1
|
Hwang J, Akbar AF, Premraj L, Ritzl EK, Cho SM. Epidemiology of Seizures and Association With Mortality in Adult Patients Undergoing ECMO: A Systematic Review and Meta-analysis. Neurology 2024; 103:e209721. [PMID: 39079068 DOI: 10.1212/wnl.0000000000209721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Extracorporeal membrane oxygenation (ECMO) provides lifesaving support to patients with cardiopulmonary failure. Although seizures increase mortality risks among critically ill patients broadly, studies specific to adult ECMO patients have largely been limited to single-center studies. Thus, we aimed to perform a systematic review and meta-analyses of seizure prevalence, mortality, and their associations in adult ECMO patients. METHODS PubMed, EMBASE, Cochrane trial registry, Web of Science, and SCOPUS were searched on August 5, 2023. Following the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines, we included studies of adults undergoing venovenous ECMO (VV-ECMO), venoarterial ECMO (VA-ECMO), or extracorporeal cardiopulmonary resuscitation (ECPR) that reported seizures during ECMO. The extracted data included study characteristics, patient demographics, ECMO support, EEG monitoring, and seizures, organized by ECMO types. Forest plot and meta-regression analyses were performed. Bias assessment was performed with the Egger test and Newcastle-Ottawa Scale. RESULTS Twenty-three studies (n = 40,420, mean age = 51.8 years, male = 62%) were included. Data were extracted by ECMO type as follows: VV-ECMO (n = 16,633), non-ECPR VA-ECMO (n = 11,082), ECPR (n = 3,369), combination of VA-ECMO and ECPR (n = 240), and combination of all types (n = 9,096). The pooled seizure prevalence for all ECMO types was 3.0%, not significantly different across ECMO types (VV-ECMO = 2.0% [95% CI 0.8-4.5]; VA-ECMO = 3.5% [95% CI 1.7-7.0]; ECPR = 4.9% [95% CI 1.3-17.2]). The pooled mortality was lower for VV-ECMO (46.2% [95% CI 39.3-53.2]) than VA-ECMO (63.4% [95% CI 56.6-69.6]) and ECPR (61.5% [95% CI 57.3-65.6]). Specifically, for VV-ECMO, the pooled mortality of patients with and without seizures was 55.1% and 36.7%, respectively (relative risk = 1.5 [95% CI 1.3-1.7]). Similarly, for VA-ECMO, the pooled mortality of patients with and without seizures was 74.4% and 56.1%, respectively (relative risk = 1.3 [95% CI 1.2-1.5]). Meta-regression analyses demonstrated that seizure prevalence was not associated with prior neurologic comorbidities, adjusted for ECMO type and study year. DISCUSSION Seizures are infrequent during ECMO support. However, they were associated with increased mortality when present. Multi-institutional, larger-scale studies using standardized EEG monitoring are necessary to further understand the risk factors of specific classes of seizures for individual ECMO types, and their effects on mortality. Limitations of our study include missing data for details on seizure types, sedating/antiseizure medications used during ECMO, other ECMO-related complications, and EEG recording protocols.
Collapse
Affiliation(s)
- Jaeho Hwang
- From the Division of Epilepsy (J.H., E.K.R.), Department of Neurology; Division of Cardiac Surgery (A.F.A.), Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD; Griffith University School of Medicine (L.P.), Gold Coast, Queensland, Australia; Division of Neurosciences Critical Care (E.K.R., S.-M.C.), Departments of Neurology, Neurosurgery, Anesthesiology, Critical Care Medicine, The Johns Hopkins Hospital, Baltimore, MD; and Division of Intraoperative Neuromonitoring (E.K.R.), Department of Neurology, Massachusetts General Brigham, Boston
| | - Armaan F Akbar
- From the Division of Epilepsy (J.H., E.K.R.), Department of Neurology; Division of Cardiac Surgery (A.F.A.), Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD; Griffith University School of Medicine (L.P.), Gold Coast, Queensland, Australia; Division of Neurosciences Critical Care (E.K.R., S.-M.C.), Departments of Neurology, Neurosurgery, Anesthesiology, Critical Care Medicine, The Johns Hopkins Hospital, Baltimore, MD; and Division of Intraoperative Neuromonitoring (E.K.R.), Department of Neurology, Massachusetts General Brigham, Boston
| | - Lavienraj Premraj
- From the Division of Epilepsy (J.H., E.K.R.), Department of Neurology; Division of Cardiac Surgery (A.F.A.), Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD; Griffith University School of Medicine (L.P.), Gold Coast, Queensland, Australia; Division of Neurosciences Critical Care (E.K.R., S.-M.C.), Departments of Neurology, Neurosurgery, Anesthesiology, Critical Care Medicine, The Johns Hopkins Hospital, Baltimore, MD; and Division of Intraoperative Neuromonitoring (E.K.R.), Department of Neurology, Massachusetts General Brigham, Boston
| | - Eva K Ritzl
- From the Division of Epilepsy (J.H., E.K.R.), Department of Neurology; Division of Cardiac Surgery (A.F.A.), Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD; Griffith University School of Medicine (L.P.), Gold Coast, Queensland, Australia; Division of Neurosciences Critical Care (E.K.R., S.-M.C.), Departments of Neurology, Neurosurgery, Anesthesiology, Critical Care Medicine, The Johns Hopkins Hospital, Baltimore, MD; and Division of Intraoperative Neuromonitoring (E.K.R.), Department of Neurology, Massachusetts General Brigham, Boston
| | - Sung-Min Cho
- From the Division of Epilepsy (J.H., E.K.R.), Department of Neurology; Division of Cardiac Surgery (A.F.A.), Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD; Griffith University School of Medicine (L.P.), Gold Coast, Queensland, Australia; Division of Neurosciences Critical Care (E.K.R., S.-M.C.), Departments of Neurology, Neurosurgery, Anesthesiology, Critical Care Medicine, The Johns Hopkins Hospital, Baltimore, MD; and Division of Intraoperative Neuromonitoring (E.K.R.), Department of Neurology, Massachusetts General Brigham, Boston
| |
Collapse
|
2
|
Schreiner L, Jordan M, Sieghartsleitner S, Kapeller C, Pretl H, Kamada K, Asman P, Ince NF, Miller KJ, Guger C. Mapping of the central sulcus using non-invasive ultra-high-density brain recordings. Sci Rep 2024; 14:6527. [PMID: 38499709 PMCID: PMC10948849 DOI: 10.1038/s41598-024-57167-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/14/2024] [Indexed: 03/20/2024] Open
Abstract
Brain mapping is vital in understanding the brain's functional organization. Electroencephalography (EEG) is one of the most widely used brain mapping approaches, primarily because it is non-invasive, inexpensive, straightforward, and effective. Increasing the electrode density in EEG systems provides more neural information and can thereby enable more detailed and nuanced mapping procedures. Here, we show that the central sulcus can be clearly delineated using a novel ultra-high-density EEG system (uHD EEG) and somatosensory evoked potentials (SSEPs). This uHD EEG records from 256 channels with an inter-electrode distance of 8.6 mm and an electrode diameter of 5.9 mm. Reconstructed head models were generated from T1-weighted MRI scans, and electrode positions were co-registered to these models to create topographical plots of brain activity. EEG data were first analyzed with peak detection methods and then classified using unsupervised spectral clustering. Our topography plots of the spatial distribution from the SSEPs clearly delineate a division between channels above the somatosensory and motor cortex, thereby localizing the central sulcus. Individual EEG channels could be correctly classified as anterior or posterior to the central sulcus with 95.2% accuracy, which is comparable to accuracies from invasive intracranial recordings. Our findings demonstrate that uHD EEG can resolve the electrophysiological signatures of functional representation in the brain at a level previously only seen from surgically implanted electrodes. This novel approach could benefit numerous applications, including research, neurosurgical mapping, clinical monitoring, detection of conscious function, brain-computer interfacing (BCI), rehabilitation, and mental health.
Collapse
Affiliation(s)
- Leonhard Schreiner
- g.Tec Medical Engineering GmbH, Schiedlberg, Austria.
- Institute for Integrated Circuits, Johannes Kepler University, Linz, Austria.
| | | | - Sebastian Sieghartsleitner
- g.Tec Medical Engineering GmbH, Schiedlberg, Austria
- Institute of Computational Perception, Johannes Kepler University, Linz, Austria
| | | | - Harald Pretl
- Institute for Integrated Circuits, Johannes Kepler University, Linz, Austria
| | | | - Priscella Asman
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Nuri F Ince
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Kai J Miller
- Department of Neurosurgery, Mayo Clinic, Rochester, USA
| | | |
Collapse
|
3
|
Murphey DK, Anderson ER. The Past, Present, and Future of Tele-EEG. Semin Neurol 2022; 42:31-38. [PMID: 35576928 DOI: 10.1055/s-0041-1742242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tele-electroencephalogram (EEG) has become more pervasive over the last 20 years due to advances in technology, both independent of and driven by personnel shortages. The professionalization of EEG services has both limited growth and controlled the quality of tele-EEG. Growing data on the conditions that benefit from brain monitoring have informed increased critical care EEG and ambulatory EEG utilization. Guidelines that marshal responsible use of still-limited resources and changes in broadband and billing practices have also shaped the tele-EEG landscape. It is helpful to characterize the drivers of tele-EEG to navigate barriers to sustainable growth and to build dynamic systems that anticipate challenges in any of the domains that expand access and enhance quality of these diagnostic services. We explore the historical factors and current trends in tele-EEG in the United States in this review.
Collapse
|
4
|
Kipiński L, Kordecki W. Time-series analysis of trial-to-trial variability of MEG power spectrum during rest state, unattended listening, and frequency-modulated tones classification. J Neurosci Methods 2021; 363:109318. [PMID: 34400211 DOI: 10.1016/j.jneumeth.2021.109318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The nonstationarity of EEG/MEG signals is important for understanding the functioning of the human brain. From our previous research we know that short, 250-500-ms MEG signals are variance-nonstationary. The covariance of a stochastic process is mathematically associated with its spectral density, therefore we investigate how the spectrum of such nonstationary signals varies in time. NEW METHOD We analyse data from 148-channel MEG, which represent rest state, unattended listening, and frequency-modulated tones classification. We transform short-time MEG signals to the frequency domain and for the dominant frequencies of 8-12 Hz we prepare the time series representing their trial-to-trial variability. Then, we test them for level- and trend-stationarity, unit root, heteroscedasticity, and gaussianity, and propose ARMA-modelling for their description. RESULTS The analysed time series have weak-stationarity properties independently of the functional state of the brain and channel localization. Only a small percentage of them, mostly related to the cognitive task, reveal nonstationarity. The obtained mathematical models show that the spectral density of the analysed signals depends on only two to three previous trials. COMPARISON WITH EXISTING METHODS The presented method has limitations related to FFT resolution and univariate models, but it is computationally simple and allows obtaining a low-complex stochastic model of the EEG/MEG spectrum variability. CONCLUSIONS Although physiological short-time MEG signals are in principle nonstationary in time, their power spectrum at the dominant (alpha) frequencies varies as a weakly stationary process. The proposed methodology has possible applications in prediction of EEG/MEG spectral properties in theoretical and clinical neuroscience.
Collapse
Affiliation(s)
- Lech Kipiński
- Department of Pathophysiology, Wrocław Medical University, 50-367 Wrocław, Poland.
| | - Wojciech Kordecki
- The Witelon State University of Applied Sciences in Legnica, 59-220 Legnica, Poland.
| |
Collapse
|
5
|
Cho SM, Choi CW, Whitman G, Suarez JI, Martinez NC, Geocadin RG, Ritzl EK. Neurophysiological Findings and Brain Injury Pattern in Patients on ECMO. Clin EEG Neurosci 2021; 52:462-469. [PMID: 31823652 DOI: 10.1177/1550059419892757] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Introduction. Brain injury is a major determinant of outcomes in extracorporeal membrane oxygenation (ECMO). Neurologic prognostication in ECMO has not been established. Absent electroencephalogram (EEG) reactivity and absent N20 on somatosensory evoked potential (SSEP) are associated with poor outcome in other types of brain injuries, especially following cardiopulmonary arrest. It is currently known if the same criteria are applicable in patients on ECMO. Methods. Continuous EEG (cEEG) was performed for patients with a Glasgow Coma Scale (GCS) <8 and SSEP data were performed for patients with a motor GCS < 4 in a prospective observational cohort undergoing ECMO at a tertiary center. EEG variables including reactivity were collected. SSEPs were categorized into absence, delay, or presence of N20. Poor outcome was defined as cerebral performance category 3 to 5 at discharge. Results. We present 13 consecutive patients who underwent both cEEG and SSEP. The median time from cannulation to EEG and SSEP were 3 (interquartile range [IQR] = 1-6) and 5 (IQR = 2-7) days, respectively. All patients were in coma and 12 (92%) had poor outcomes. Ten (77%) underwent brain computed tomography, the findings of which explained coma in only 2. Patients (n = 12) with poor outcome had poor variability, absent reactivity, and lack of sleep features with diffusely slow theta-delta background on the EEG. Despite poor outcomes, all had relatively preserved or normal N20 responses. One patient with preserved reactivity and sleep features on the EEG and intact SSEP had a good outcome. Conclusions. Absent EEG reactivity with the preservation of SSEP N20 was associated with poor outcome in comatose ECMO patients. We advise caution in interpreting electrophysiological tests in prognosticating ECMO patients until the patterns and outcomes are better understood.
Collapse
Affiliation(s)
- Sung-Min Cho
- Neurosciences Critical Care Division, Departments of Neurology, Anesthesiology and Critical Care Medicine and Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Chun Woo Choi
- Cardiovascular Surgical Intensive Care, Heart and Vascular Institute, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Glenn Whitman
- Cardiovascular Surgical Intensive Care, Heart and Vascular Institute, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jose I Suarez
- Neurosciences Critical Care Division, Departments of Neurology, Anesthesiology and Critical Care Medicine and Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Nirma Carballido Martinez
- Continuous Video EEG Service, Department of Neurology, School of Medicine, John Hopkins University, Baltimore, MD, USA
| | - Romergryko G Geocadin
- Neurosciences Critical Care Division, Departments of Neurology, Anesthesiology and Critical Care Medicine and Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Eva K Ritzl
- Neurosciences Critical Care Division, Departments of Neurology, Anesthesiology and Critical Care Medicine and Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.,Continuous Video EEG Service, Department of Neurology, School of Medicine, John Hopkins University, Baltimore, MD, USA.,Intraoperative Monitoring Service, Department of Neurology, School of Medicine, John Hopkins University, Baltimore, MD, USA
| |
Collapse
|
6
|
Fustes OJH, Kay CSK, Lorenzoni PJ, Ducci RDP, Werneck LC, Scola RH. Somatosensory evoked potentials in clinical practice: a review. ARQUIVOS DE NEURO-PSIQUIATRIA 2021; 79:824-831. [PMID: 34669817 DOI: 10.1590/0004-282x-anp-2020-0427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/28/2020] [Indexed: 11/22/2022]
Abstract
The authors present a review of the current use of somatosensory evoked potentials (SSEPs) in neurological practice as a non-invasive neurophysiological technique. For this purpose we have reviewed articles published in English or Portuguese in the PubMed and LILACS databases. In this review, we address the role of SSEPs in neurological diseases that affect the central nervous system and the peripheral nervous system, especially in demyelinating diseases, for monitoring coma, trauma and the functioning of sensory pathways during surgical procedures. The latter, along with new areas of research, has become one of the most important applications of SSEPs.
Collapse
Affiliation(s)
- Otto Jesus Hernández Fustes
- Universidade Federal do Paraná, Complexo Hospital de Clínicas, Departamento de Clínica Médica, Serviço de Neurologia, Serviço de Doenças Neuromusculares e Desmielinizantes, Curitiba PR, Brazil
| | - Cláudia Suemi Kamoi Kay
- Universidade Federal do Paraná, Complexo Hospital de Clínicas, Departamento de Clínica Médica, Serviço de Neurologia, Serviço de Doenças Neuromusculares e Desmielinizantes, Curitiba PR, Brazil
| | - Paulo José Lorenzoni
- Universidade Federal do Paraná, Complexo Hospital de Clínicas, Departamento de Clínica Médica, Serviço de Neurologia, Serviço de Doenças Neuromusculares e Desmielinizantes, Curitiba PR, Brazil
| | - Renata Dal-Prá Ducci
- Universidade Federal do Paraná, Complexo Hospital de Clínicas, Departamento de Clínica Médica, Serviço de Neurologia, Serviço de Doenças Neuromusculares e Desmielinizantes, Curitiba PR, Brazil
| | - Lineu Cesar Werneck
- Universidade Federal do Paraná, Complexo Hospital de Clínicas, Departamento de Clínica Médica, Serviço de Neurologia, Serviço de Doenças Neuromusculares e Desmielinizantes, Curitiba PR, Brazil
| | - Rosana Herminia Scola
- Universidade Federal do Paraná, Complexo Hospital de Clínicas, Departamento de Clínica Médica, Serviço de Neurologia, Serviço de Doenças Neuromusculares e Desmielinizantes, Curitiba PR, Brazil
| |
Collapse
|
7
|
Steele AG, Parekh S, Azgomi HF, Ahmadi MB, Craik A, Pati S, Francis JT, Contreras-Vidal JL, Faghih RT. A Mixed Filtering Approach for Real-Time Seizure State Tracking Using Multi-Channel Electroencephalography Data. IEEE Trans Neural Syst Rehabil Eng 2021; 29:2037-2045. [PMID: 34543199 PMCID: PMC8626138 DOI: 10.1109/tnsre.2021.3113888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Real-time continuous tracking of seizure state is necessary to develop feedback neuromodulation therapy that can prevent or terminate a seizure early. Due to its high temporal resolution, high scalp coverage, and non-invasive applicability, electroencephalography (EEG) is a good candidate for seizure tracking. In this research, we make multiple seizure state estimations using a mixed-filter and multiple channels found over the entire sensor space; then by applying a Kalman filter, we produce a single seizure state estimation made up of these individual estimations. Using a modified wrapper feature selection, we determine two optimal features of mixed data type, one continuous and one binary analyzing all available channels. These features are used in a state-space framework to model the continuous hidden seizure state. Expectation maximization is performed offline on the training and validation data sets to estimate unknown parameters. The seizure state estimation process is performed for multiple channels, and the seizure state estimation is derived using a square-root Kalman filter. A second expectation maximization step is utilized to estimate the unknown square-root Kalman filter parameters. This method is tested in a real-time applicable way for seizure state estimation. Applying this approach, we obtain a single seizure state estimation with quantitative information about the likelihood of a seizure occurring, which we call seizure probability. Our results on the experimental data (CHB-MIT EEG database) validate the proposed estimation method and we achieve an average accuracy, sensitivity, and specificity of 92.7%, 92.8%, and 93.4%, respectively. The potential applications of this seizure estimation model are for closed-loop neuromodulation and long-term quantitative analysis of seizure treatment efficacy.
Collapse
|
8
|
Cho SM, Ritzl EK. Neurological Prognostication Using Electroencephalogram in Adult Veno-arterial Extracorporeal Membrane Oxygenation: Limitations and Recommendations. Neurocrit Care 2020; 33:652-654. [DOI: 10.1007/s12028-020-01099-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/29/2020] [Indexed: 11/24/2022]
|
9
|
Khandelwal A, Bithal PK, Rath GP. Anesthetic considerations for extracranial injuries in patients with associated brain trauma. J Anaesthesiol Clin Pharmacol 2019; 35:302-311. [PMID: 31543576 PMCID: PMC6748016 DOI: 10.4103/joacp.joacp_278_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Patients with severe traumatic brain injury often presents with extracranial injuries, which may contribute to fatal outcome. Anesthetic management of such polytrauma patients is extremely challenging that includes prioritizing the organ system to be dealt first, reducing on-going injury, and preventing secondary injuries. Neuroprotective and neurorescue measures should be instituted simultaneously during extracranial surgeries. Selection of anesthetic drugs that minimally interferes with cerebral dynamics, maintenance of hemodynamics and cerebral perfusion pressure, optimal utilization of multimodal monitoring techniques, and aggressive rehabilitation approach are the key factors for improving overall patient outcome.
Collapse
Affiliation(s)
- Ankur Khandelwal
- Department of Neuroanaesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Parmod Kumar Bithal
- Department of Anesthesia and OR Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Girija Prasad Rath
- Department of Neuroanaesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
10
|
Ghasemi M, Azeem MU, Muehlschlegel S, Chu F, Henninger N. Prescription patterns for routine EEG ordering in patients with intracranial hemorrhage admitted to a neurointensive care unit. J Crit Care 2019; 50:262-268. [PMID: 30660914 DOI: 10.1016/j.jcrc.2019.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 12/29/2018] [Accepted: 01/10/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE To examine clinical factors, including established electroencephalography (EEG) consensus recommendations, that may influence EEG-prescription in critically-ill intracerebral hemorrhage (ICH) patients in the neurointensive care unit. METHODS Retrospective analysis of 330 ICH patients admitted to a neurointensive care unit at an academic medical center between 01/2013-12/2015. We compared EEG prescription patterns with current EEG consensus recommendations, and employed univariate and multivariable logistic regression modeling to determine clinical variables associated with EEG ordering. RESULTS Seventy-eight (41%) of 190 subjects underwent EEG in accordance with EEG-consensus guidelines, demonstrating an overall accuracy (probability that EEG prescription aligned with EEG consensus recommendations) of 64.6% (95%-CI59.1-69.7). Factors independently associated with EEG ordering included fulfillment of EEG consensus recommendations, lower admission Glasgow Coma Scale (GCS), and presence of clinical seizures. The unadjusted and adjusted C-statistics for fulfillment of consensus recommendations was 0.74 (95%-CI 0.69-0.80) and 0.85 (95%-CI 0.81-0.90), respectively. Among 83 subjects undergoing EEG (25.2%), EEG findings informed clinical decision-making in 50 patients (60%). CONCLUSIONS EEG appeared underused in ICH, since <50% of patients who fulfilled guideline criteria underwent EEG. Prescription of EEG was related to factors beyond those included in consensus recommendations. Validation of our findings and their association with outcome is required.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Muhammad Umer Azeem
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Susanne Muehlschlegel
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Department of Surgery, University of Massachusetts Medical School, Worcester, MA 01655, USA; Department of Anesthesia and Critical Care, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Felicia Chu
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Nils Henninger
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
11
|
Azabou E, Navarro V, Kubis N, Gavaret M, Heming N, Cariou A, Annane D, Lofaso F, Naccache L, Sharshar T. Value and mechanisms of EEG reactivity in the prognosis of patients with impaired consciousness: a systematic review. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:184. [PMID: 30071861 PMCID: PMC6091014 DOI: 10.1186/s13054-018-2104-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/22/2018] [Indexed: 12/21/2022]
Abstract
Background Electroencephalography (EEG) is a well-established tool for assessing brain function that is available at the bedside in the intensive care unit (ICU). This review aims to discuss the relevance of electroencephalographic reactivity (EEG-R) in patients with impaired consciousness and to describe the neurophysiological mechanisms involved. Methods We conducted a systematic search of the term “EEG reactivity and coma” using the PubMed database. The search encompassed articles published from inception to March 2018 and produced 202 articles, of which 42 were deemed relevant, assessing the importance of EEG-R in relationship to outcomes in patients with impaired consciousness, and were therefore included in this review. Results Although definitions, characteristics and methods used to assess EEG-R are heterogeneous, several studies underline that a lack of EEG-R is associated with mortality and unfavorable outcome in patients with impaired consciousness. However, preserved EEG-R is linked to better odds of survival. Exploring EEG-R to nociceptive, auditory, and visual stimuli enables a noninvasive trimodal functional assessment of peripheral and central sensory ascending pathways that project to the brainstem, the thalamus and the cerebral cortex. A lack of EEG-R in patients with impaired consciousness may result from altered modulation of thalamocortical loop activity by afferent sensory input due to neural impairment. Assessing EEG-R is a valuable tool for the diagnosis and outcome prediction of severe brain dysfunction in critically ill patients. Conclusions This review emphasizes that whatever the etiology, patients with impaired consciousness featuring a reactive electroencephalogram are more likely to have a favorable outcome, whereas those with a nonreactive electroencephalogram are prone to having an unfavorable outcome. EEG-R is therefore a valuable prognostic parameter and warrants a rigorous assessment. However, current assessment methods are heterogeneous, and no consensus exists. Standardization of stimulation and interpretation methods is needed.
Collapse
Affiliation(s)
- Eric Azabou
- Department of Physiology and Department of Critical Care Medicine, Raymond Poincaré Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Inserm UMR 1173 Infection and Inflammation, University of Versailles Saint Quentin (UVSQ), University Paris-Saclay, Garches, Paris, France. .,Clinical Neurophysiology Unit, Raymond Poincaré Hospital - Assistance - Publique Hôpitaux de Paris, INSERM U1173, University of Versailles-Saint Quentin (UVSQ), 104 Boulevard Raymond Poincaré, Garches, 92380, Paris, France.
| | - Vincent Navarro
- Department of Clinical Neurophysiology, Pitié-Salpêtrière Hospital, AP-HP, Inserm UMRS 1127, CNRS UMR 7225, Sorbonne Universities, Université Pierre et Marie Curie - UPMC Université Paris 06, Paris, France
| | - Nathalie Kubis
- Department of Clinical Physiology, Lariboisière Hospital, AP-HP, Inserm U965, University of Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Martine Gavaret
- Department of Clinical Neurophysiology, Sainte-Anne Hospital, Inserm U894, University Paris-Descartes, Paris, France
| | - Nicholas Heming
- Department of Physiology and Department of Critical Care Medicine, Raymond Poincaré Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Inserm UMR 1173 Infection and Inflammation, University of Versailles Saint Quentin (UVSQ), University Paris-Saclay, Garches, Paris, France
| | - Alain Cariou
- Medical ICU, Cochin Hospital, AP-HP, Paris Cardiovascular Research Center, INSERM U970, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Djillali Annane
- Department of Physiology and Department of Critical Care Medicine, Raymond Poincaré Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Inserm UMR 1173 Infection and Inflammation, University of Versailles Saint Quentin (UVSQ), University Paris-Saclay, Garches, Paris, France
| | - Fréderic Lofaso
- Department of Physiology and Department of Critical Care Medicine, Raymond Poincaré Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Inserm UMR 1173 Infection and Inflammation, University of Versailles Saint Quentin (UVSQ), University Paris-Saclay, Garches, Paris, France
| | - Lionel Naccache
- Department of Clinical Neurophysiology, Pitié-Salpêtrière Hospital, AP-HP, Inserm UMRS 1127, CNRS UMR 7225, Sorbonne Universities, Université Pierre et Marie Curie - UPMC Université Paris 06, Paris, France
| | - Tarek Sharshar
- Department of Neuro-Intensive Care Medicine, Sainte-Anne Hospital, Paris-Descartes University, Paris, France
| |
Collapse
|
12
|
Tsetsou S, Novy J, Oddo M, Rossetti AO. EEG reactivity to pain in comatose patients: Importance of the stimulus type. Resuscitation 2015; 97:34-7. [DOI: 10.1016/j.resuscitation.2015.09.380] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/27/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
|
13
|
Edlow BL, Rosenthal ES. Diagnostic, Prognostic, and Advanced Imaging in Severe Traumatic Brain Injury. CURRENT TRAUMA REPORTS 2015. [DOI: 10.1007/s40719-015-0018-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
14
|
Vaz-Guimaraes F, Su SY, Fernandez-Miranda JC, Wang EW, Snyderman CH, Gardner PA. Hemostasis in Endoscopic Endonasal Skull Base Surgery. J Neurol Surg B Skull Base 2015. [PMID: 26225320 DOI: 10.1055/s-0034-1544119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
William Halsted established the basic principles of modern surgical technique highlighting the importance of meticulous hemostasis and careful tissue handling. These concepts hold true today and are even more critical for endoscopic visualization, making hemostasis one of the most relevant cornerstones for the safe practice of endoscopic endonasal surgery (EES) of the skull base. During preoperative assessment, patients at higher risk for serious hemorrhagic complications must be recognized. From an anatomical point of view, EES can be grossly divided in two major components: sinonasal surgery and sellar-cranial base surgery. This division affects the choice of appropriate technique for control of bleeding that relies mainly on the source of hemorrhage, the tissue involved, and the proximity of critical neurovascular structures. Pistol-grip or single-shaft instruments constitute the most important and appropriately designed instruments available for EES. Electrocoagulation and a variety of hemostatic materials are also important tools and should be applied wisely. This article describes the experience of our team in the management of hemorrhagic events during EES with an emphasis on technical nuances.
Collapse
Affiliation(s)
- Francisco Vaz-Guimaraes
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Shirley Y Su
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Juan C Fernandez-Miranda
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Eric W Wang
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Carl H Snyderman
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States ; Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Paul A Gardner
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
15
|
A Handy EEG Electrode Set for patients suffering from altered mental state. J Clin Monit Comput 2015; 29:697-705. [DOI: 10.1007/s10877-014-9652-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 12/24/2014] [Indexed: 10/24/2022]
|
16
|
Abstract
Although neurocritical care as a subspecialty is a relatively young field of medicine, its origins can be traced back to ancient times. This article focuses on the progression of neurocritical care from prehistoric trepanation procedures, through the development of mechanical ventilation, management of increased intracranial pressure, and traumatic brain injury, to the establishment of the first "real" intensive care units, and finally to modern monitoring in neurocritical care, management of post-cardiac arrest patients, and the diagnosis of brain death. This article also focuses on the future direction of neurocritical care.
Collapse
Affiliation(s)
- Georgia Korbakis
- Department of Neurological Sciences, Rush University Medical Center, 600 South Paulina Street, Chicago, IL 60612, USA.
| | - Thomas Bleck
- Department of Neurological Sciences, Rush University Medical Center, 600 South Paulina Street, Chicago, IL 60612, USA; Department of Neurosurgery, Rush University Medical Center, 600 South Paulina Street, Chicago, IL 60612, USA; Department of Anesthesiology, Rush University Medical Center, 600 South Paulina Street, Chicago, IL 60612, USA; Department of Internal Medicine, Rush University Medical Center, 600 South Paulina Street, Chicago, IL 60612, USA
| |
Collapse
|
17
|
[Usefulness of Bispectral Index (BIS) monitoring for early detection of cerebral hypoperfusions]. ACTA ACUST UNITED AC 2013; 32:653-8. [PMID: 23953319 DOI: 10.1016/j.annfar.2013.07.802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 07/03/2013] [Indexed: 11/24/2022]
Abstract
OBJECTIVES The goal of the study was to assess whether clinically significant cerebral hypoperfusion in awake patients would be associated with some alterations in the values of the bispectral index (BIS) monitoring. STUDY DESIGN Observational study. POPULATION AND METHODS We monitored the BIS during endovascular carotid artery occlusion testing in awake patients. RESULTS Twenty-eight patients were included. Twenty-one adequately tolerated the procedure. Their BIS value remained stable throughout the procedure. Four patients had poor angiographic tolerance, but no clinical symptoms. Their BIS value slightly decreased during the test (minimal BIS: 83 [79-87]). Three patients had poor clinical and angiographic tolerance of the occlusion. They all experienced an immediate and dramatic decrease in their BIS value (minimal BIS: ipsilateral to clamping: 50 [45-60]; contralateral to clamping: 48 [45-52]). In all patients, the clinical symptoms and the BIS normalized after deflating the occlusion balloon. CONCLUSION In awake patients, the observed values of the BIS monitoring seem to be associated with clinically relevant cerebral hypoperfusion.
Collapse
|
18
|
Irimia A, Goh SYM, Torgerson CM, Stein NR, Chambers MC, Vespa PM, Van Horn JD. Electroencephalographic inverse localization of brain activity in acute traumatic brain injury as a guide to surgery, monitoring and treatment. Clin Neurol Neurosurg 2013; 115:2159-65. [PMID: 24011495 DOI: 10.1016/j.clineuro.2013.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/24/2013] [Accepted: 08/04/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To inverse-localize epileptiform cortical electrical activity recorded from severe traumatic brain injury (TBI) patients using electroencephalography (EEG). METHODS Three acute TBI cases were imaged using computed tomography (CT) and multimodal magnetic resonance imaging (MRI). Semi-automatic segmentation was performed to partition the complete TBI head into 25 distinct tissue types, including 6 tissue types accounting for pathology. Segmentations were employed to generate a finite element method model of the head, and EEG activity generators were modeled as dipolar currents distributed over the cortical surface. RESULTS We demonstrate anatomically faithful localization of EEG generators responsible for epileptiform discharges in severe TBI. By accounting for injury-related tissue conductivity changes, our work offers the most realistic implementation currently available for the inverse estimation of cortical activity in TBI. CONCLUSION Whereas standard localization techniques are available for electrical activity mapping in uninjured brains, they are rarely applied to acute TBI. Modern models of TBI-induced pathology can inform the localization of epileptogenic foci, improve surgical efficacy, contribute to the improvement of critical care monitoring and provide guidance for patient-tailored treatment. With approaches such as this, neurosurgeons and neurologists can study brain activity in acute TBI and obtain insights regarding injury effects upon brain metabolism and clinical outcome.
Collapse
Affiliation(s)
- Andrei Irimia
- The Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | | | | | | | | | | | | |
Collapse
|