gachon University of Medicine and Science, Incheon, South Korea.,Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, South Korea
| |
Collapse
|
42
|
The HIPPO Transducer YAP and Its Targets CTGF and Cyr61 Drive a Paracrine Signalling in Cold Atmospheric Plasma-Mediated Wound Healing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4910280. [PMID: 32104533 PMCID: PMC7040405 DOI: 10.1155/2020/4910280] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/15/2022]
Abstract
Reactive species play a pivotal role in orchestrating wound healing responses. They act as secondary messengers and drive redox-signalling pathways that are involved in the homeostatic, inflammatory, proliferative, and remodelling phases of wound healing. The application of Cold Atmospheric Plasma (CAP) to the wound site produces a profusion of short- and long-lived reactive species that have been demonstrated to be effective in promoting wound healing; however, knowledge of the mechanisms underlying CAP-mediated wound healing remains scarce. To address this, an in vitro coculture model was used to study the effects of CAP on wound healing and on paracrine crosstalk between dermal keratinocytes and fibroblasts. Using this coculture model, we observed a stimulatory effect on the migration ability of HaCaT cells that were cocultured with dermal fibroblasts. Additionally, CAP treatment resulted in an upregulation of the HIPPO transcription factor YAP in HaCaTs and fibroblasts. Downstream effectors of the HIPPO signalling pathway (CTGF and Cyr61) were also upregulated in dermal fibroblasts, and the administration of antioxidants could inhibit CAP-mediated wound healing and abrogate the gene expression of the HIPPO downstream effectors. Interestingly, we observed that HaCaT cells exhibited an improved cell migration rate when incubated with CAP-treated fibroblast-conditioned media compared to that observed after incubation with untreated media. An induction of CTGF and Cyr61 secretion was also observed upon CAP treatment in the fibroblast-conditioned media. Finally, exposure to recombinant CTGF and Cyr61 could also significantly improve HaCaT cell migration. In summary, our results validated that CAP activates a regenerative signalling pathway at the onset of wound healing. Additionally, CAP also stimulated a reciprocal communication between dermal fibroblasts and keratinocytes, resulting in improved keratinocyte wound healing in coculture.
Collapse
|
43
|
Semmler ML, Bekeschus S, Schäfer M, Bernhardt T, Fischer T, Witzke K, Seebauer C, Rebl H, Grambow E, Vollmar B, Nebe JB, Metelmann HR, von Woedtke T, Emmert S, Boeckmann L. Molecular Mechanisms of the Efficacy of Cold Atmospheric Pressure Plasma (CAP) in Cancer Treatment. Cancers (Basel) 2020; 12:cancers12020269. [PMID: 31979114 PMCID: PMC7072164 DOI: 10.3390/cancers12020269] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/30/2022] Open
Abstract
Recently, the potential use of cold atmospheric pressure plasma (CAP) in cancer treatment has gained increasing interest. Especially the enhanced selective killing of tumor cells compared to normal cells has prompted researchers to elucidate the molecular mechanisms for the efficacy of CAP in cancer treatment. This review summarizes the current understanding of how CAP triggers intracellular pathways that induce growth inhibition or cell death. We discuss what factors may contribute to the potential selectivity of CAP towards cancer cells compared to their non-malignant counterparts. Furthermore, the potential of CAP to trigger an immune response is briefly discussed. Finally, this overview demonstrates how these concepts bear first fruits in clinical applications applying CAP treatment in head and neck squamous cell cancer as well as actinic keratosis. Although significant progress towards understanding the underlying mechanisms regarding the efficacy of CAP in cancer treatment has been made, much still needs to be done with respect to different treatment conditions and comparison of malignant and non-malignant cells of the same cell type and same donor. Furthermore, clinical pilot studies and the assessment of systemic effects will be of tremendous importance towards bringing this innovative technology into clinical practice.
Collapse
Affiliation(s)
- Marie Luise Semmler
- Clinic and Polyclinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (M.L.S.); (M.S.); (T.B.); (T.F.); (S.E.)
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz-Institute for Plasma Science and Technology (INP Greifswald), 17489 Greifswald, Germany; (S.B.); (T.v.W.)
| | - Mirijam Schäfer
- Clinic and Polyclinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (M.L.S.); (M.S.); (T.B.); (T.F.); (S.E.)
| | - Thoralf Bernhardt
- Clinic and Polyclinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (M.L.S.); (M.S.); (T.B.); (T.F.); (S.E.)
| | - Tobias Fischer
- Clinic and Polyclinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (M.L.S.); (M.S.); (T.B.); (T.F.); (S.E.)
| | - Katharina Witzke
- Oral & Maxillofacial Surgery/Plastic Surgery, University Medicine Greifswald, 17489 Greifswald, Germany; (K.W.); (C.S.)
| | - Christian Seebauer
- Oral & Maxillofacial Surgery/Plastic Surgery, University Medicine Greifswald, 17489 Greifswald, Germany; (K.W.); (C.S.)
| | - Henrike Rebl
- Department of Cell Biology, University Medical Center Rostock, 18057 Rostock, Germany; (H.R.); (J.B.N.)
| | - Eberhard Grambow
- Institute for Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (E.G.); (B.V.)
| | - Brigitte Vollmar
- Institute for Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (E.G.); (B.V.)
| | - J. Barbara Nebe
- Department of Cell Biology, University Medical Center Rostock, 18057 Rostock, Germany; (H.R.); (J.B.N.)
| | - Hans-Robert Metelmann
- Oral & Maxillofacial Surgery/Plastic Surgery, University Medicine Greifswald, 17489 Greifswald, Germany; (K.W.); (C.S.)
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz-Institute for Plasma Science and Technology (INP Greifswald), 17489 Greifswald, Germany; (S.B.); (T.v.W.)
| | - Steffen Emmert
- Clinic and Polyclinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (M.L.S.); (M.S.); (T.B.); (T.F.); (S.E.)
| | - Lars Boeckmann
- Clinic and Polyclinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (M.L.S.); (M.S.); (T.B.); (T.F.); (S.E.)
- Correspondence: ; Tel.: +49-381-494-9760
| |
Collapse
|
44
|
VON Woedtke T, Schmidt A, Bekeschus S, Wende K, Weltmann KD. Plasma Medicine: A Field of Applied Redox Biology. In Vivo 2019; 33:1011-1026. [PMID: 31280189 DOI: 10.21873/invivo.11570] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 12/25/2022]
Abstract
Plasma medicine comprises the application of physical plasma directly on or in the human body for therapeutic purposes. Three most important basic plasma effects are relevant for medical applications: i) inactivation of a broad spectrum of microorganisms, including multidrug-resistant pathogens, ii) stimulation of cell proliferation and angiogenesis with lower plasma treatment intensity, and iii) inactivation of cells by initialization of cell death with higher plasma treatment intensity, above all in cancer cells. Based on own published results as well as on monitoring of relevant literature the aim of this topical review is to summarize the state of the art in plasma medicine and connect it to redox biology. One of the most important results of basic research in plasma medicine is the insight that biological plasma effects are mainly mediated via reactive oxygen and nitrogen species influencing cellular redox-regulated processes. Plasma medicine can be considered a field of applied redox biology.
Collapse
Affiliation(s)
- Thomas VON Woedtke
- Leibniz Institute for Plasma Science and Technology, INP Greifswald, Greifswald, Germany .,Greifswald University Medicine, Greifswald, Germany
| | - Anke Schmidt
- Leibniz Institute for Plasma Science and Technology, INP Greifswald, Greifswald, Germany
| | | | | | - Klaus-Dieter Weltmann
- Leibniz Institute for Plasma Science and Technology, INP Greifswald, Greifswald, Germany
| |
Collapse
|
45
|
Murakami T. Numerical modelling of the effects of cold atmospheric plasma on mitochondrial redox homeostasis and energy metabolism. Sci Rep 2019; 9:17138. [PMID: 31748630 PMCID: PMC6868247 DOI: 10.1038/s41598-019-53219-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/25/2019] [Indexed: 01/08/2023] Open
Abstract
A biochemical reaction model clarifies for the first time how cold atmospheric plasmas (CAPs) affect mitochondrial redox homeostasis and energy metabolism. Fundamental mitochondrial functions in pyruvic acid oxidation, the tricarboxylic acid (TCA) cycle and oxidative phosphorylation involving the respiratory chain (RC), adenosine triphosphate/adenosine diphosphate (ATP/ADP) synthesis machinery and reactive oxygen species/reactive nitrogen species (ROS/RNS)-mediated mechanisms are numerically simulated. The effects of CAP irradiation are modelled as 1) the influx of hydrogen peroxide (H[Formula: see text]O[Formula: see text]) to an ROS regulation system and 2) the change in mitochondrial transmembrane potential induced by RNS on membrane permeability. The CAP-induced stress modifies the dynamics of intramitochondrial H[Formula: see text]O[Formula: see text] and superoxide anions, i.e., the rhythm and shape of ROS oscillation are disturbed by H[Formula: see text]O[Formula: see text] infusion. Furthermore, CAPs control the ROS oscillatory behaviour, nicotinamide adenine dinucleotide redox state and ATP/ADP conversion through the reaction mixture over the RC, the TCA cycle and ROS regulation system. CAPs even induce a homeostatic or irreversible state transition in cell metabolism. The present computational model demonstrates that CAPs crucially affect essential mitochondrial functions, which in turn affect redox signalling, metabolic cooporation and cell fate decision of survival or death.
Collapse
Affiliation(s)
- Tomoyuki Murakami
- Seikei University, Department of Systems Design Engineering, Faculty of Science and Technology, 3-3-1 Kichijoji-Kitamachi, Musashino, Tokyo, 180-8633, Japan.
| |
Collapse
|
46
|
Labay C, Hamouda I, Tampieri F, Ginebra MP, Canal C. Production of reactive species in alginate hydrogels for cold atmospheric plasma-based therapies. Sci Rep 2019; 9:16160. [PMID: 31695110 PMCID: PMC6834627 DOI: 10.1038/s41598-019-52673-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023] Open
Abstract
In the last years, great advances have been made in therapies based in cold atmospheric plasmas (CAP). CAP generate reactive oxygen and nitrogen species (RONS) which can be transferred to liquids. These CAP activated liquids display the same biological efficacy (i.e. on killing cancer cells) as CAP themselves, opening the door for minimally invasive therapies. However, injection of a liquid in the body results in fast diffusion due to extracellular fluids and blood flow. Therefore, the development of efficient vehicles which allow local confinement and delivery of RONS to the diseased site is a fundamental requirement. In this work, we investigate the generation of RONS (H2O2, NO2-, short-lived RONS) in alginate hydrogels by comparing two atmospheric pressure plasma jets: kINPen and a helium needle, at a range of plasma treatment conditions (time, gas flow, distance to the sample). The physic-chemical properties of the hydrogels remain unchanged by the plasma treatment, while the hydrogel shows several-fold larger capacity for generation of RONS than a typical isotonic saline solution. Part of the RONS are quickly released to a receptor media, so special attention has to be put on the design of hydrogels with in-situ crosslinking. Remarkably, the hydrogels show capacity for sustained release of the RONS. The plasma-treated hydrogels remain fully biocompatible (due the fact that the species generated by plasma are previously washed away), indicating that no cytotoxic modifications have occurred on the polymer. Moreover, the RONS generated in alginate solutions showed cytotoxic potential towards bone cancer cells. These results open the door for the use of hydrogel-based biomaterials in CAP-associated therapies.
Collapse
Affiliation(s)
- Cédric Labay
- Biomaterials, Biomechanics and Tissue Engineering Group, Dpt. Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019, Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, Barcelona, Spain
| | - Inès Hamouda
- Biomaterials, Biomechanics and Tissue Engineering Group, Dpt. Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019, Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, Barcelona, Spain
| | - Francesco Tampieri
- Biomaterials, Biomechanics and Tissue Engineering Group, Dpt. Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019, Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Dpt. Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019, Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), c/Baldiri i Reixach 10-12, 08028, Barcelona, Spain
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Dpt. Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019, Barcelona, Spain.
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain.
- Research Centre for Biomedical Engineering (CREB), UPC, Barcelona, Spain.
| |
Collapse
|
47
|
Oliveira MC, Yusupov M, Bogaerts A, Cordeiro RM. Molecular dynamics simulations of mechanical stress on oxidized membranes. Biophys Chem 2019; 254:106266. [PMID: 31629220 DOI: 10.1016/j.bpc.2019.106266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 12/27/2022]
Abstract
Biomembranes are under constant attack of free radicals that may lead to lipid oxidation in conditions of oxidative stress. The products generated during lipid oxidation are responsible for structural and dynamical changes which may jeopardize the membrane function. For instance, the local rearrangements of oxidized lipid molecules may induce membrane rupture. In this study, we investigated the effects of mechanical stress on oxidized phospholipid bilayers (PLBs). Model bilayers were stretched until pore formation (or poration) using non-equilibrium molecular dynamics simulations. We studied single-component homogeneous membranes composed of lipid oxidation products, as well as two-component heterogeneous membranes with coexisting native and oxidized domains. In homogeneous membranes, the oxidation products with -OH and -OOH groups reduced the areal strain required for pore formation, whereas the oxidation product with O group behaved similarly to the native membrane. In heterogeneous membranes composed of oxidized and non-oxidized domains, we tested the hypothesis according to which poration may be facilitated at the domain interface region. However, results were inconclusive due to their large statistical variance and sensitivity to simulation setup parameters. We pointed out important technical issues that need to be considered in future simulations of mechanically-induced poration of heterogeneous membranes. This research is of interest for photodynamic therapy and plasma medicine, because ruptured and intact plasma membranes are experimentally considered hallmarks of necrotic and apoptotic cell death.
Collapse
Affiliation(s)
- Maria C Oliveira
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, CEP 09210-580 Santo André, SP, Brazil
| | - Maksudbek Yusupov
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Rodrigo M Cordeiro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, CEP 09210-580 Santo André, SP, Brazil.
| |
Collapse
|
48
|
Boehm D, Bourke P. Safety implications of plasma-induced effects in living cells - a review of in vitro and in vivo findings. Biol Chem 2019; 400:3-17. [PMID: 30044756 DOI: 10.1515/hsz-2018-0222] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/17/2018] [Indexed: 12/20/2022]
Abstract
Cold atmospheric plasma is a versatile new tool in the biomedical field with applications ranging from disinfection, wound healing and tissue regeneration to blood coagulation, and cancer treatment. Along with improved insights into the underlying physical, chemical and biological principles, plasma medicine has also made important advances in the introduction into the clinic. However, in the absence of a standard plasma 'dose' definition, the diversity of the field poses certain difficulties in terms of comparability of plasma devices, treatment parameters and resulting biological effects, particularly with regards to the question of what constitutes a safe plasma application. Data from various in vitro cytotoxic and genotoxic studies along with in vivo findings from animal and human trials are reviewed to provide an overview of the current state of knowledge on the safety of plasma for biological applications. Treatment parameters employed in clinical studies were well tolerated but intense treatment conditions can also induce tissue damage or genotoxicity. There is a need identified to establish both guidelines and safety limits that ensure an absence of (long-term) side effects and to define treatments as safe for applications, where cell stimulation is desired, e.g. in wound healing, or those aimed at inducing cell death in the treatment of cancer.
Collapse
Affiliation(s)
- Daniela Boehm
- School of Food Science and Environmental Health, Plasma Research Group, College of Sciences and Health, Dublin Institute of Technology, Dublin 1, Ireland
| | - Paula Bourke
- School of Food Science and Environmental Health, Plasma Research Group, College of Sciences and Health, Dublin Institute of Technology, Dublin 1, Ireland
| |
Collapse
|
49
|
Plasma for cancer treatment: How can RONS penetrate through the cell membrane? Answers from computer modeling. Front Chem Sci Eng 2019. [DOI: 10.1007/s11705-018-1786-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
50
|
Cold Atmospheric Plasma as an Adjunct to Immunotherapy for Glioblastoma Multiforme. World Neurosurg 2019; 130:369-376. [PMID: 31284051 DOI: 10.1016/j.wneu.2019.06.209] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 11/22/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive form of brain cancer in adults. GBM carries a dismal prognosis because of its proliferative, invasive, and angiogenic capabilities and because of its ability to downregulate the immune system. Immune-based therapies under investigation for GBM have been unsuccessful in vivo because of this downregulation. Cold atmospheric plasma (CAP) is a high-energy state of matter that can be applied directly or indirectly to tumor tissue to serve as an adjunct to immunotherapy in the treatment of GBM because it upregulates the immune system by the induction of reactive oxygen species. CAP has the potential to improve the efficacy of existing and investigative immunotherapies for GBM.
Collapse
|