1
|
Zhang Y, Austin MJ, Chou DHC. Insulin Stabilization Designs for Enhanced Therapeutic Efficacy and Accessibility. Acc Chem Res 2024; 57:3303-3315. [PMID: 39466175 DOI: 10.1021/acs.accounts.4c00500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
ConspectusInsulin has remained indispensable in the treatment of diabetes since it was first discovered in 1921. Unlike small molecular drugs, insulin and other protein drugs are prone to degradation when exposed to elevated temperatures, mechanical agitation during transportation, and prolonged storage periods. Therefore, strict cold-chain management is crucial for the insulin supply, requiring significant resources, which can limit the access to insulin, particularly in low-income areas. Moreover, although insulin formulations have advanced tremendously in the last century, insulin treatment still imposes a challenging regimen and provides suboptimal outcomes for the majority of patients. There is an increasing focus on pursuing improved pharmacology, specifically on safer, more user-friendly insulin therapies that minimize the self-management burden. These challenges underscore the need for developing novel insulin formulations with improved stability that are compatible with advanced insulin therapy.Insulin stabilization can be achieved through either chemical modification of insulin or formulation component design. Inspired by insulin-like peptides from invertebrates, we have developed novel stable insulin analogs based on a fundamental understanding of the insulin receptor engagement for insulin bioactivity. We created a novel four-disulfide insulin analog with high aggregation stability and potency by introducing a fourth disulfide bond between a C-terminal extended insulin A-chain and residues near the C-terminus of the B-chain. In an effort to stabilize insulin in its monomeric state to develop ultrafast-acting insulin with rapid absorption upon injection, we have developed a series of structurally miniaturized yet fully active insulin analogs that do not form dimers due to the lack of the canonical B-chain C-terminal octapeptide. Additionally, our study provided strategies for expanding the scope of cucurbit[7]uril (CB[7])-assisted insulin stabilization by engineering safe and biodegradable CB[7]-zwitterionic polypeptide excipients. We also explored insulin N-terminal substitution methods to achieve pH-dependent insulin stabilization without prolonging the duration of action.This Account describes our exploration of engineering stable insulin analogs and formulation design strategies for stabilizing insulin in aqueous solutions. Beyond conventional stabilization strategies for insulin injections, the unmet challenges and recent innovations in insulin stabilization are discussed, addressing the growing demand for alternative, less invasive routes of insulin administration. Additionally, we aim to provide a thorough overview of insulin stabilization from the perspective of commercially available insulin drugs and common pharmaceutical engineering practices in the industry. We also highlight unresolved insulin stabilization challenges and ongoing research strategies. We anticipate that further emphasis on collective efforts of protein engineering, pharmaceutical formulation design, and drug delivery will inform the development of stable and advanced insulin therapy.
Collapse
Affiliation(s)
- Yanxian Zhang
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Maxwell Jack Austin
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Danny Hung-Chieh Chou
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Allamreddy S, Arora M, Ganugula R, Friend R, Basu R, Kumar MNVR. Prospects for the convergence of polyphenols with pharmaceutical drugs in Type 2 Diabetes: challenges, risks, and strategies. Pharmacol Rev 2024; 77:PHARMREV-AR-2023-001074. [PMID: 39326899 DOI: 10.1124/pharmrev.124.001074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex disease that can lead to a variety of life-threatening secondary health conditions. Current treatment strategies primarily revolve around tight glucose control that is difficult to achieve and often turns out to be dangerous due to possible hypoglycemic events. Numerous long-term studies have demonstrated that complex pathways, including low-grade inflammation due to fluctuating glucose levels, are involved in the progression of the disease and the development of secondary health conditions. Growing clinical evidence supports the effectiveness of using multiple medications, possibly in combination with insulin, to effectively manage T2DM. On the other hand, despite the huge, largely untapped potential therapeutic benefit of 'polyphenols', there remains a general skepticism of the practice. However, for any evidence-based clinical intervention, the balance of benefits and risks takes center stage and is governed by biopharmaceutics principles. In this article, we outline the current clinical perspectives on pharmaceutical drug combinations, rationale for early initiation of insulin, and the advantages of novel dosage forms to meet the pathophysiological changes of T2DM, emphasizing the need for further clinical studies to substantiate these approaches. We also make the case for traditional medicines and their combinations with pharmaceutical drugs and outline the inherent challenges in doing so, while also providing recommendations for future research and clinical practice. Significance Statement Type 2 diabetes is associated with life-threatening secondary health conditions that are often difficult to treat. This review provides an in-depth account of preventing/delaying secondary health conditions through combination therapies and emphasizes the role of effective delivery strategies in realizing the translation of such combinations. We will build the case for the importance of polyphenols in diabetes, determine the reasons for skepticism, and potential combinations with pharmaceutical drugs.
Collapse
Affiliation(s)
| | - M Arora
- The University of Alabama, United States
| | - R Ganugula
- CCHS, The University of Alabama, United States
| | - R Friend
- The University of Alabama, United States
| | - R Basu
- Division of Endocrinology, Diabetes, and Metabolism, The University of Alabama at Birmingham, United States
| | - M N V Ravi Kumar
- Bioscience and Medicine, The University of Alabama, United States
| |
Collapse
|
3
|
Harrison SA, Rolph T, Knott M, Dubourg J. FGF21 agonists: An emerging therapeutic for metabolic dysfunction-associated steatohepatitis and beyond. J Hepatol 2024; 81:562-576. [PMID: 38710230 DOI: 10.1016/j.jhep.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/26/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
The worldwide epidemics of obesity, hypertriglyceridemia, dyslipidaemia, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH) represent a major economic burden on healthcare systems. Patients with at-risk MASH, defined as MASH with moderate or significant fibrosis, are at higher risk of comorbidity/mortality, with a significant risk of cardiovascular diseases and/or major adverse liver outcomes. Despite a high unmet medical need, there is only one drug approved for MASH. Several drug candidates have reached the phase III development stage and could lead to several potential conditional drug approvals in the coming years. Within the armamentarium of future treatment options, FGF21 analogues hold an interesting position thanks to their pleiotropic effects in addition to their significant effect on both MASH resolution and fibrosis improvement. In this review, we summarise preclinical and clinical data from FGF21 analogues for MASH and explore additional potential therapeutic indications.
Collapse
Affiliation(s)
- Stephen A Harrison
- Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU UK; Pinnacle Clinical Research, San Antonio, Texas, USA
| | - Tim Rolph
- Akero Therapeutics, South San Francisco, California, USA
| | | | | |
Collapse
|
4
|
Xian S, Xiang Y, Liu D, Fan B, Mitrová K, Ollier RC, Su B, Alloosh MA, Jiráček J, Sturek M, Alloosh M, Webber MJ. Insulin-Dendrimer Nanocomplex for Multi-Day Glucose-Responsive Therapy in Mice and Swine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308965. [PMID: 37994248 DOI: 10.1002/adma.202308965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/27/2023] [Indexed: 11/24/2023]
Abstract
The management of diabetes in a manner offering autonomous insulin therapy responsive to glucose-directed need, and moreover with a dosing schedule amenable to facile administration, remains an ongoing goal to improve the standard of care. While basal insulins with reduced dosing frequency, even once-weekly administration, are on the horizon, there is still no approved therapy that offers glucose-responsive insulin function. Herein, a nanoscale complex combining both electrostatic- and dynamic-covalent interactions between a synthetic dendrimer carrier and an insulin analogue modified with a high-affinity glucose-binding motif yields an injectable insulin depot affording both glucose-directed and long-lasting insulin availability. Following a single injection, it is even possible to control blood glucose for at least one week in diabetic swine subjected to daily oral glucose challenges. Measurements of serum insulin concentration in response to challenge show increases in insulin corresponding to elevated blood glucose levels, an uncommon finding even in preclinical work on glucose-responsive insulin. Accordingly, the subcutaneous nanocomplex that results from combining electrostatic- and dynamic-covalent interactions between a modified insulin and a synthetic dendrimer carrier affords a glucose-responsive insulin depot for week-long control following a single routine injection.
Collapse
Affiliation(s)
- Sijie Xian
- Department of Chemical & Biomolecular Engineering, 105 McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Yuanhui Xiang
- Department of Chemical & Biomolecular Engineering, 105 McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Dongping Liu
- Department of Chemical & Biomolecular Engineering, 105 McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Bowen Fan
- Department of Chemical & Biomolecular Engineering, 105 McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Katarína Mitrová
- Czech Academy of Sciences, Institute of Organic Chemistry and Biochemistry, Prague, 16610, Czech Republic
| | - Rachel C Ollier
- Department of Chemical & Biomolecular Engineering, 105 McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Bo Su
- Department of Chemical & Biomolecular Engineering, 105 McCourtney Hall, Notre Dame, IN, 46556, USA
| | | | - Jiří Jiráček
- Czech Academy of Sciences, Institute of Organic Chemistry and Biochemistry, Prague, 16610, Czech Republic
| | | | | | - Matthew J Webber
- Department of Chemical & Biomolecular Engineering, 105 McCourtney Hall, Notre Dame, IN, 46556, USA
| |
Collapse
|
5
|
Nkonge KM, Nkonge DK, Nkonge TN. Insulin Therapy for the Management of Diabetes Mellitus: A Narrative Review of Innovative Treatment Strategies. Diabetes Ther 2023; 14:1801-1831. [PMID: 37736787 PMCID: PMC10570256 DOI: 10.1007/s13300-023-01468-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/29/2023] [Indexed: 09/23/2023] Open
Abstract
The discovery of insulin was presented to the international medical community on May 3, 1922. Since then, insulin has become one of the most effective pharmacological agents used to treat type 1 and type 2 diabetes mellitus. However, the initiation and intensification of insulin therapy is often delayed in people living with type 2 diabetes due to numerous challenges associated with daily subcutaneous administration. Reducing the frequency of injections, using insulin pens instead of syringes and vials, simplifying treatment regimens, or administering insulin through alternative routes may help improve adherence to and persistence with insulin therapy among people living with diabetes. As the world commemorates the centennial of the commercialization of insulin, the aims of this article are to provide an overview of insulin therapy and to summarize clinically significant findings from phase 3 clinical trials evaluating less frequent dosing of insulin and the non-injectable administration of insulin.
Collapse
Affiliation(s)
- Ken M. Nkonge
- University of Nairobi, P.O. Box 30197, Nairobi, Kenya
| | | | - Teresa N. Nkonge
- University of Nairobi, P.O. Box 30197, Nairobi, Kenya
- McMaster University, Hamilton, ON L8S 4L8 Canada
| |
Collapse
|
6
|
Elsayed A, Al-Remawi M, Jaber N, Abu-Salah KM. Advances in buccal and oral delivery of insulin. Int J Pharm 2023; 633:122623. [PMID: 36681204 DOI: 10.1016/j.ijpharm.2023.122623] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/30/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Diabetes mellitus is a metabolic endocrine disease characterized by chronic hyperglycemia with disturbances in metabolic processes, such as those related to carbohydrates, fat, and protein. There are two main types of this disease: type 1 diabetes (T1D) and type 2 diabetes (T2D). Insulin therapy is pivotal to the management of diabetes. Over the last two decades, many routes of administration, including nasal, pulmonary, rectal, transdermal, buccal, and ocular, have been investigated. Nevertheless, subcutaneous parenteral administration is still the most common route for insulin therapy. To overcome poor bioavailability and the barriers to oral insulin absorption, novel approaches in the field of oral drug delivery and administration have been brought about by the coalescence of different branches of nanoscience and nanotechnology, such as nanomedicine, nano-biochemistry, and nano-pharmacy. Novel drug delivery systems, including nanoparticles, nano-platforms, and nanocarriers, have been suggested. The objective of this review is to provide an update on the various promising approaches that have been explored and evaluated for the safe and efficient oral and buccal administration of insulin.
Collapse
Affiliation(s)
- Amani Elsayed
- College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Mayyas Al-Remawi
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan
| | - Nisrein Jaber
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Khalid M Abu-Salah
- King Saud bin Abdulaziz University for Health Sciences/ King Abdullah International Medical Research Center, Department of Nanomedicine, Riyadh, Saudi Arabia.
| |
Collapse
|
7
|
Wang W, Jiang Y, Huang Z, Nguyen HVT, Liu B, Hartweg M, Shirakura M, Qin KP, Johnson JA. Discrete, Chiral Polymer-Insulin Conjugates. J Am Chem Soc 2022; 144:23332-23339. [PMID: 36126328 PMCID: PMC10440729 DOI: 10.1021/jacs.2c07382] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Polymer conjugation has been widely used to improve the stability and pharmacokinetics of therapeutic biomacromolecules; however, conventional methods to generate such conjugates often use disperse and/or achiral polymers with limited functionality. The heterogeneity of such conjugates may lead to manufacturing variability, poorly controlled biological performance, and limited ability to optimize structure-property relationships. Here, using insulin as a model therapeutic polypeptide, we introduce a strategy for the synthesis of polymer-protein conjugates based on discrete, chiral polymers synthesized through iterative exponential growth (IEG). These conjugates eliminate manufacturing variables originating from polymer dispersity and poorly controlled absolute configuration. Moreover, they offer tunable molecular features, such as conformational rigidity, that can be modulated to impact protein function, enabling faster or longer-lasting blood glucose responses in diabetic mice when compared to PEGylated insulin and the commercial insulin variant Lantus. Furthermore, IEG-insulin conjugates showed no signs of decreased activity, immunogenicity, or toxicity following repeat dosing. This work represents a significant step toward the synthesis of precise synthetic polymer-biopolymer conjugates and reveals that fine tuning of synthetic polymer structure may be used to optimize such conjugates in the future.
Collapse
Affiliation(s)
- Wencong Wang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yivan Jiang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Zhihao Huang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Hung V.-T. Nguyen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bin Liu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Manuel Hartweg
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Masamichi Shirakura
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - K. Peter Qin
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A. Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Wu M, Carballo-Jane E, Zhou H, Zafian P, Dai G, Liu M, Lao J, Kelly T, Shao D, Gorski J, Pissarnitski D, Kekec A, Chen Y, Previs SF, Scapin G, Gomez-Llorente Y, Hollingsworth SA, Yan L, Feng D, Huo P, Walford G, Erion MD, Kelley DE, Lin S, Mu J. Functionally selective signaling and broad metabolic benefits by novel insulin receptor partial agonists. Nat Commun 2022; 13:942. [PMID: 35177603 PMCID: PMC8854621 DOI: 10.1038/s41467-022-28561-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/17/2022] [Indexed: 01/09/2023] Open
Abstract
Insulin analogs have been developed to treat diabetes with focus primarily on improving the time action profile without affecting ligand-receptor interaction or functional selectivity. As a result, inherent liabilities (e.g. hypoglycemia) of injectable insulin continue to limit the true therapeutic potential of related agents. Insulin dimers were synthesized to investigate whether partial agonism of the insulin receptor (IR) tyrosine kinase is achievable, and to explore the potential for tissue-selective systemic insulin pharmacology. The insulin dimers induced distinct IR conformational changes compared to native monomeric insulin and substrate phosphorylation assays demonstrated partial agonism. Structurally distinct dimers with differences in conjugation sites and linkers were prepared to deliver desirable IR partial agonist (IRPA). Systemic infusions of a B29-B29 dimer in vivo revealed sharp differences compared to native insulin. Suppression of hepatic glucose production and lipolysis were like that attained with regular insulin, albeit with a distinctly shallower dose-response. In contrast, there was highly attenuated stimulation of glucose uptake into muscle. Mechanistic studies indicated that IRPAs exploit tissue differences in receptor density and have additional distinctions pertaining to drug clearance and distribution. The hepato-adipose selective action of IRPAs is a potentially safer approach for treatment of diabetes.
Collapse
MESH Headings
- Adipose Tissue/drug effects
- Adipose Tissue/metabolism
- Alloxan/administration & dosage
- Alloxan/toxicity
- Animals
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- CHO Cells
- Cricetulus
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/metabolism
- HEK293 Cells
- Humans
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- Insulin/pharmacology
- Insulin/therapeutic use
- Lipolysis/drug effects
- Liver/drug effects
- Liver/metabolism
- Male
- Mice
- Rats
- Receptor, Insulin/agonists
- Recombinant Proteins/pharmacology
- Recombinant Proteins/therapeutic use
- Signal Transduction/drug effects
- Swine
- Swine, Miniature
Collapse
Affiliation(s)
- Margaret Wu
- Merck & Co., Inc., Kenilworth, NJ, 07033, USA
| | | | | | | | - Ge Dai
- Merck & Co., Inc., Kenilworth, NJ, 07033, USA
| | - Mindy Liu
- Merck & Co., Inc., South San Francisco, CA, 94080, USA
| | - Julie Lao
- Merck & Co., Inc., South San Francisco, CA, 94080, USA
| | - Terri Kelly
- Merck & Co., Inc., Kenilworth, NJ, 07033, USA
| | - Dan Shao
- Merck & Co., Inc., South San Francisco, CA, 94080, USA
| | | | | | - Ahmet Kekec
- Merck & Co., Inc., Kenilworth, NJ, 07033, USA
| | - Ying Chen
- Merck & Co., Inc., Kenilworth, NJ, 07033, USA
| | | | | | | | | | - Lin Yan
- Merck & Co., Inc., Kenilworth, NJ, 07033, USA
| | | | - Pei Huo
- Merck & Co., Inc., Kenilworth, NJ, 07033, USA
| | | | | | | | | | - James Mu
- Merck & Co., Inc., South San Francisco, CA, 94080, USA.
| |
Collapse
|
9
|
Abstract
At the time of its first clinical application 100 years ago, insulin was presented as the cure for people with diabetes mellitus. That transpired to be an overstatement, yet insulin has proven to be the lifesaver for people with type 1 diabetes mellitus and an essential therapy for many with type 2 diabetes mellitus or other forms of diabetes mellitus. Since its discovery, insulin (a molecule of only 51 amino acids) has been the subject of pharmaceutical research and development that has paved the way for other protein-based therapies. From purified animal-extracted insulin and human insulin produced by genetically modified organisms to a spectrum of insulin analogues, pharmaceutical laboratories have strived to tailor the preparations to the needs of patients. Nonetheless, overall glycaemic control often remains poor as exogenous insulin is still not able to mimic the physiological insulin profile. Circumventing subcutaneous administration and the design of analogues with profiles that mimic that of physiological insulin are ongoing areas of research. Novel concepts, such as once-weekly insulins or glucose-dependent and oral insulins, are on the horizon but their real-world effectiveness still needs to be proven. Until a true cure for type 1 diabetes mellitus is found and the therapeutic arsenal for other forms of diabetes mellitus is expanded, insulin will remain central in the treatment of many people living with diabetes mellitus.
Collapse
Affiliation(s)
- Chantal Mathieu
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium.
- Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium.
| | - Pieter-Jan Martens
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
- Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Roman Vangoitsenhoven
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
- Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Eldor R, Neutel J, Homer K, Kidron M. Efficacy and safety of 28-day treatment with oral insulin (ORMD-0801) in patients with type 2 diabetes: A randomized, placebo-controlled trial. Diabetes Obes Metab 2021; 23:2529-2538. [PMID: 34310011 DOI: 10.1111/dom.14499] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022]
Abstract
AIM To assess the safety and efficacy of oral insulin (ORMD-0801) in patients with type 2 diabetes (T2D). MATERIALS AND METHODS After a 2-week washout of other medications, adult metformin-treated patients with T2D were randomized to receive placebo or 16 or 24 mg ORMD-0801, once daily, at bedtime, for 28 days. The mean change from baseline weighted mean night-time glucose levels was determined from 2 nights of continuous glucose monitoring (CGM) recordings during the placebo run-in and last week of treatment. RESULTS In total, 188 patients (HbA1c: 7.82% ± 0.88% [placebo] and 8.08% ± 1.11% [pooled ORMD-0801 group]) were enrolled. In the placebo group, mean night-time CGM increased from baseline by 13.7 ± 26.1 mg/dL, whereas the increase was significantly smaller in the pooled ORMD-0801 group (1.7 ± 23.5 mg/dL, P = .0120). Glycaemic control variables (24-hour, fasting and daytime CGM glucose) also displayed smaller increases with ORMD-0801 versus placebo. Change from baseline HbA1c was -0.01% in the pooled ORMD-0801 group versus +0.20% in the placebo group (P = .0149). ORMD-0801 was well tolerated, with similar adverse event and hypoglycaemia rates as placebo. CONCLUSIONS In patients with T2D, bedtime ORMD-0801 curbed increases in night-time glycaemia, 24-hour glycaemia and HbA1c, without increasing the risk of hypoglycaemia or safety events compared with the control arm.
Collapse
Affiliation(s)
- Roy Eldor
- Diabetes Unit, Institute for Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- The Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Joel Neutel
- Orange County Research Center, Tustin, California, USA
| | | | | |
Collapse
|
11
|
Scherer T, Sakamoto K, Buettner C. Brain insulin signalling in metabolic homeostasis and disease. Nat Rev Endocrinol 2021; 17:468-483. [PMID: 34108679 DOI: 10.1038/s41574-021-00498-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
Insulin signalling in the central nervous system regulates energy homeostasis by controlling metabolism in several organs and by coordinating organ crosstalk. Studies performed in rodents, non-human primates and humans over more than five decades using intracerebroventricular, direct hypothalamic or intranasal application of insulin provide evidence that brain insulin action might reduce food intake and, more importantly, regulates energy homeostasis by orchestrating nutrient partitioning. This Review discusses the metabolic pathways that are under the control of brain insulin action and explains how brain insulin resistance contributes to metabolic disease in obesity, the metabolic syndrome and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Thomas Scherer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
| | - Kenichi Sakamoto
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Christoph Buettner
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| |
Collapse
|
12
|
Kurtzhals P, Nishimura E, Haahr H, Høeg-Jensen T, Johansson E, Madsen P, Sturis J, Kjeldsen T. Commemorating insulin's centennial: engineering insulin pharmacology towards physiology. Trends Pharmacol Sci 2021; 42:620-639. [PMID: 34148677 DOI: 10.1016/j.tips.2021.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 01/14/2023]
Abstract
The life-saving discovery of insulin in Toronto in 1921 is one of the most impactful achievements in medical history, at the time being hailed as a miracle treatment for diabetes. The insulin molecule itself, however, is poorly amenable as a pharmacological intervention, and the formidable challenge of optimizing insulin therapy has been ongoing for a century. We review early academic insights into insulin structure and its relation to self-association and receptor binding, as well as recombinant biotechnology, which have all been seminal for drug design. Recent developments have focused on combining genetic and chemical engineering with pharmaceutical optimization to generate ultra-rapid and ultra-long-acting, tissue-selective, or orally delivered insulin analogs. We further discuss these developments and propose that future scientific efforts in molecular engineering include realizing the dream of glucose-responsive insulin delivery.
Collapse
Affiliation(s)
- Peter Kurtzhals
- Research and Development, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd, Denmark.
| | - Erica Nishimura
- Research and Development, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd, Denmark
| | - Hanne Haahr
- Research and Development, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd, Denmark
| | - Thomas Høeg-Jensen
- Research and Development, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd, Denmark
| | - Eva Johansson
- Research and Development, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd, Denmark
| | - Peter Madsen
- Research and Development, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd, Denmark
| | - Jeppe Sturis
- Research and Development, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd, Denmark
| | - Thomas Kjeldsen
- Research and Development, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd, Denmark
| |
Collapse
|
13
|
Ji L, Du Y, Xu M, Zhou X, Mo Z, Ma J, Li J, Li Y, Lin J, Wang Y, Yang J, Song W, Jin H, Pang S, Liu H, Li P, Liu J, Yao M, Li W, Jiang X, Shen F, Geng H, Zhou H, Ran J, Lei M, Du Y, Ye S, Guan Q, Lv W, Tan H, Chen T, Yang J, Qin G, Li S, Chen L. Efficacy and safety of PEGylated exenatide injection (PB-119) in treatment-naive type 2 diabetes mellitus patients: a Phase II randomised, double-blind, parallel, placebo-controlled study. Diabetologia 2021; 64:1066-1078. [PMID: 33687487 PMCID: PMC8012337 DOI: 10.1007/s00125-021-05392-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/16/2020] [Indexed: 02/08/2023]
Abstract
AIMS/HYPOTHESIS Glucagon-like peptide 1 receptor agonists (GLP-1 RA) such as exenatide are used as monotherapy and add-on therapy for maintaining glycaemic control in patients with type 2 diabetes mellitus. The current study investigated the safety and efficacy of once-weekly PB-119, a PEGylated exenatide injection, in treatment-naive patients with type 2 diabetes. METHODS In this Phase II, randomised, placebo-controlled, double-blind study, we randomly assigned treatment-naive Chinese patients with type 2 diabetes in a 1:1:1:1 ratio to receive subcutaneous placebo or one of three subcutaneous doses of PB-119 (75, 150, and 200 μg) for 12 weeks. The primary endpoint was the change in HbA1c from baseline to week 12, and other endpoints were fasting plasma glucose, 2 h postprandial glucose (PPG), and proportion of patients with HbA1c < 53 mmol/mol (<7.0%) and ≤48 mmol/mol (≤6.5%) at 2, 4, 8 and 12 weeks of treatment. Safety was assessed in all patients who received at least one dose of study drug. RESULTS We randomly assigned 251 patients to one of the four treatment groups (n = 62 in placebo and 63 each in PB-119 75 μg, 150 μg and 200 μg groups). At the end of 12 weeks, mean differences in HbA1c in the treatment groups were -7.76 mmol/mol (95% CI -9.23, -4.63, p < 0.001) (-0.72%, 95% CI -1.01, -0.43), -12.89 mmol/mol (95% CI -16.05, -9.72, p < 0.001) (-1.18%, 95% CI -1.47, -0.89) and -11.14 mmol/mol (95% CI -14.19, -7.97, p <0 .001) (-1.02%, 95% CI -1.30, -0.73) in the 75 μg, 150 μg and 200 μg PB-119 groups, respectively, compared with that in the placebo group after adjusting for baseline HbA1c. Similar results were also observed for other efficacy endpoints across different time points. There was no incidence of treatment-emergent serious adverse event, severe hypoglycaemia or death. CONCLUSIONS/INTERPRETATION All tested PB-119 doses had superior efficacy compared with placebo and were safe and well tolerated over 12 weeks in treatment-naive Chinese patients with type 2 diabetes. TRIAL REGISTRATION ClinicalTrials.gov NCT03520972 FUNDING: The study was funded by National Major Scientific and Technological Special Project for Significant New Drugs Development and PegBio.
Collapse
Affiliation(s)
- Linong Ji
- Department of Endocrinology, Peking University People's Hospital, Beijing, China.
| | - Ying Du
- PegBio Co., Ltd, Suzhou, China
| | - Min Xu
- PegBio Co., Ltd, Suzhou, China
| | | | - Zhaohui Mo
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jianhua Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing, China
| | - Jiarui Li
- The Third Endocrinology Department, Cangzhou Central Hospital, Cangzhou, China
| | - Yufeng Li
- Department of Endocrinology, Beijing Pinggu Hospital, Beijing, China
| | - Jingna Lin
- Department of Endocrinology, Tianjin People's Hospital, Tianjin, China
| | - Yanjun Wang
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, China
| | - Jing Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Weihong Song
- Department of Endocrinology and Diabetes, Chenzhou No 1 People's Hospital, Chenzhou, China
| | - Hui Jin
- Department of Endocrinology, Zhongda Hospital Southeast University, Nanjing, China
| | - Shuguang Pang
- Department of Endocrinology, Jinan Central Hospital, Jinan, China
| | - Hui Liu
- Department of Endocrinology, Luoyang Central Hospital, Luoyang, China
| | - Ping Li
- Department of Endocrinology, Yuncheng Central Hospital, Yuncheng, China
| | - Jie Liu
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Science and Technology, Henan, China
| | - Minxiu Yao
- Department of Endocrinology, Qingdao Central Hospital, Qingdao, China
| | - Wenhui Li
- Department of Endocrinology, Beijing Union Medical College Hospital, Beijing, China
| | - Xiaohong Jiang
- Department of Endocrinology, The First People's Hospital of Changzhou, Changzhou, China
| | - Feixia Shen
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Houfa Geng
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou, China
| | - Haifeng Zhou
- Department of Endocrinology, The First People's Hospital, Changde, China
| | - Jianmin Ran
- Department of Endocrinology, Guangzhou Red Cross Hospital, Guangzhou, China
| | - Minxiang Lei
- Department of Endocrinology, Xiangya Hospital Central South University, Changsha, China
| | - Yinghong Du
- Department of Endocrinology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Shandong Ye
- Department of Endocrinology, Anhui Provincial Hospital, Hefei, China
| | - Qingbo Guan
- Department of Endocrinology, Shandong Provincial Hospital, Jinan, China
| | - Wenshan Lv
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Huiwen Tan
- Department of Endocrinology, West China Hospital Sichuan University, Sichuan, China
| | - Tao Chen
- Department of Endocrinology, West China Hospital Sichuan University, Sichuan, China
| | - Jinkui Yang
- Department of Endocrinology, Beijing Tongren Hospital, CMU, Beijing, China
| | - Guijun Qin
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Shiyun Li
- Department of Endocrinology, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, China
| | - Lei Chen
- Department of Endocrinology, Suzhou Municipal Hospital, Suzhou, China
| |
Collapse
|
14
|
Cheng R, Taleb N, Stainforth-Dubois M, Rabasa-Lhoret R. The promising future of insulin therapy in diabetes mellitus. Am J Physiol Endocrinol Metab 2021; 320:E886-E890. [PMID: 33719586 DOI: 10.1152/ajpendo.00608.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The first therapeutic use of insulin by Frederick Banting and Charles Best in 1921 revolutionized the management of type 1 diabetes and considerably changed the lives of many patients with other types of diabetes. In the past 100 years, significant pharmacological advances took place in the field of insulin therapy, bringing closer the goal of optimal glycemic control along with decreased diabetes-related complications. Despite these developments, several challenges remain, such as increasing treatment flexibility, reducing iatrogenic hypoglycemia, and optimizing patient quality of life. Ongoing innovations in insulin therapy (e.g., new insulin analogs, alternative routes of insulin administration, and closed-loop technology) endeavor to overcome these hurdles and change the landscape of diabetes mellitus management. This report highlights recent advances made in the field of insulin therapy and discusses future perspectives.
Collapse
Affiliation(s)
- Ran Cheng
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
- Division of Endocrinology, Department of Medicine, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Nadine Taleb
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
- Division of Endocrinology, Department of Medicine, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- Department of Biomedical Sciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | | | - Rémi Rabasa-Lhoret
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
- Division of Endocrinology, Department of Medicine, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- Department of Biomedical Sciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Diabetes Research Center, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Mathieu C. Minimising hypoglycaemia in the real world: the challenge of insulin. Diabetologia 2021; 64:978-984. [PMID: 33452892 DOI: 10.1007/s00125-020-05354-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
Insulin therapy has been a life saver for people with type 1 diabetes and has been an essential tool in the therapy of people with type 2 diabetes, but the risk for hypoglycaemia has been a major hurdle to achieving good glycaemic control for most. Insulin analogues, the availability of novel technologies for the administration of insulin, like insulin pumps, and, in particular, tools to measure glucose levels, evolving from capillary measurements to continuous glucose monitoring, have revolutionised the way in which people living with diabetes use insulin. Novel insulin concepts, like once-weekly or oral insulin administration, will have to demonstrate safety on the side of hypoglycaemia before they will be able to move into the clinic.
Collapse
Affiliation(s)
- Chantal Mathieu
- Department of Endocrinology, UZ Gasthuisberg, KU Leuven, Leuven, Belgium.
| |
Collapse
|
16
|
Rivero Berti I, Islan GA, Castro GR. Enzymes and biopolymers. The opportunity for the smart design of molecular delivery systems. BIORESOURCE TECHNOLOGY 2021; 322:124546. [PMID: 33360273 DOI: 10.1016/j.biortech.2020.124546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Enzymes exhibit a tremendous potential due to the catalytic activity in response to physiological conditions and specific microenvironments. Exploiting these properties in combination with the versatility of biopolymers, a fascinating field for the rational development of a new class of "smart" delivery systems for therapeutic molecules is proposed. Many strategies have been recently developed to produce matrices with the desirable properties of molecular release, and enzymes could be playing a relevant role in modify the chemical composition of the polymers, the porosity and surface area of the matrices and modulate the kinetic of controlled release. Enzyme based computational systems have appeared as a relevant complementary tool to design novel smart bioactive matrices for programmable drug delivery. The present review is reporting the recent advances and projections of smart biopolymeric matrices activated by enzymes for sustained release of therapeutic molecules, highlighting various applications in the area of advanced drug delivery.
Collapse
Affiliation(s)
- Ignacio Rivero Berti
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) - CONICET (CCT La Plata), Calle 47 y 115, (B1900AJI), La Plata, Buenos Aires, Argentina
| | - German A Islan
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) - CONICET (CCT La Plata), Calle 47 y 115, (B1900AJI), La Plata, Buenos Aires, Argentina
| | - Guillermo R Castro
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) - CONICET (CCT La Plata), Calle 47 y 115, (B1900AJI), La Plata, Buenos Aires, Argentina; Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC), Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG), Centro de Estudios Interdisciplinarios (CEI), Universidad Nacional de Rosario, Maipú 1065, S2000 Rosario, Santa Fe, Argentina.
| |
Collapse
|
17
|
Lefever E, Vliebergh J, Mathieu C. Improving the treatment of patients with diabetes using insulin analogues: current findings and future directions. Expert Opin Drug Saf 2021; 20:155-169. [PMID: 33249944 DOI: 10.1080/14740338.2021.1856813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Introduction: The aim of insulin replacement in insulin-deficient people (type 1 diabetes, pancreatic causes of diabetes, long-standing type 2 diabetes) is to approximate the physiologic insulin action profile as closely as possible. However, short-acting human insulins start too slow and act too long, causing postprandial hyperglycemia and delayed hypoglycemia, while the insulin action profile of long-acting human insulins is too variable in duration and strength of action, leading to insufficient basal insulin covering and peak insulin levels after injection causing early nocturnal hypoglycemia. Insulin analogues were designed to overcome these shortcomings. In insulin-resistant people (type 2 diabetes), insulin analogues contribute to more efficient and safer insulin supplementation. Areas covered: In this review, we describe the unmet needs for insulin therapy, the currently available short- and long-acting insulin analogues and some considerations on cardiovascular outcomes, use in special populations, and cost-effectiveness. Finally, we discuss what is new in the field of insulin analogues. Expert opinion: The development of insulin analogues is an important step in diabetes treatment. Despite many patients meeting their glycemic targets with the newest analogues, hypoglycemic episodes remain a major problem. More physiologic insulin regimens, with glucose-sensitive or organ-targeting insulin analogues may be the answer to these issues.
Collapse
Affiliation(s)
- Eveline Lefever
- Department of Endocrinology, University Hospitals Leuven , Leuven, Belgium
| | - Joke Vliebergh
- Department of Endocrinology, University Hospitals Leuven , Leuven, Belgium
| | - Chantal Mathieu
- Department of Endocrinology, University Hospitals Leuven , Leuven, Belgium
| |
Collapse
|
18
|
Faust C, Ochs C, Korn M, Werner U, Jung J, Dittrich W, Schiebler W, Schauder R, Rao E, Langer T. Production of a novel heterodimeric two-chain insulin-Fc fusion protein. Protein Eng Des Sel 2020; 33:5959880. [PMID: 33159202 DOI: 10.1093/protein/gzaa026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 01/12/2023] Open
Abstract
Insulin is a peptide hormone produced by the pancreas. The physiological role of insulin is the regulation of glucose metabolism. Under certain pathological conditions the insulin levels can be reduced leading to the metabolic disorder diabetes mellitus (DM). For type 1 DM and, dependent on the disease progression for type 2 DM, insulin substitution becomes indispensable. To relieve insulin substitution therapy for patients, novel insulin analogs with pharmacokinetic and pharmacodynamic profiles aiming for long-lasting or fast-acting insulins have been developed. The next step in the evolution of novel insulins should be insulin analogs with a time action profile beyond 1-2 days, preferable up to 1 week. Nowadays, insulin is produced in a recombinant manner. This approach facilitates the design and production of further insulin-analogs or insulin-fusion proteins. The usage of the Fc-domain from immunoglobulin as a fusion partner for therapeutic proteins and peptides is widely used to extend their plasma half-life. Insulin consists of two chains, the A- and B-chain, which are connected by two disulfide-bridges. To produce a novel kind of Fc-fusion protein we have fused the A-chain as well as the B-chain to Fc-fragments containing either 'knob' or 'hole' mutations. The 'knob-into-hole' technique is frequently used to force heterodimerization of the Fc-domain. Using this approach, we were able to produce different variants of two-chain-insulin-Fc-protein (tcI-Fc-protein) variants. The tcI-Fc-fusion variants retained activity as shown in in vitro assays. Finally, prolonged blood glucose lowering activity was demonstrated in normoglycemic rats. Overall, we describe here the production of novel insulin-Fc-fusion proteins with prolonged times of action.
Collapse
Affiliation(s)
- Christine Faust
- Sanofi-Aventis Deutschland GmbH, R&D Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Christian Ochs
- Sanofi-Aventis Deutschland GmbH, R&D Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany.,Provadis School of International Management and Technology AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Marcus Korn
- Sanofi-Aventis Deutschland GmbH, R&D TA Diabetes, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Ulrich Werner
- Sanofi-Aventis Deutschland GmbH, R&D TA Diabetes, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Jennifer Jung
- Sanofi-Aventis Deutschland GmbH, R&D Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Werner Dittrich
- Sanofi-Aventis Deutschland GmbH, R&D Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Werner Schiebler
- Provadis School of International Management and Technology AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Rolf Schauder
- Provadis School of International Management and Technology AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Ercole Rao
- Sanofi-Aventis Deutschland GmbH, R&D Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Thomas Langer
- Sanofi-Aventis Deutschland GmbH, R&D Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| |
Collapse
|
19
|
Hubálek F, Refsgaard HHF, Gram-Nielsen S, Madsen P, Nishimura E, Münzel M, Brand CL, Stidsen CE, Claussen CH, Wulff EM, Pridal L, Ribel U, Kildegaard J, Porsgaard T, Johansson E, Steensgaard DB, Hovgaard L, Glendorf T, Hansen BF, Jensen MK, Nielsen PK, Ludvigsen S, Rugh S, Garibay PW, Moore MC, Cherrington AD, Kjeldsen T. Molecular engineering of safe and efficacious oral basal insulin. Nat Commun 2020; 11:3746. [PMID: 32719315 PMCID: PMC7385171 DOI: 10.1038/s41467-020-17487-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/01/2020] [Indexed: 12/19/2022] Open
Abstract
Recently, the clinical proof of concept for the first ultra-long oral insulin was reported, showing efficacy and safety similar to subcutaneously administered insulin glargine. Here, we report the molecular engineering as well as biological and pharmacological properties of these insulin analogues. Molecules were designed to have ultra-long pharmacokinetic profile to minimize variability in plasma exposure. Elimination plasma half-life of ~20 h in dogs and ~70 h in man is achieved by a strong albumin binding, and by lowering the insulin receptor affinity 500-fold to slow down receptor mediated clearance. These insulin analogues still stimulate efficient glucose disposal in rats, pigs and dogs during constant intravenous infusion and euglycemic clamp conditions. The albumin binding facilitates initial high plasma exposure with a concomitant delay in distribution to peripheral tissues. This slow appearance in the periphery mediates an early transient hepato-centric insulin action and blunts hypoglycaemia in dogs in response to overdosing.
Collapse
Affiliation(s)
| | | | | | - Peter Madsen
- Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Maaloev, Denmark
| | - Erica Nishimura
- Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Maaloev, Denmark
| | - Martin Münzel
- Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Maaloev, Denmark
| | | | | | | | - Erik Max Wulff
- Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Maaloev, Denmark
| | - Lone Pridal
- Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Maaloev, Denmark
| | - Ulla Ribel
- Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Maaloev, Denmark
| | | | - Trine Porsgaard
- Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Maaloev, Denmark
| | - Eva Johansson
- Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Maaloev, Denmark
| | | | - Lars Hovgaard
- Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Maaloev, Denmark
| | - Tine Glendorf
- Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Maaloev, Denmark
| | - Bo Falck Hansen
- Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Maaloev, Denmark
| | | | | | - Svend Ludvigsen
- Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Maaloev, Denmark
| | - Susanne Rugh
- Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Maaloev, Denmark
| | | | | | | | - Thomas Kjeldsen
- Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Maaloev, Denmark.
| |
Collapse
|
20
|
|
21
|
Chatterjee S, Khunti K, Davies MJ. Achieving Glycaemic Control with Concentrated Insulin in Patients with Type 2 Diabetes. Drugs 2019; 79:173-186. [PMID: 30623349 DOI: 10.1007/s40265-018-1048-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The recent introduction of the second-generation long-acting analogue insulins degludec and insulin glargine U300 have increased the choice of basal insulin therapy for patients with type 2 diabetes. The pharmacokinetic and pharmacodynamic properties of these insulins result in a flatter profile that lasts over 24 h and provides an increased window of administration of 6 h once daily. Large-scale multicentre randomised clinical trial programmes (BEGIN for degludec U100 and U200 and EDITION for glargine U300) evaluating these insulin therapies against glargine U100 have demonstrated that they are either non-inferior or superior for glycaemic efficacy and safety, but less likely to result in severe or nocturnal hypoglycaemia than glargine U100. The disposable pen devices for these insulins have been designed with patient satisfaction and convenience in mind. No concerns have arisen with adverse events with insulin analogues or cardiovascular safety from the ORIGIN and DEVOTE trials. As they demonstrate equivalent glycaemic efficacy to other basal insulins, they should be considered more in selected patient groups including those with recurrent or increased risk of hypoglycaemia, especially severe or nocturnal episodes, in the elderly or those living alone, and in patients with multiple co-morbidities such as cardiovascular or renal disease.
Collapse
Affiliation(s)
- Sudesna Chatterjee
- University Hospitals of Leicester NHS Trust, Senior Clinical Researcher, University of Leicester, Leicester, UK.
- Abbott Diabetes Care, Abbott Laboratories, Maidenhead, UK.
| | - Kamlesh Khunti
- Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Melanie J Davies
- Diabetes Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
22
|
Varanko AK, Chilkoti A. Molecular and Materials Engineering for Delivery of Peptide Drugs to Treat Type 2 Diabetes. Adv Healthc Mater 2019; 8:e1801509. [PMID: 30762299 DOI: 10.1002/adhm.201801509] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/11/2019] [Indexed: 01/06/2023]
Abstract
Type 2 diabetes is exploding globally. Despite numerous treatment options, nearly half of type 2 diabetics are unsuccessful at properly managing the disease, primarily due to a lack of patient compliance, driven by adverse side effects as well as complicated and frequent dosing schedules. Improving the delivery of type 2 diabetes drugs has the potential to increase patient compliance and thus, greatly enhance health outcomes and quality of life. This review focuses on molecular and materials engineering strategies that have been implemented to improve the delivery of peptide drugs to treat type 2 diabetes. Peptide drugs benefit from high potency and specificity but suffer from instability and short half-lives that limit their utility as therapeutics and pose a significant delivery challenge. Several approaches have been developed to improve the availability and efficacy of antidiabetic peptides and proteins in vivo. These methods are reviewed herein and include devices, which sustain the release of peptides in long term, and molecular engineering strategies, which prolong circulation time and slow the release of therapeutic peptides. By optimizing the delivery of these peptides and proteins using these approaches, long-term glucose control can be achieved in type 2 diabetes patients.
Collapse
Affiliation(s)
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering Duke University Durham NC 27708 USA
| |
Collapse
|
23
|
Akbarian M, Ghasemi Y, Uversky VN, Yousefi R. Chemical modifications of insulin: Finding a compromise between stability and pharmaceutical performance. Int J Pharm 2018; 547:450-468. [DOI: 10.1016/j.ijpharm.2018.06.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 02/07/2023]
|
24
|
Duncan R. Polymer therapeutics at a crossroads? Finding the path for improved translation in the twenty-first century. J Drug Target 2017; 25:759-780. [PMID: 28783978 DOI: 10.1080/1061186x.2017.1358729] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Despite the relatively small early investment, first generation 'polymer therapeutics' have been remarkably successful with more than 25 products licenced for human use as polymeric drugs, sequestrants, conjugates, and as an imaging agent. Many exhibit both clinical and commercial success with new concepts already in clinical trials. Nevertheless after four decades of evolution, this field is arriving at an important crossroads. Over the last decade, the landscape has changed rapidly. There are an increasing number of failed clinical trials, the number of 'copy' and 'generic' products is growing (danger of ignoring the biological rationale for design and suppression of innovation), potential drawbacks of PEG are becoming more evident, and the 'nanomedicine' boom has brought danger of loss of scientific focus/hype. Grasping opportunities provided by advances in understanding of the patho-physiology and molecular basis of diseases, new polymer/conjugate synthetic and analytical methods, as well as the large database of clinical experience will surely ensure a successful future for innovative polymer therapeutics. Progress will, however, be in jeopardy if polymer safety is overlooked in respect of the specific route of administration/clinical use, poorly characterised materials/formulations are used to define biological or early clinical properties, and if clinical trial protocols fail to select patients most likely to benefit from these macromolecular therapeutics. Opportunities to improve clinical trial design for polymer-anticancer drug conjugates are discussed. This short personal perspective summarises some of the important challenges facing polymer therapeutics in R&D today, and future opportunities to improve successful translation.
Collapse
Affiliation(s)
- Ruth Duncan
- a Polymer Therapeutics Laboratory , Centro de Investigación Príncipe Felipe , Valencia , Spain.,b Intracellular Delivery Solutions Laboratory, Faculty of Engineering and Science , University of Greenwich , Kent , UK
| |
Collapse
|
25
|
Mathieu C, Gillard P, Benhalima K. Insulin analogues in type 1 diabetes mellitus: getting better all the time. Nat Rev Endocrinol 2017; 13:385-399. [PMID: 28429780 DOI: 10.1038/nrendo.2017.39] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The treatment of type 1 diabetes mellitus consists of external replacement of the functions of β cells in an attempt to achieve blood levels of glucose as close to the normal range as possible. This approach means that glucose sensing needs to be replaced and levels of insulin need to mimic physiological insulin-action profiles, including basal coverage and changes around meals. Training and educating patients are crucial for the achievement of good glycaemic control, but having insulin preparations with action profiles that provide stable basal insulin coverage and appropriate mealtime insulin peaks helps people with type 1 diabetes mellitus to live active lives without sacrificing tight glycaemic control. Insulin analogues enable patients to achieve this goal, as some have fast action profiles, and some have very slow action profiles, which gives people with type 1 diabetes mellitus the tools to achieve dynamic insulin-action profiles that enable tight glycaemic control with a risk of hypoglycaemia that is lower than that with human short-acting and long-acting insulins. This Review discusses the established and novel insulin analogues that are used to treat patients with type 1 diabetes mellitus and provides insights into the future development of insulin analogues.
Collapse
Affiliation(s)
- Chantal Mathieu
- Clinical and Experimental Endocrinology, University of Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Pieter Gillard
- Clinical and Experimental Endocrinology, University of Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Katrien Benhalima
- Clinical and Experimental Endocrinology, University of Leuven, Herestraat 49, Leuven 3000, Belgium
| |
Collapse
|