1
|
Kim SK, Kwon YJ, Seo EB, Lee HS, Sohn JO, Shin HM, Kim SJ, Ye SK. Neuroprotective Effects of STAT3 Inhibitor on Hydrogen Peroxide-Induced Neuronal Cell Death via the ERK/CREB Signaling Pathway. Neurochem Res 2024; 50:52. [PMID: 39648181 PMCID: PMC11625690 DOI: 10.1007/s11064-024-04252-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/21/2024] [Accepted: 10/23/2024] [Indexed: 12/10/2024]
Abstract
This study investigates the neuroprotective potential of STAT3 inhibition in reducing oxidative stress-induced neuronal damage and apoptosis, a major factor contributing to the onset and progression of neurodegenerative diseases, including Alzheimer's disease (AD). Our findings demonstrate that STAT3 inhibitors significantly enhance cell survival and reduce apoptosis in SH-SY5Y cells exposed to hydrogen peroxide. These protective effects are mediated through the ERK/CREB signaling pathway rather than direct suppression of STAT3 phosphorylation. Further analysis revealed that the ERK pathway is a critical mediator of CREB activation following STAT3 inhibition. The protective effects of STAT3 inhibitors were significantly reduced in the presence of the ERK inhibitor PD98059, underscoring the importance of the ERK/CREB axis in neuroprotection. We observed that STAT3 inhibitors promote CREB phosphorylation, leading to the upregulation of immediate early genes such as c-Fos, c-Jun, Arc, Egr-1, NR4A1, and Homer1a, as well as BDNF. These genes are crucial for synaptic plasticity and long-term memory formation, suggesting that STAT3 inhibition may ameliorate cognitive impairments in neurodegenerative conditions. Our results highlight the potential of STAT3 inhibitors to counteract oxidative stress and enhance cognitive functions by modulating the ERK/CREB signaling pathway. These findings provide valuable insights into the molecular mechanisms of STAT3 inhibition and support its therapeutic potential for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Seul-Ki Kim
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Yong-Jin Kwon
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Cosmetic Science, Kyungsung University, Busan, 48434, Republic of Korea
| | - Eun-Bi Seo
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hyun-Seung Lee
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jie Ohn Sohn
- Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, Republic of Korea
| | - Hyun Mu Shin
- Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, Republic of Korea
| | - Sung Joon Kim
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sang-Kyu Ye
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, Republic of Korea.
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
2
|
Brinza I, Boiangiu RS, Mihasan M, Gorgan DL, Stache AB, Abd-Alkhalek A, El-Nashar H, Ayoub I, Mostafa N, Eldahshan O, Singab AN, Hritcu L. Rhoifolin, baicalein 5,6-dimethyl ether and agathisflavone prevent amnesia induced in scopolamine zebrafish (Danio rerio) model by increasing the mRNA expression of bdnf, npy, egr-1, nfr2α, and creb1 genes. Eur J Pharmacol 2024; 984:177013. [PMID: 39378928 DOI: 10.1016/j.ejphar.2024.177013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
The increasing attention towards age-related diseases has generated significant interest in the concept of cognitive dysfunction associated with Alzheimer's disease (AD). Certain limitations are associated with the current therapies, and flavonoids have been reported to exhibit multiple biological activities and anti-AD effects in several AD models owing to their antioxidative, anti-inflammatory, and anti-amyloidogenic properties. In this study, we performed an initial in silico predictions of the pharmacokinetic properties of three flavonoids (rhoifolin, baicalein 5,6-dimethyl ether and agathisflavone). Subsequently, we evaluated the antiamnesic and antioxidant potential of flavonoids in concentrations of 1, 3, and 5 μg/L in scopolamine (100 μM)-induced amnesic zebrafish (Danio rerio) model. Zebrafish behavior was analyzed by novel tank diving test (NTT), Y-maze, and novel object recognition test (NOR). Acetylcholinesterase (AChE) activity, brain antioxidant status and the expression of bdnf, npy, egr1, nrf2α, creb1 genes, and CREB-1 protein level was measured to elucidate the underlying mechanism of action. Our flavonoids improved memory and decreased anxiety-like behavior of scopolamine-induced amnesia in zebrafish. Also, the studied flavonoids reduced AChE activity and brain oxidative stress and upregulated the gene expression, collectively contributing to neuroprotective properties. The results of our study add new perspectives on the properties of flavonoids to regulate the evolution of neurodegenerative diseases, especially AD, by modulating the expression of genes involved in the regulation of synaptic plasticity, axonal growth, and guidance, sympathetic and vagal transmission, the antioxidant response and cell proliferation and growth.
Collapse
Affiliation(s)
- Ion Brinza
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Marius Mihasan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Dragos Lucian Gorgan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Alexandru Bogdan Stache
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; Department of Molecular Genetics, Center for Fundamental Research and Experimental Development in Translation Medicine-TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania
| | | | - Heba El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Iriny Ayoub
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Nada Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Omayma Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | - Abdel Nasser Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania.
| |
Collapse
|
3
|
Jean Gregoire M, Sirtori R, Donatelli L, Morgan Potts E, Collins A, Zamor D, Katenka N, Fallini C. Early disruption of the CREB pathway drives dendritic morphological alterations in FTD/ALS cortical neurons. Proc Natl Acad Sci U S A 2024; 121:e2406998121. [PMID: 39589881 PMCID: PMC11626127 DOI: 10.1073/pnas.2406998121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/15/2024] [Indexed: 11/28/2024] Open
Abstract
Synaptic loss and dendritic degeneration are common pathologies in several neurodegenerative diseases characterized by progressive cognitive and/or motor decline, such as Alzheimer's disease (AD) and frontotemporal dementia/amyotrophic lateral sclerosis (FTD/ALS). An essential regulator of neuronal health, the cAMP-dependent transcription factor CREB positively regulates synaptic growth, learning, and memory. Phosphorylation of CREB by protein kinase A (PKA) and other cellular kinases promotes neuronal survival and maturation via transcriptional activation of a wide range of downstream target genes. CREB pathway dysfunction has been strongly implicated in AD pathogenesis, and recent data suggest that impaired CREB activation may contribute to disease phenotypes in FTD/ALS as well. However, the mechanisms behind reduced CREB activity in FTD/ALS pathology are not clear. In this study, we found that cortical-like neurons derived from iPSC lines carrying the hexanucleotide repeat expansion in the C9ORF72 gene, a common genetic cause of FTD/ALS, displayed a diminished activation of CREB, resulting in decreased dendritic and synaptic health. Importantly, we determined such impairments to be mechanistically linked to an imbalance in the ratio of regulatory and catalytic subunits of the CREB activator PKA and to be conserved in C9-ALS patient's postmortem tissue. Modulation of cAMP upstream of this impairment allowed for a rescue of CREB activity and an amelioration of dendritic morphology and synaptic protein levels. Our data elucidate the mechanism behind early CREB pathway dysfunction and discern a feasible therapeutic target for the treatment of FTD/ALS and possibly other neurodegenerative diseases.
Collapse
Affiliation(s)
- Michelle Jean Gregoire
- Cell and Molecular Biology Department, University of Rhode Island, Kingston, RI02881
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI02881
- George and Anne Ryan Institute for Neuroscience, Kingston, RI02881
| | - Riccardo Sirtori
- Cell and Molecular Biology Department, University of Rhode Island, Kingston, RI02881
- George and Anne Ryan Institute for Neuroscience, Kingston, RI02881
| | - Liviana Donatelli
- Cell and Molecular Biology Department, University of Rhode Island, Kingston, RI02881
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI02881
- George and Anne Ryan Institute for Neuroscience, Kingston, RI02881
| | - Emily Morgan Potts
- Cell and Molecular Biology Department, University of Rhode Island, Kingston, RI02881
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI02881
- George and Anne Ryan Institute for Neuroscience, Kingston, RI02881
| | - Alicia Collins
- Cell and Molecular Biology Department, University of Rhode Island, Kingston, RI02881
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI02881
- George and Anne Ryan Institute for Neuroscience, Kingston, RI02881
| | - Danielo Zamor
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI02881
- George and Anne Ryan Institute for Neuroscience, Kingston, RI02881
| | - Natallia Katenka
- Department of Computer Science and Statistics, University of Rhode Island, Kingston, RI02881
| | - Claudia Fallini
- Cell and Molecular Biology Department, University of Rhode Island, Kingston, RI02881
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI02881
- George and Anne Ryan Institute for Neuroscience, Kingston, RI02881
| |
Collapse
|
4
|
Siddiqui AJ, Badraoui R, Alshahrani MM, Snoussi M, Jahan S, Siddiqui MA, Khan A, Sulieman AME, Adnan M. A computational and machine learning approach to identify GPR40-targeting agonists for neurodegenerative disease treatment. PLoS One 2024; 19:e0306579. [PMID: 39378198 PMCID: PMC11481007 DOI: 10.1371/journal.pone.0306579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/19/2024] [Indexed: 10/10/2024] Open
Abstract
The G protein-coupled receptor 40 (GPR40) is known to exert a significant influence on neurogenesis and neurodevelopment within the central nervous system of both humans and rodents. Research findings indicate that the activation of GPR40 by an agonist has been observed to promote the proliferation and viability of hypothalamus cells in the human body. The objective of the present study is to discover new agonist compounds for the GPR40 protein through the utilization of machine learning and pharmacophore-based screening techniques, in conjunction with other computational methodologies such as docking, molecular dynamics simulations, free energy calculations, and investigations of the free energy landscape. In the course of our investigation, we successfully identified five unreported agonist compounds that exhibit robust docking score, displayed stability in ligand RMSD and consistent hydrogen bonding with the receptor in the MD trajectories. Free energy calculations were observed to be higher than control molecule. The measured binding affinities of compounds namely 1, 3, 4, 6 and 10 were -13.9, -13.5, -13.4, -12.9, and -12.1 Kcal/mol, respectively. The identified molecular agonist that has been found can be assessed in terms of its therapeutic efficacy in the treatment of neurological diseases.
Collapse
Affiliation(s)
- Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | | | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, India
| | | | - Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| |
Collapse
|
5
|
Wang Z, Li D, Chen M, Yu X, Chen C, Chen Y, Zhang L, Shu Y. A comprehensive study on the regulation of Compound Zaoren Granules on cAMP/CREB signaling pathway and metabolic disorder in CUMS-PCPA induced insomnia rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118401. [PMID: 38815875 DOI: 10.1016/j.jep.2024.118401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/07/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Compound Zaoren Granules (CZG), an optimized herbal formulation based on the traditional Chinese medicine prescription Suanzaoren decoction, are designed specifically for insomnia treatment. However, the mechanisms underlying its efficacy in treating insomnia are not yet fully understood. AIM OF THE STUDY The research investigated the mechanisms of CZG's improvement in insomnia by regulating cAMP/CREB signaling pathway and metabolic profiles. METHODS The main components of CZG were characterized by liquid chromatography-mass spectrometry (LC-MS). Subsequently, these validated components were applied to network pharmacological analysis to predict signaling pathways associated with insomnia. We evaluated the effect of CZG on BV-2 cells in vitro. We also evaluated the behavioral indexes of CUMS combined with PCPA induced insomnia in rats. HE staining and Nissl staining were used to observe the pathological damage of hippocampus. ELISA was used to detect the levels of various neurotransmitters, orexins, HPA axis, and inflammatory factors in insomnia rats. Then we detected the expression of cAMP/CREB signaling pathway through ELISA, WB, and IHC. Finally, the metabolomics was further analyzed by using UHPLC-QTOF-MS/MS to investigate the changes in the hippocampus of insomnia rats and the possible metabolic pathways were also speculated. RESULTS The results of CZG in vitro experiments showed that CZG has protective and anti-inflammatory effects on LPS induced BV-2 cells. A total of 161 chemical components were identified in CZG. After conducting network pharmacology analysis through these confirmed components, we select the cAMP/CREB signaling pathway for further investigate. The behavioral research results on insomnia rats showed that CZG significantly prolonged sleep time, mitigated brain tissue pathological damage, and exhibited liver protective properties. CZG treats insomnia by regulating the content of various neurotransmitters, reducing levels of orexin, HPA axis, and inflammatory factors. It can also treat insomnia by upregulating the expression of the cAMP/CREB signaling pathway. Hippocampus metabolomics analysis identified 69 differential metabolites associated with insomnia. The metabolic pathways related to these differential metabolites have also been predicted. CONCLUSION These results indicate that CZG can significantly prolong sleep time. CZG is used to treat insomnia by regulating various neurotransmitters, HPA axis, inflammatory factors, cAMP/CREB signaling pathways, and metabolic disorders.
Collapse
Affiliation(s)
- Zekun Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Danting Li
- Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China; Key laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Min Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Xiaocong Yu
- Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Chen Chen
- Nanjing Women and Children's Healthcare Hospital, 210029, China
| | - Yajun Chen
- Nanjing Women and Children's Healthcare Hospital, 210029, China
| | - Lingfeng Zhang
- School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, 211198, China
| | - Yachun Shu
- Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China; Jiangsu Province Seaside Rehabilitation Hospital, Lianyungang, 222042, China.
| |
Collapse
|
6
|
Bhardwaj S, Grewal AK, Singh S, Dhankar V, Jindal A. An insight into the concept of neuroinflammation and neurodegeneration in Alzheimer's disease: targeting molecular approach Nrf2, NF-κB, and CREB. Inflammopharmacology 2024; 32:2943-2960. [PMID: 38951436 DOI: 10.1007/s10787-024-01502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024]
Abstract
Alzheimer's disease (AD) is a most prevalent neurologic disorder characterized by cognitive dysfunction, amyloid-β (Aβ) protein accumulation, and excessive neuroinflammation. It affects various life tasks and reduces thinking, memory, capability, reasoning and orientation ability, decision, and language. The major parts responsible for these abnormalities are the cerebral cortex, amygdala, and hippocampus. Excessive inflammatory markers release, and microglial activation affect post-synaptic neurotransmission. Various mechanisms of AD pathogenesis have been explored, but still, there is a need to debate the role of NF-κB, Nrf2, inflammatory markers, CREB signaling, etc. In this review, we have briefly discussed the signaling mechanisms and function of the NF-ĸB signaling pathway, inflammatory mediators, microglia activation, and alteration of autophagy. NF-κB inhibition is a current strategy to counter neuroinflammation and neurodegeneration in the brain of individuals with AD. In clinical trials, numbers of NF-κB modulators are being examined. Recent reports revealed that molecular and cellular pathways initiate complex pathological competencies that cause AD. Moreover, this review will provide extensive knowledge of the cAMP response element binding protein (CREB) and how these nuclear proteins affect neuronal plasticity.
Collapse
Affiliation(s)
- Shaveta Bhardwaj
- G.H.G. Khalsa College of Pharmacy, Gurusar Sudhar, Ludhiana, India
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| | - Vaibhav Dhankar
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Anu Jindal
- G.H.G. Khalsa College of Pharmacy, Gurusar Sudhar, Ludhiana, India
| |
Collapse
|
7
|
Yang Q, Zhou X, Ma T. Isoform-specific effects of neuronal inhibition of AMPK catalytic subunit on LTD impairments in a mouse model of Alzheimer's disease. Neurobiol Aging 2024; 140:116-121. [PMID: 38763076 PMCID: PMC11179164 DOI: 10.1016/j.neurobiolaging.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/16/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024]
Abstract
Synaptic dysfunction is highly correlated with cognitive impairments in Alzheimer's disease (AD), the most common dementia syndrome in the elderly. Long-term potentiation (LTP) and long-term depression (LTD) are two primary forms of synaptic plasticity with opposite direction of synaptic efficiency change. Both LTD and LTD are considered to mediate the cellular process of learning and memory. Substantial studies demonstrate AD-associated deficiency of both LTP and LTD. Meanwhile, the molecular signaling mechanisms underlying impairment of synaptic plasticity, particularly LTD, are poorly understood. By taking advantage of the novel transgenic mouse models recently developed in our lab, here we aimed to investigate the roles of AMP-activated protein kinase (AMPK), a central molecular senor that plays a critical role in maintaining cellular energy homeostasis, in regulation of LTD phenotypes in AD. We found that brain-specific suppression of the AMPKα1 isoform (but not AMPKα2 isoform) was able to alleviate mGluR-LTD deficits in APP/PS1 AD mouse model. Moreover, suppression of either AMPKα isoform failed to alleviate AD-related NMDAR-dependent LTD deficits. Taken together with our recent studies on roles of AMPK signaling in AD pathophysiology, the data indicate isoform-specific roles of AMPK in mediating AD-associated synaptic and cognitive impairments.
Collapse
Affiliation(s)
- Qian Yang
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Xueyan Zhou
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Tao Ma
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Department of Translational Neuroscience, Wake Forest University School of Medicine, USA.
| |
Collapse
|
8
|
Reda SM, Setti SE, Berthiaume AA, Wu W, Taylor RW, Johnston JL, Stein LR, Moebius HJ, Church KJ. Fosgonimeton attenuates amyloid-beta toxicity in preclinical models of Alzheimer's disease. Neurotherapeutics 2024; 21:e00350. [PMID: 38599894 PMCID: PMC11067346 DOI: 10.1016/j.neurot.2024.e00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 04/12/2024] Open
Abstract
Positive modulation of hepatocyte growth factor (HGF) signaling may represent a promising therapeutic strategy for Alzheimer's disease (AD) based on its multimodal neurotrophic, neuroprotective, and anti-inflammatory effects addressing the complex pathophysiology of neurodegeneration. Fosgonimeton is a small-molecule positive modulator of the HGF system that has demonstrated neurotrophic and pro-cognitive effects in preclinical models of dementia. Herein, we evaluate the neuroprotective potential of fosgonimeton, or its active metabolite, fosgo-AM, in amyloid-beta (Aβ)-driven preclinical models of AD, providing mechanistic insight into its mode of action. In primary rat cortical neurons challenged with Aβ (Aβ1-42), fosgo-AM treatment significantly improved neuronal survival, protected neurite networks, and reduced tau hyperphosphorylation. Interrogation of intracellular events indicated that cortical neurons treated with fosgo-AM exhibited a significant decrease in mitochondrial oxidative stress and cytochrome c release. Following Aβ injury, fosgo-AM significantly enhanced activation of pro-survival effectors ERK and AKT, and reduced activity of GSK3β, one of the main kinases involved in tau hyperphosphorylation. Fosgo-AM also mitigated Aβ-induced deficits in Unc-like kinase 1 (ULK1) and Beclin-1, suggesting a potential effect on autophagy. Treatment with fosgo-AM protected cortical neurons from glutamate excitotoxicity, and such effects were abolished in the presence of an AKT or MEK/ERK inhibitor. In vivo, fosgonimeton administration led to functional improvement in an intracerebroventricular Aβ25-35 rat model of AD, as it significantly rescued cognitive function in the passive avoidance test. Together, our data demonstrate the ability of fosgonimeton to counteract mechanisms of Aβ-induced toxicity. Fosgonimeton is currently in clinical trials for mild-to-moderate AD (NCT04488419; NCT04886063).
Collapse
Affiliation(s)
- Sherif M Reda
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA
| | - Sharay E Setti
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA
| | | | - Wei Wu
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA
| | - Robert W Taylor
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA
| | - Jewel L Johnston
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA
| | - Liana R Stein
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA
| | - Hans J Moebius
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA
| | - Kevin J Church
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA.
| |
Collapse
|
9
|
Thiankhaw K, Chattipakorn N, Chattipakorn SC. How calcineurin inhibitors affect cognition. Acta Physiol (Oxf) 2024; 240:e14161. [PMID: 38747643 DOI: 10.1111/apha.14161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/09/2024]
Abstract
AIMS With a focus on the discrepancy between preclinical and clinical findings, this review will gather comprehensive information about the effects of calcineurin inhibitors (CNI) on cognitive function and related brain pathology from in vitro, in vivo, and clinical studies. We also summarize the potential mechanisms that underlie the pathways related to CNI-induced cognitive impairment. METHODS We systematically searched articles in PubMed using keywords 'calcineurin inhibitor*' and 'cognition' to identify related articles, which the final list pertaining to underlying mechanisms of CNI on cognition. RESULTS Several studies have reported an association between calcineurin and the neuropathology of Alzheimer's disease (AD). AD is the most common neurocognitive disorder associated with amyloid plaques and neurofibrillary tangles in the brain, leading to cognitive impairment. CNI, including tacrolimus and cyclosporin A, are commonly prescribed for patients with transplantation of solid organs such as kidney, liver, or heart, those drugs are currently being used as long-term immunosuppressive therapy. Although preclinical models emphasize the favorable effects of CNI on the restoration of brain pathology due to the impacts of calcineurin on the alleviation of amyloid-beta deposition and tau hyperphosphorylation, or rescuing synaptic and mitochondrial functions, treatment-related neurotoxicity, resulting in cognitive dysfunctions has been observed in clinical settings of patients who received CNI. CONCLUSION Inconsistent results of CNI on cognition from clinical studies have been observed due to impairment of the blood-brain barrier, neuroinflammation mediated by reactive oxygen species, and alteration in mitochondrial fission, and extended research is required to confirm its promising use in cognitive impairment.
Collapse
Affiliation(s)
- Kitti Thiankhaw
- Division of Neurology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siripron C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
10
|
Ahmad N, Lesa KN, Ujiantari NSO, Sudarmanto A, Fakhrudin N, Ikawati Z. Development of White Cabbage, Coffee, and Red Onion Extracts as Natural Phosphodiesterase-4B (PDE4B) Inhibitors for Cognitive Dysfunction: In Vitro and In Silico Studies. Adv Pharmacol Pharm Sci 2024; 2024:1230239. [PMID: 38808119 PMCID: PMC11132833 DOI: 10.1155/2024/1230239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024] Open
Abstract
Human cognition fundamentally depends on memory. Alzheimer's disease exhibits a strong correlation with a decline in this factor. Phosphodiesterase-4 B (PDE4B) plays a crucial role in neurodegenerative disorders, and its inhibition is one of the promising approaches for memory enhancement. This study aimed to identify secondary metabolites in white cabbage, coffee, and red onion extracts and identify their molecular interaction with PDE4B by in silico and in vitro experiments. Crushed white cabbage and red onion were macerated separately with ethanol to yield respective extracts, and ground coffee was boiled with water to produce aqueous extract. Thin layer chromatography (TLC)-densitometry was used to examine the phytochemicals present in white cabbage, coffee, and red onion extracts. Molecular docking studies were performed to know the interaction of test compounds with PDE4B. TLC-densitometry analysis showed that chlorogenic acid and quercetin were detected as major compounds in coffee and red onion extracts, respectively. In silico studies revealed that alpha-tocopherol (binding free energy (∆Gbind) = -38.00 kcal/mol) has the strongest interaction with PDE4B whereas chlorogenic acid (∆Gbind = -21.50 kcal/mol) and quercetin (∆Gbind = -17.25 kcal/mol) exhibited moderate interaction. In vitro assay showed that the combination extracts (cabbage, coffee, and red onion) had a stronger activity (half-maximal inhibitory concentration (IC50) = 0.12 ± 0.03 µM) than combination standards (sinigrin, chlorogenic acid, and quercetin) (IC50 = 0.17 ± 0.03 µM) and rolipram (IC50 = 0.15 ± 0.008 µM). Thus, the combination extracts are a promising cognitive enhancer by blocking PDE4B activity.
Collapse
Affiliation(s)
- Nazir Ahmad
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Kaisun Nesa Lesa
- Department of Food and Nutritional Science, Khulna City Corporation Women's College, Affiliated to Khulna University, Khulna, Bangladesh
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Department of Pediatrics, Nihon University Hospital, Tokyo, Japan
- Department of Nutrition and Food Technology, Jessore University of Science and Technology, Jessore, Bangladesh
| | - Navista Sri Octa Ujiantari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Ari Sudarmanto
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Nanang Fakhrudin
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
- Medicinal Plants and Natural Products Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Sleman 55281, Yogyakarta, Indonesia
| | - Zullies Ikawati
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
| |
Collapse
|
11
|
Jiang S, Sydney EJ, Runyan AM, Serpe R, Srikanth M, Figueroa HY, Yang M, Myeku N. 5-HT4 receptor agonists treatment reduces tau pathology and behavioral deficit in the PS19 mouse model of tauopathy. Front Cell Neurosci 2024; 18:1338502. [PMID: 38638303 PMCID: PMC11024353 DOI: 10.3389/fncel.2024.1338502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/18/2024] [Indexed: 04/20/2024] Open
Abstract
Background Accumulation of tau in synapses in the early stages of Alzheimer's disease (AD) has been shown to cause synaptic damage, synaptic loss, and the spread of tau pathology through trans-synaptically connected neurons. Moreover, synaptic loss correlates with a decline in cognitive function, providing an opportunity to investigate therapeutic strategies to target synapses and synaptic tau to rescue or prevent cognitive decline in AD. One of the promising synaptic targets is the 5-HT4 serotonergic receptor present postsynaptically in the brain structures involved in the memory processes. 5-HT4R stimulation exerts synaptogenic and pro-cognitive effects involving synapse-to-nucleus signaling essential for synaptic plasticity. However, it is not known whether 5-HT4R activation has a therapeutic effect on tau pathology. Methods The goal of this study was to investigate the impact of chronic stimulation of 5-HT4R by two agonists, prucalopride and RS-67333, in PS19 mice, a model of tauopathy. We utilized gradient assays to isolate pre- and post-synaptic compartments, followed by biochemical analyses for tau species and ubiquitinated proteins in the synaptic compartments and total brain tissue. Next, we performed kinetic assays to test the proteasome's hydrolysis capacity in treatment conditions. Moreover, behavioral tests such as the open field and non-maternal nest-building tests were used to evaluate anxiety-like behaviors and hippocampal-related cognitive functioning in the treatment paradigm. Results Our results show that 5-HT4R agonism reduced tauopathy, reduced synaptic tau, increased proteasome activity, and improved cognitive functioning in PS19 mice. Our data suggest that enhanced proteasome activity by synaptic mediated signaling leads to the enhanced turnover of tau initially within synapses where the receptors are localized, and over time, the treatment attenuated the accumulation of tau aggregation and improved cognitive functioning of the PS19 mice. Conclusion Therefore, stimulation of 5-HT4R offers a promising therapy to rescue synapses from the accumulation of toxic synaptic tau, evident in the early stages of AD.
Collapse
Affiliation(s)
- Shan Jiang
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Eric J. Sydney
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Avery M. Runyan
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Rossana Serpe
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Malavika Srikanth
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Helen Y. Figueroa
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Mu Yang
- The Institute for Genomic Medicine and Psychiatry, Columbia University Irving Medical Center, New York, NY, United States
| | - Natura Myeku
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
12
|
Bartosch AMW, Youth EHH, Hansen S, Wu Y, Buchanan HM, Kaufman ME, Xiao H, Koo SY, Ashok A, Sivakumar S, Soni RK, Dumitrescu LC, Lam TG, Ropri AS, Lee AJ, Klein HU, Vardarajan BN, Bennett DA, Young-Pearse TL, De Jager PL, Hohman TJ, Sproul AA, Teich AF. ZCCHC17 Modulates Neuronal RNA Splicing and Supports Cognitive Resilience in Alzheimer's Disease. J Neurosci 2024; 44:e2324222023. [PMID: 38050142 PMCID: PMC10860597 DOI: 10.1523/jneurosci.2324-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 09/22/2023] [Accepted: 11/07/2023] [Indexed: 12/06/2023] Open
Abstract
ZCCHC17 is a putative master regulator of synaptic gene dysfunction in Alzheimer's disease (AD), and ZCCHC17 protein declines early in AD brain tissue, before significant gliosis or neuronal loss. Here, we investigate the function of ZCCHC17 and its role in AD pathogenesis using data from human autopsy tissue (consisting of males and females) and female human cell lines. Co-immunoprecipitation (co-IP) of ZCCHC17 followed by mass spectrometry analysis in human iPSC-derived neurons reveals that ZCCHC17's binding partners are enriched for RNA-splicing proteins. ZCCHC17 knockdown results in widespread RNA-splicing changes that significantly overlap with splicing changes found in AD brain tissue, with synaptic genes commonly affected. ZCCHC17 expression correlates with cognitive resilience in AD patients, and we uncover an APOE4-dependent negative correlation of ZCCHC17 expression with tangle burden. Furthermore, a majority of ZCCHC17 interactors also co-IP with known tau interactors, and we find a significant overlap between alternatively spliced genes in ZCCHC17 knockdown and tau overexpression neurons. These results demonstrate ZCCHC17's role in neuronal RNA processing and its interaction with pathology and cognitive resilience in AD, and suggest that the maintenance of ZCCHC17 function may be a therapeutic strategy for preserving cognitive function in the setting of AD pathology.
Collapse
Affiliation(s)
- Anne Marie W Bartosch
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Elliot H H Youth
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Shania Hansen
- Department of Neurology, Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Yiyang Wu
- Department of Neurology, Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Heather M Buchanan
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Maria E Kaufman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Harrison Xiao
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - So Yeon Koo
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Archana Ashok
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Sharanya Sivakumar
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Rajesh K Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, New York, New York 10032
| | - Logan C Dumitrescu
- Department of Neurology, Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Tiffany G Lam
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Ali S Ropri
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Annie J Lee
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
- Department of Neurology, Center for Translational & Computational Neuroimmunology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, New York 10032
| | - Hans-Ulrich Klein
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
- Department of Neurology, Center for Translational & Computational Neuroimmunology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, New York 10032
| | - Badri N Vardarajan
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
- Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, New York 10032
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois 60612
| | - Tracy L Young-Pearse
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138
| | - Philip L De Jager
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
- Department of Neurology, Center for Translational & Computational Neuroimmunology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, New York 10032
| | - Timothy J Hohman
- Department of Neurology, Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Andrew A Sproul
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Andrew F Teich
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
- Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, New York 10032
| |
Collapse
|
13
|
Metkar SK, Yan Y, Lu Y, Lu J, Zhu X, Du F, Xu Y. Phosphodiesterase 2 and Its Isoform A as Therapeutic Targets in the Central Nervous System Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:941-955. [PMID: 37855295 DOI: 10.2174/1871527323666230811093126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/15/2023] [Accepted: 07/07/2023] [Indexed: 10/20/2023]
Abstract
Cyclic adenosine monophosphates (cAMP) and cyclic guanosine monophosphate (cGMP) are two essential second messengers, which are hydrolyzed by phosphodiesterase's (PDEs), such as PDE-2. Pharmacological inhibition of PDE-2 (PDE2A) in the central nervous system improves cAMP and cGMP signaling, which controls downstream proteins related to neuropsychiatric, neurodegenerative, and neurodevelopmental disorders. Considering that there are no specific treatments for these disorders, PDE-2 inhibitors' development has gained more attention in the recent decade. There is high demand for developing new-generation drugs targeting PDE2 for treating diseases in the central nervous and peripheral systems. This review summarizes the relationship between PDE-2 with neuropsychiatric, neurodegenerative, and neurodevelopmental disorders as well as its possible treatment, mainly involving inhibitors of PDE2.
Collapse
Affiliation(s)
- Sanjay K Metkar
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Yuqing Yan
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Yue Lu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Jianming Lu
- Codex BioSolutions Inc. 12358 Parklawn Drive, Suite 250A, Rockville, MD 20852, Maryland
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106; USA
| | - Fu Du
- FD NeuroTechnologies Consulting & Services, Inc., Columbia, MD 21046, Maryland
| | - Ying Xu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
14
|
Sharma C, Mazumder A. A Comprehensive Review on Potential Molecular Drug Targets for the Management of Alzheimer's Disease. Cent Nerv Syst Agents Med Chem 2024; 24:45-56. [PMID: 38305393 DOI: 10.2174/0118715249263300231116062740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/25/2023] [Accepted: 10/04/2023] [Indexed: 02/03/2024]
Abstract
Alzheimer's disease (AD) is an onset and incurable neurodegenerative disorder that has been linked to various genetic, environmental, and lifestyle factors. Recent research has revealed several potential targets for drug development, such as the prevention of Aβ production and removal, prevention of tau hyperphosphorylation, and keeping neurons alive. Drugs that target numerous ADrelated variables have been developed, and early results are encouraging. This review provides a concise map of the different receptor signaling pathways associated with Alzheimer's Disease, as well as insight into drug design based on these pathways. It discusses the molecular mechanisms of AD pathogenesis, such as oxidative stress, aging, Aβ turnover, thiol groups, and mitochondrial activities, and their role in the disease. It also reviews the potential drug targets, in vivo active agents, and docking studies done in AD and provides prospects for future drug development. This review intends to provide more clarity on the molecular processes that occur in Alzheimer's patient's brains, which can be of use in diagnosing and preventing the condition.
Collapse
Affiliation(s)
- Chanchal Sharma
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida-201306, Uttar Pradesh, India
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida-201306, Uttar Pradesh, India
| |
Collapse
|
15
|
Su C, Miao J, Guo J. The relationship between TGF-β1 and cognitive function in the brain. Brain Res Bull 2023; 205:110820. [PMID: 37979810 DOI: 10.1016/j.brainresbull.2023.110820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Transforming growth factor-β1 (TGF-β1), a multifunctional cytokine, plays a pivotal role in synaptic formation, plasticity, and neurovascular unit regulation. This review highlights TGF-β1's potential impact on cognitive function, particularly in the context of neurodegenerative disorders. However, despite the growing body of evidence, a comprehensive understanding of TGF-β1's precise role remains elusive. Further research is essential to unravel the complex mechanisms through which TGF-β1 influences cognitive function and to explore therapeutic avenues for targeting TGF-β1 in neurodegenerative conditions. This investigation sheds light on TGF-β1's contribution to cognitive function and offers prospects for innovative treatments and interventions. This review delves into the intricate relationship between TGF-β1 and cognitive function.
Collapse
Affiliation(s)
- Chen Su
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030000, China
| | - Jie Miao
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030000, China
| | - Junhong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030000, China.
| |
Collapse
|
16
|
Batabyal RA, Bansal A, Cechinel LR, Authelet K, Goldberg M, Nadler E, Keene CD, Jayadev S, Domoto-Reilly K, Li G, Peskind E, Hashimoto-Torii K, Buchwald D, Freishtat RJ. Adipocyte-Derived Small Extracellular Vesicles from Patients with Alzheimer Disease Carry miRNAs Predicted to Target the CREB Signaling Pathway in Neurons. Int J Mol Sci 2023; 24:14024. [PMID: 37762325 PMCID: PMC10530811 DOI: 10.3390/ijms241814024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Alzheimer disease (AD) is characterized by amyloid-β (Aβ) plaques, neurofibrillary tangles, synaptic dysfunction, and progressive dementia. Midlife obesity increases the risk of developing AD. Adipocyte-derived small extracellular vesicles (ad-sEVs) have been implicated as a mechanism in several obesity-related diseases. We hypothesized that ad-sEVs from patients with AD would contain miRNAs predicted to downregulate pathways involved in synaptic plasticity and memory formation. We isolated ad-sEVs from the serum and cerebrospinal fluid (CSF) of patients with AD and controls and compared miRNA expression profiles. We performed weighted gene co-expression network analysis (WGCNA) on differentially expressed miRNAs to identify highly interconnected clusters correlating with clinical traits. The WGCNA identified a module of differentially expressed miRNAs, in both the serum and CSF, that was inversely correlated with the Mini-Mental State Examination scores. Within this module, miRNAs that downregulate CREB signaling in neurons were highly represented. These results demonstrate that miRNAs carried by ad-sEVs in patients with AD may downregulate CREB signaling and provide a potential mechanistic link between midlife obesity and increased risk of AD.
Collapse
Affiliation(s)
- Rachael A. Batabyal
- Center for Genetic Medicine, Children’s National Hospital, Washington, DC 20012, USA (M.G.); (R.J.F.)
- School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA; (E.N.)
| | - Ankush Bansal
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC 20010, USA
| | - Laura Reck Cechinel
- Center for Genetic Medicine, Children’s National Hospital, Washington, DC 20012, USA (M.G.); (R.J.F.)
| | - Kayla Authelet
- Center for Genetic Medicine, Children’s National Hospital, Washington, DC 20012, USA (M.G.); (R.J.F.)
| | - Madeleine Goldberg
- Center for Genetic Medicine, Children’s National Hospital, Washington, DC 20012, USA (M.G.); (R.J.F.)
| | - Evan Nadler
- School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA; (E.N.)
- Division of Pediatric Surgery, Children’s National Hospital, Washington, DC 20010, USA
| | - C. Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA 98104, USA;
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA 98104, USA; (S.J.)
| | - Kimiko Domoto-Reilly
- Department of Neurology, University of Washington, Seattle, WA 98104, USA; (S.J.)
| | - Gail Li
- Department of Psychology and Behavioral Sciences, School of Medicine, University of Washington, Seattle, WA 98104, USA
- Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Elaine Peskind
- Department of Psychology and Behavioral Sciences, School of Medicine, University of Washington, Seattle, WA 98104, USA
- Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Kazue Hashimoto-Torii
- School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA; (E.N.)
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC 20010, USA
| | - Dedra Buchwald
- Institute for Research Education to Advance Community Health, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Robert J. Freishtat
- Center for Genetic Medicine, Children’s National Hospital, Washington, DC 20012, USA (M.G.); (R.J.F.)
- School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA; (E.N.)
| |
Collapse
|
17
|
Zuccarello E, Zhang H, Acquarone E, Pham D, Staniszewski A, Deng SX, Landry DW, Arancio O, Fiorito J. Optimizing metabolic stability of phosphodiesterase 5 inhibitors: Discovery of a potent N-(pyridin-3-ylmethyl)quinoline derivative targeting synaptic plasticity. Bioorg Med Chem Lett 2023; 92:129409. [PMID: 37453616 PMCID: PMC10528936 DOI: 10.1016/j.bmcl.2023.129409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/13/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Phosphodiesterase 5 (PDE5) is a cyclic guanosine monophosphate-degrading enzyme involved in numerous biological pathways. Inhibitors of PDE5 are important therapeutics for the treatment of neurodegenerative diseases, including Alzheimer's disease (AD). We previously reported the first generation of quinoline-based PDE5 inhibitors for the treatment of AD. However, the short in vitro microsomal stability rendered them unsuitable drug candidates. Here we report a series of new quinoline-based PDE5 inhibitors. Among them, compound 4b, 8-cyclopropyl-3-(hydroxymethyl)-4-(((6-methoxypyridin-3-yl)methyl)amino)quinoline-6-carbonitrile, shows a PDE5 IC50 of 20 nM and improved in vitro microsomal stability (t1/2 = 44.6 min) as well as excellent efficacy in restoring long-term potentiation, a type of synaptic plasticity to underlie memory formation, in electrophysiology experiments with a mouse model of AD. These results provide an insight into the development of a new class of PDE5 inhibitors for the treatment of AD.
Collapse
Affiliation(s)
- Elisa Zuccarello
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; Department of Medicine, Columbia University, New York, NY, United States
| | - Hong Zhang
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Erica Acquarone
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Dang Pham
- New York Institute of Technology, Department of Biological and Chemical Sciences, Northern Boulevard, Old Westbury, NY 11568, United States
| | - Anna Staniszewski
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Shi-Xian Deng
- Department of Medicine, Columbia University, New York, NY, United States
| | - Donald W Landry
- Department of Medicine, Columbia University, New York, NY, United States
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; Department of Medicine, Columbia University, New York, NY, United States; Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Jole Fiorito
- New York Institute of Technology, Department of Biological and Chemical Sciences, Northern Boulevard, Old Westbury, NY 11568, United States; Department of Medicine, Columbia University, New York, NY, United States.
| |
Collapse
|
18
|
Ma T. Roles of eukaryotic elongation factor 2 kinase (eEF2K) in neuronal plasticity, cognition, and Alzheimer disease. J Neurochem 2023; 166:47-57. [PMID: 34796967 PMCID: PMC9117558 DOI: 10.1111/jnc.15541] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/19/2021] [Accepted: 11/15/2021] [Indexed: 01/04/2023]
Abstract
Understanding the molecular signaling mechanisms underlying cognition and neuronal plasticity would provide insights into the pathogenesis of neuronal disorders characterized by cognitive syndromes such as Alzheimer disease (AD). Phosphorylation of the mRNA translational factor eukaryotic elongation factor 2 (eEF2) by its specific kinase eEF2K is critically involved in protein synthesis regulation. In this review, we discussed recent studies on the roles of eEF2K/eEF2 signaling in the context of regulation/dysregulation of cognitive function and synaptic plasticity. We specifically focus on the discussion of recent evidence indicating suppression of eEF2K signaling as a potential novel therapeutic avenue for AD and related dementias (ADRDs).
Collapse
Affiliation(s)
- Tao Ma
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine
| |
Collapse
|
19
|
Rahman SO, Khan T, Iqubal A, Agarwal S, Akhtar M, Parvez S, Shah ZA, Najmi AK. Association between insulin and Nrf2 signalling pathway in Alzheimer's disease: A molecular landscape. Life Sci 2023:121899. [PMID: 37394097 DOI: 10.1016/j.lfs.2023.121899] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
Insulin, a well-known hormone, has been implicated as a regulator of blood glucose levels for almost a century now. Over the past few decades, the non-glycemic actions of insulin i.e. neuronal growth and proliferation have been extensively studied. In 2005, Dr. Suzanne de La Monte and her team reported that insulin might be involved in the pathogenesis of Alzheimer's Disease (AD) and thus coined a term "Type-3 diabetes" This hypothesis was supported by several subsequent studies. The nuclear factor erythroid 2- related factor 2 (Nrf2) triggers a cascade of events under the regulation of distinct mechanisms including protein stability, phosphorylation and nuclear cytoplasmic shuttling, finally leading to the protection against oxidative damage. The Nrf2 pathway has been investigated extensively in relevance to neurodegenerative disorders, particularly AD. Many studies have indicated a strong correlation between insulin and Nrf2 signalling pathways both in the periphery and the brainbut merely few of them have focused on elucidating their inter-connective role in AD. The present review emphasizes key molecular pathways that correlate the role of insulin with Nrf2 during AD. The review has also identified key unexplored areas that could be investigated in future to further establish the insulin and Nrf2 influence in AD.
Collapse
Affiliation(s)
- Syed Obaidur Rahman
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Tahira Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shivani Agarwal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Suhel Parvez
- Neurobehavioral Pharmacology Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Zahoor Ahmad Shah
- Department of Medicinal and Biological Chemistry, University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
20
|
Abuelezz SA, Hendawy N. Spotlight on Coenzyme Q10 in scopolamine-induced Alzheimer's disease: oxidative stress/PI3K/AKT/GSK 3ß/CREB/BDNF/TrKB. J Pharm Pharmacol 2023:rgad048. [PMID: 37315215 DOI: 10.1093/jpp/rgad048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/28/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVES Excess amyloid beta (Aβ) and oxidative stress (OS) are inextricable hallmarks of the neuronal damage associated Alzheimer's disease. Aβ-induced cognitive and memory dysfunctions are mediated through different signalling pathways as phosphatidylinositol-3-kinase (PI3K) and their downstream intermediates including protein-kinase-B, known as Akt, glycogen-synthase-kinase-3β (GSK-3β), cAMP-response-element-binding-protein (CREB), brain-derived-neurotrophic factor (BDNF) and tropomyosin-related-kinase receptor-B (TrKB). The current work aims to investigate the protective potentials of CoQ10 against scopolamine (Scop)-induced cognitive disability and the contribution of PI3K/Akt/GSK-3β/CREB/BDNF/TrKB in the neuroprotection effects. METHODS The chronic co-administration of CQ10 (50, 100 and 200 mg/kg/day i.p.) with Scop in Wistar rats for 6 weeks were assayed both behaviourally and biochemically. KEY FINDINGS CoQ10 ameliorated the Scop-induced cognitive and memory defects by restoring alterations in novel object recognition and Morris water maze behavioural tests. CoQ10 favourably changed the Scop-induced deleterious effects in hippocampal malondialdehyde, 8-hydroxy-2' deoxyguanosine, antioxidants and PI3K/Akt/GSK-3β/CREB/BDNF/TrKB levels. CONCLUSIONS These results exhibited the neuroprotective effects of CoQ10 on Scop-induced AD and revealed its ability to inhibit oxidative stress, amyloid deposition and to modulate PI3K/Akt/GSK-3β/CREB/BDNF/TrKB pathway.
Collapse
Affiliation(s)
- Sally A Abuelezz
- Clinical Pharmacology Department, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Nevien Hendawy
- Clinical Pharmacology Department, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
- Basic Medical Sciences Department, Faculty of Medicine, Faculty of Medicine, Galala University, Suez, Egypt
| |
Collapse
|
21
|
Kulikova LN, Purgatorio R, Beloglazkin AA, Tafeenko VA, Reza RG, Levickaya DD, Sblano S, Boccarelli A, de Candia M, Catto M, Voskressensky LG, Altomare CD. Chemical and Biological Evaluation of Novel 1 H-Chromeno[3,2- c]pyridine Derivatives as MAO Inhibitors Endowed with Potential Anticancer Activity. Int J Mol Sci 2023; 24:ijms24097724. [PMID: 37175433 PMCID: PMC10178506 DOI: 10.3390/ijms24097724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
About twenty molecules sharing 1H-chromeno[3,2-c]pyridine as the scaffold and differing in the degree of saturation of the pyridine ring, oxidation at C10, 1-phenylethynyl at C1 and 1H-indol-3-yl fragments at C10, as well as a few small substituents at C6 and C8, were synthesized starting from 1,2,3,4-tetrahydro-2-methylchromeno[3,2-c]pyridin-10-ones (1,2,3,4-THCP-10-ones, 1) or 2,3-dihydro-2-methyl-1H-chromeno[3,2-c]pyridines (2,3-DHPCs, 2). The newly synthesized compounds were tested as inhibitors of the human isoforms of monoamine oxidase (MAO A and B) and cholinesterase (AChE and BChE), and the following main SARs were inferred: (i) The 2,3-DHCP derivatives 2 inhibit MAO A (IC50 about 1 μM) preferentially; (ii) the 1,2,3,4-THCP-10-one 3a, bearing the phenylethynyl fragment at C1, returned as a potent MAO B inhibitor (IC50 0.51 μM) and moderate inhibitor of both ChEs (IC50s 7-8 μM); (iii) the 1H-indol-3-yl fragment at C10 slightly increases the MAO B inhibition potency, with the analog 6c achieving MAO B IC50 of 3.51 μM. The MAO B inhibitor 3a deserves further pharmacological studies as a remedy in the symptomatic treatment of Parkinson's disease and neuroprotectant for Alzheimer's disease. Besides the established neuroprotective effects of MAO inhibitors, the role of MAOs in tumor insurgence and progression has been recently reported. Herein, antiproliferative assays with breast (MCF-7), colon (HCT116) and cisplatin-resistant ovarian (SK-OV-3) tumor cells revealed that the 10-indolyl-bearing 2,3,4,10-THCP analog 6c exerts anti-tumor activity with IC50s in the range 4.83-11.3 μM.
Collapse
Affiliation(s)
- Larisa N Kulikova
- Organic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Rosa Purgatorio
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Andrey A Beloglazkin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninskiy Prosp., 119991 Moscow, Russia
| | - Viktor A Tafeenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119234 Moscow, Russia
| | - Raesi Gh Reza
- Organic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Daria D Levickaya
- Organic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Sabina Sblano
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Angelina Boccarelli
- Department of Precision and Regenerative Medicine and Ionian Area, School of Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Modesto de Candia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Leonid G Voskressensky
- Organic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Cosimo D Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
22
|
Bartosch AMW, Youth EHH, Hansen S, Kaufman ME, Xiao H, Koo SY, Ashok A, Sivakumar S, Soni RK, Dumitrescu LC, Lam TG, Ropri AS, Lee AJ, Klein HU, Vardarajan BN, Bennett DA, Young-Pearse TL, De Jager PL, Hohman TJ, Sproul AA, Teich AF. ZCCHC17 modulates neuronal RNA splicing and supports cognitive resilience in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.21.533654. [PMID: 36993746 PMCID: PMC10055234 DOI: 10.1101/2023.03.21.533654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
ZCCHC17 is a putative master regulator of synaptic gene dysfunction in Alzheimer's Disease (AD), and ZCCHC17 protein declines early in AD brain tissue, before significant gliosis or neuronal loss. Here, we investigate the function of ZCCHC17 and its role in AD pathogenesis. Co-immunoprecipitation of ZCCHC17 followed by mass spectrometry analysis in human iPSC-derived neurons reveals that ZCCHC17's binding partners are enriched for RNA splicing proteins. ZCCHC17 knockdown results in widespread RNA splicing changes that significantly overlap with splicing changes found in AD brain tissue, with synaptic genes commonly affected. ZCCHC17 expression correlates with cognitive resilience in AD patients, and we uncover an APOE4 dependent negative correlation of ZCCHC17 expression with tangle burden. Furthermore, a majority of ZCCHC17 interactors also co-IP with known tau interactors, and we find significant overlap between alternatively spliced genes in ZCCHC17 knockdown and tau overexpression neurons. These results demonstrate ZCCHC17's role in neuronal RNA processing and its interaction with pathology and cognitive resilience in AD, and suggest that maintenance of ZCCHC17 function may be a therapeutic strategy for preserving cognitive function in the setting of AD pathology.
Collapse
Affiliation(s)
- Anne Marie W. Bartosch
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Elliot H. H. Youth
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Shania Hansen
- Vanderbilt Memory & Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Maria E. Kaufman
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Harrison Xiao
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - So Yeon Koo
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Archana Ashok
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Sharanya Sivakumar
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Rajesh K. Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, New York, NY 10032
| | - Logan C. Dumitrescu
- Vanderbilt Memory & Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Tiffany G. Lam
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Ali S. Ropri
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Annie J. Lee
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY 10032
| | - Hans-Ulrich Klein
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY 10032
| | - Badri N. Vardarajan
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
- Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY 10032
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612
| | - Tracy L. Young-Pearse
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
| | - Philip L. De Jager
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY 10032
| | - Timothy J. Hohman
- Vanderbilt Memory & Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Andrew A. Sproul
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Andrew F. Teich
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
- Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY 10032
| |
Collapse
|
23
|
Grochowska KM, Gomes GM, Raman R, Kaushik R, Sosulina L, Kaneko H, Oelschlegel AM, Yuanxiang P, Reyes‐Resina I, Bayraktar G, Samer S, Spilker C, Woo MS, Morawski M, Goldschmidt J, Friese MA, Rossner S, Navarro G, Remy S, Reissner C, Karpova A, Kreutz MR. Jacob-induced transcriptional inactivation of CREB promotes Aβ-induced synapse loss in Alzheimer's disease. EMBO J 2023; 42:e112453. [PMID: 36594364 PMCID: PMC9929644 DOI: 10.15252/embj.2022112453] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 01/04/2023] Open
Abstract
Synaptic dysfunction caused by soluble β-amyloid peptide (Aβ) is a hallmark of early-stage Alzheimer's disease (AD), and is tightly linked to cognitive decline. By yet unknown mechanisms, Aβ suppresses the transcriptional activity of cAMP-responsive element-binding protein (CREB), a master regulator of cell survival and plasticity-related gene expression. Here, we report that Aβ elicits nucleocytoplasmic trafficking of Jacob, a protein that connects a NMDA-receptor-derived signalosome to CREB, in AD patient brains and mouse hippocampal neurons. Aβ-regulated trafficking of Jacob induces transcriptional inactivation of CREB leading to impairment and loss of synapses in mouse models of AD. The small chemical compound Nitarsone selectively hinders the assembly of a Jacob/LIM-only 4 (LMO4)/ Protein phosphatase 1 (PP1) signalosome and thereby restores CREB transcriptional activity. Nitarsone prevents impairment of synaptic plasticity as well as cognitive decline in mouse models of AD. Collectively, the data suggest targeting Jacob protein-induced CREB shutoff as a therapeutic avenue against early synaptic dysfunction in AD.
Collapse
Affiliation(s)
- Katarzyna M Grochowska
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
- Leibniz Group ‘Dendritic Organelles and Synaptic Function’, Center for Molecular Neurobiology (ZMNH)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Guilherme M Gomes
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
- Center for Behavioral Brain SciencesOtto von Guericke UniversityMagdeburgGermany
| | - Rajeev Raman
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
| | - Rahul Kaushik
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
| | - Liudmila Sosulina
- Department of Cellular NeuroscienceLeibniz Institute for NeurobiologyMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | - Hiroshi Kaneko
- Department of Cellular NeuroscienceLeibniz Institute for NeurobiologyMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | | | - PingAn Yuanxiang
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
| | | | - Gonca Bayraktar
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
| | - Sebastian Samer
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
| | - Christina Spilker
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
| | - Marcel S Woo
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology (ZMNH)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Markus Morawski
- Molecular Imaging in NeurosciencesPaul Flechsig Institute of Brain ResearchLeipzigGermany
| | - Jürgen Goldschmidt
- Department of Systems Physiology of Learning and MemoryLeibniz Institute for NeurobiologyMagdeburgGermany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology (ZMNH)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Steffen Rossner
- Molecular Imaging in NeurosciencesPaul Flechsig Institute of Brain ResearchLeipzigGermany
| | - Gemma Navarro
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food ScienceUniversity of BarcelonaBarcelonaSpain
- Institut de Neurociències de la Universitat de BarcelonaBarcelonaSpain
| | - Stefan Remy
- Center for Behavioral Brain SciencesOtto von Guericke UniversityMagdeburgGermany
- Department of Cellular NeuroscienceLeibniz Institute for NeurobiologyMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | - Carsten Reissner
- Institute of Anatomy and Molecular NeurobiologyWestfälische Wilhelms‐UniversityMünsterGermany
| | - Anna Karpova
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
- Center for Behavioral Brain SciencesOtto von Guericke UniversityMagdeburgGermany
| | - Michael R Kreutz
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
- Leibniz Group ‘Dendritic Organelles and Synaptic Function’, Center for Molecular Neurobiology (ZMNH)University Medical Center Hamburg‐EppendorfHamburgGermany
- Center for Behavioral Brain SciencesOtto von Guericke UniversityMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| |
Collapse
|
24
|
Jiang S, Sydney EJ, Runyan AM, Serpe R, Figueroa HY, Yang M, Myeku N. 5-HT4 receptor agonists treatment reduces tau pathology and behavioral deficit in the PS19 mouse model of tauopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.526871. [PMID: 36778352 PMCID: PMC9915615 DOI: 10.1101/2023.02.03.526871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Accumulation of tau in synapses in Alzheimer’s disease (AD) has been shown to cause synaptic damage, synaptic loss, and the spread of pathology through synaptically connected neurons. Synaptic loss correlates with a decline in cognition, providing an opportunity to investigate strategies to target synaptic tau to rescue or prevent cognitive decline. One of the promising synaptic targets is the 5-HT4 receptor present post-synaptically in the brain areas involved in the memory processes. 5-HT4R activation exerts synaptogenic and pro-cognitive effects involving synapse-to-nucleus signaling essential for synaptic plasticity. However, it is not known whether 5-HT4R activation has a therapeutic effect on tauopathy. The goal of this study was to investigate the impact of stimulation of 5-HT4R in tauopathy mice. Our results show that 5-HT4R agonism led to reduced tauopathy and synaptic tau and correlated with increased proteasome activity and improved cognitive functioning in PS19 mice. Thus, stimulation of 5-HT4R offers a promising therapy to rescue synapses from toxic synaptic tau.
Collapse
|
25
|
Ramezani M, Meymand AZ, Khodagholi F, Kamsorkh HM, Asadi E, Noori M, Rahimian K, Shahrbabaki AS, Talebi A, Parsaiyan H, Shiravand S, Darbandi N. A role for flavonoids in the prevention and/or treatment of cognitive dysfunction, learning, and memory deficits: a review of preclinical and clinical studies. Nutr Neurosci 2023; 26:156-172. [PMID: 35152858 DOI: 10.1080/1028415x.2022.2028058] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Natural food substances, due to high rates of antioxidants, antiviral and anti-inflammatory properties, have been proposed to have the potential for the prevention or treatment of cognitive deficits, learning and memory deficits and neuro inflammation. In particular, medicinal plants with rich amounts of beneficial components such as flavonoids are one of the most promising therapeutic candidates for the cognitive deficit and memory loss. Herein, we aimed to review the impact of medicinal plants with focus on flavonoids on cognitive dysfunction, learning and memory loss by considering their signaling pathways. METHODS We extracted 93 preclinical and clinical studies related to the effects of flavonoids on learning and memory and cognition from published papers between 2000 and 2021 in the MEDLINE/PubMed, Cochrane Library, SCOPUS, and Airiti Library databases. RESULTS In the preclinical studies, at least there seem to be two main neurological and biological processes in which flavonoids contribute to the improvement and/or prevention of learning, memory deficit and cognitive dysfunction: (1) Regulation of neurotransmission system and (2) Enhancement of neurogenesis, synaptic plasticity and neuronal survival. CONCLUSION Although useful effects of flavonoids on learning and memory in preclinical investigations have been approved, more clinical trials are required to find out whether flavonoids and/or other ingredients of plants have the potent to prevent or treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Matin Ramezani
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | | | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ehsan Asadi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Noori
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | - Kimia Rahimian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Aisa Talebi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Parsaiyan
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Shiravand
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloufar Darbandi
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| |
Collapse
|
26
|
Baihui (DU20), Shenmen (HT7) and Sanyinjiao (SP6) target the cAMP/CREB/BDNF and PI3K/Akt pathways to reduce central nervous system apoptosis in rats with insomnia. Heliyon 2022; 8:e12574. [PMID: 36636219 PMCID: PMC9830165 DOI: 10.1016/j.heliyon.2022.e12574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/06/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Insomnia can cause damage to function and other medical and mental illnesses, and it is also a risk factor for increasing medical care costs. Although simple behavior intervention is feasible in primary medical institutions, the lack of corresponding technical training has obviously restricted its use, patients' autonomy dependence is generally poor, and early missions have some difficulties. Relatively speaking, acupuncture in traditional therapy is more likely to be accepted, but the mechanism is still unclear. In this study, a model of insomnia was constructed using chlorophenylalanine (PCPA) in 6-week-old male SD rats. Electroacupuncture was used to stimulate Baihui (DU20), Shenmen (HT7), and Sanyinjiao (SP6), and the behavior, histopathology, cAMP/CREB/BDNF, PI3K/Akt pathways and the expression of sleep-related factors were observed. Our study showed that IL-1β, PGD2, MT, IL-10, IL-6, TNF-α, IFN-γ and CORT in rats could be regulated after electroacupuncture stimulation. The expression of TrkB, PI3K, Akt, P-TrkB, p-Akt, cAMP, CREB, and BDNF can also be up- or downregulated. Apoptosis-related Bax, Bad and Caspase-3, as well as the monoamine neurotransmitters 5-HT, DA, NE and EPI, were also modulated by electroacupuncture. Taken together, these data illustrate the potential of DU20, HT7 and SP6 as a multitargeted therapy for insomnia in rats. The novelty of the study lies in the description of the Traditional Chinese Medicine stimulation methods different from Chinese Herbs: electroacupuncture stimulates acupoints of sleep factors, cAMP/CREB/BDNF, PI3K/Akt pathways and the multipath and multitarget body response regulation mechanism of apoptosis.
Collapse
|
27
|
Nayak M, Das D, Pradhan J, Ahmed R, Laureano-Melo R, Dandapat J. Epigenetic signature in neural plasticity: the journey so far and journey ahead. Heliyon 2022; 8:e12292. [PMID: 36590572 PMCID: PMC9798197 DOI: 10.1016/j.heliyon.2022.e12292] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/31/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Neural plasticity is a remarkable characteristic of the brain which allows neurons to rewire their structure in response to internal and external stimuli. Many external stimuli collectively referred to as 'epigenetic factors' strongly influence structural and functional reorganization of the brain, thereby acting as a potential driver of neural plasticity. DNA methylation and demethylation, histone acetylation, and deacetylation are some of the frontline epigenetic mechanisms behind neural plasticity. Epigenetic signature molecules (mostly proteins) play a pivotal role in epigenetic reprogramming. Though neuro-epigenetics is an incredibly important field of emerging research, the critical role of signature proteins associated with epigenetic alteration and their involvement in neural plasticity needs further attention. This study gives an integrated and systematic overview of the current state of knowledge with a clear idea of types of neural plasticity and the context-dependent role of epigenetic signature molecules and their modulation by some natural bioactive compounds.
Collapse
Affiliation(s)
- Madhusmita Nayak
- Post-Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India,Centre of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Diptimayee Das
- Post-Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India,Faculty of Allied Health Science, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Chennai India
| | - Jyotsnarani Pradhan
- Post-Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India,Corresponding author.
| | - R.G. Ahmed
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Roberto Laureano-Melo
- Barra Mansa University Center, R. Ver. Pinho de Carvalho, 267, 27330-550, Barra Mansa, Rio de Janeiro, Brazil
| | - Jagneshwar Dandapat
- Post-Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India,Centre of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar 751004, Odisha, India,Corresponding author.
| |
Collapse
|
28
|
Tropea MR, Gulisano W, Vacanti V, Arancio O, Puzzo D, Palmeri A. Nitric oxide/cGMP/CREB pathway and amyloid-beta crosstalk: From physiology to Alzheimer's disease. Free Radic Biol Med 2022; 193:657-668. [PMID: 36400326 DOI: 10.1016/j.freeradbiomed.2022.11.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/30/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022]
Abstract
The nitric oxide (NO)/cGMP pathway has been extensively studied for its pivotal role in synaptic plasticity and memory processes, resulting in an increase of cAMP response element-binding (CREB) phosphorylation, and consequent synthesis of plasticity-related proteins. The NO/cGMP/CREB signaling is downregulated during aging and neurodegenerative disorders and is affected by Amyloid-β peptide (Aβ) and tau protein, whose increase and deposition is considered the key pathogenic event of Alzheimer's disease (AD). On the other hand, in physiological conditions, the crosstalk between the NO/cGMP/PKG/CREB pathway and Aβ ensures long-term potentiation and memory formation. This review summarizes the current knowledge on the interaction between the NO/cGMP/PKG/CREB pathway and Aβ in the healthy and diseased brain, offering a new perspective to shed light on AD pathophysiology. We will focus on the synaptic mechanisms underlying Aβ physiological interplay with cGMP pathway and how this balance is corrupted in AD, as high levels of Aβ interfere with NO production and cGMP molecular signaling leading to cognitive impairment. Finally, we will discuss results from preclinical and clinical studies proposing the increase of cGMP signaling as a therapeutic strategy in the treatment of AD.
Collapse
Affiliation(s)
- Maria Rosaria Tropea
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| | - Walter Gulisano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| | - Valeria Vacanti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, USA; Department of Pathology & Cell Biology and Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy; Oasi Research Institute-IRCCS, Troina (EN), 94018, Italy.
| | - Agostino Palmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| |
Collapse
|
29
|
Morè L, Privitera L, Perrett P, Cooper DD, Bonnello MVG, Arthur JSC, Frenguelli BG. CREB serine 133 is necessary for spatial cognitive flexibility and long-term potentiation. Neuropharmacology 2022; 219:109237. [PMID: 36049536 DOI: 10.1016/j.neuropharm.2022.109237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 10/31/2022]
Abstract
The transcription factor cAMP response element binding protein (CREB) is widely regarded as orchestrating the genomic response that underpins a range of physiological functions in the central nervous system, including learning and memory. Of the means by which CREB can be regulated, emphasis has been placed on the phosphorylation of a key serine residue, S133, in the CREB protein, which is required for CREB-mediated transcriptional activation in response to a variety of activity-dependent stimuli. Understanding the role of CREB S133 has been complicated by molecular genetic techniques relying on over-expression of either dominant negative or activating transgenes that may distort the physiological role of endogenous CREB. A more elegant recent approach targeting S133 in the endogenous CREB gene has yielded a mouse with constitutive replacement of this residue with alanine (S133A), but has generated results (no behavioural phenotype and no effect on gene transcription) at odds with contemporary views as to the role of CREB S133, and which may reflect compensatory changes associated with the constitutive mutation. To avoid this potential complication, we generated a post-natal and forebrain-specific CREB S133A mutant in which the expression of the mutation was under the control of CaMKIIα promoter. Using male and female mice we show that CREB S133 is necessary for spatial cognitive flexibility, the regulation of basal synaptic transmission, and for the expression of long-term potentiation (LTP) in hippocampal area CA1. These data point to the importance of CREB S133 in neuronal function, synaptic plasticity and cognition in the mammalian brain.
Collapse
Affiliation(s)
- Lorenzo Morè
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Lucia Privitera
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Philippa Perrett
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Daniel D Cooper
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Manuel Van Gijsel Bonnello
- Division of Cell Signalling and Immunology, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - J Simon C Arthur
- Division of Cell Signalling and Immunology, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | | |
Collapse
|
30
|
Zhang H, Li X, Li Y, Yang X, Liao R, Wang H, Yang J. CREB Ameliorates Osteoarthritis Progression Through Regulating Chondrocytes Autophagy via the miR-373/METTL3/TFEB Axis. Front Cell Dev Biol 2022; 9:778941. [PMID: 35756079 PMCID: PMC9218638 DOI: 10.3389/fcell.2021.778941] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by articular cartilage degradation. Dysregulated autophagy is a major cause of OA. However, the underlying mechanism is unclear. Here, we found that the expression of element-binding protein (CREB) was downregulated in both cartilage tissues of OA patients and mouse OA model. In tert-butyl hydroperoxide solution-treated chondrocytes, increased apoptosis and autophagic blockage were attenuated by CREB overexpression. Mechanically, MiR-373 directly targeted the 3′UTR of methyltransferase-like 3 (METTL3) and led to its downregulation. METTL3 epigenetically suppressed TFEB. The upregulation of miR-373 by CREB overexpression induced the release of TFEB from METTL3 and restored the autophagy activity of chondrocytes. Taken together, our study showed that CREB alleviates OA injury through regulating the expression of miR-373, which directly targeted METTL3, and finally relieved TFEB from METTL3-mediated epigenetic suppression. The CREB/miR-373/METTL3/TFEB axis may be used as a potential target for the treatment of OA.
Collapse
Affiliation(s)
- Haibin Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Xilei Li
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Xucheng Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Runzhi Liao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Haoyi Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Junxiao Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
31
|
Wu NS, Lin YF, Ma IC, Ko HJ, Hong YR. Many faces and functions of GSKIP: a temporospatial regulation view. Cell Signal 2022; 97:110391. [PMID: 35728705 DOI: 10.1016/j.cellsig.2022.110391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/06/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022]
Abstract
Glycogen synthase kinase 3 (GSK3)-β (GSK3β) interaction protein (GSKIP) is one of the smallest A-kinase anchoring proteins that possesses a binding site for GSK3β. Recently, our group identified the protein kinase A (PKA)-GSKIP-GSK3β-X axis; knowledge of this axis may help us decipher the many roles of GSKIP and perhaps help explain the evolutionary reason behind the interaction between GSK3β and PKA. In this review, we highlight the critical and multifaceted role of GSKIP in facilitating PKA kinase activity and its function as a scaffolding protein in signaling pathways. We also highlight how these pivotal PKA and GSK3 kinases can control context-specific functions and interact with multiple target proteins, such as β-catenin, Drp1, Tau, and other proteins. GSKIP is a key regulator of multiple mechanisms because of not only its location at certain subcellular compartments but also its serial changes during the developmental process. Moreover, the involvement of critical upstream regulatory signaling pathways in GSKIP signaling in various cancers, such as miRNA (microRNA) and lncRNA (long noncoding RNA), may help in the identification of therapeutic targets in the era of precision medicine and personalized therapy. Finally, we emphasize on the model of the early stage of pathogenesis of Alzheimer Disease (AD). Although the model requires validation, it can serve as a basis for diagnostic biomarkers development and drug discovery for early-stage AD.
Collapse
Affiliation(s)
- Nian-Siou Wu
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yi-Fan Lin
- School of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan.
| | - I Chu Ma
- China Medical University Hospital, Taichung 404, Taiwan.
| | - Huey-Jiun Ko
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yi-Ren Hong
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan,; Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
32
|
Park SY, Yang H, Ye M, Liu X, Shim I, Chang YT, Bae H. Neuroprotective effects of ex vivo-expanded regulatory T cells on trimethyltin-induced neurodegeneration in mice. J Neuroinflammation 2022; 19:143. [PMID: 35690816 PMCID: PMC9188044 DOI: 10.1186/s12974-022-02512-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
Background Trimethyltin (TMT) is a potent neurotoxicant that leads to hippocampal neurodegeneration. Regulatory T cells (Tregs) play an important role in maintaining the immune balance in the central nervous system (CNS), but their activities are impaired in neurodegenerative diseases. In this study, we aimed to determine whether adoptive transfer of Tregs, as a living drug, ameliorates hippocampal neurodegeneration in TMT-intoxicated mice. Methods CD4+CD25+ Tregs were expanded in vitro and adoptively transferred to TMT-treated mice. First, we explored the effects of Tregs on behavioral deficits using the Morris water maze and elevated plus maze tests. Biomarkers related to memory formation, such as cAMP response element-binding protein (CREB), protein kinase C (PKC), neuronal nuclear protein (NeuN), nerve growth factor (NGF), and ionized calcium binding adaptor molecule 1 (Iba1) in the hippocampus were examined by immunohistochemistry after killing the mouse. To investigate the neuroinflammatory responses, the polarization status of microglia was examined in vivo and in vitro using real-time reverse transcription polymerase chain reaction (rtPCR) and Enzyme-linked immunosorbent assay (ELISA). Additionally, the inhibitory effects of Tregs on TMT-induced microglial activation were examined using time-lapse live imaging in vitro with an activation-specific fluorescence probe, CDr20. Results Adoptive transfer of Tregs improved spatial learning and memory functions and reduced anxiety in TMT-intoxicated mice. Additionally, adoptive transfer of Tregs reduced neuronal loss and recovered the expression of neurogenesis enhancing molecules in the hippocampi of TMT-intoxicated mice. In particular, Tregs inhibited microglial activation and pro-inflammatory cytokine release in the hippocampi of TMT-intoxicated mice. The inhibitory effects of TMT were also confirmed via in vitro live time-lapse imaging in a Treg/microglia co-culture system. Conclusions These data suggest that adoptive transfer of Tregs ameliorates disease progression in TMT-induced neurodegeneration by promoting neurogenesis and modulating microglial activation and polarization.
Collapse
Affiliation(s)
- Seon-Young Park
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, 02453, South Korea
| | - HyeJin Yang
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, 02453, South Korea
| | - Minsook Ye
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Xiao Liu
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Insop Shim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, 02453, South Korea
| | - Young-Tae Chang
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, South Korea.,Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, South Korea
| | - Hyunsu Bae
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, 02453, South Korea.
| |
Collapse
|
33
|
Activation of TGR5 Ameliorates Streptozotocin-Induced Cognitive Impairment by Modulating Apoptosis, Neurogenesis, and Neuronal Firing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3716609. [PMID: 35464765 PMCID: PMC9033389 DOI: 10.1155/2022/3716609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/03/2022] [Accepted: 03/08/2022] [Indexed: 12/15/2022]
Abstract
Takeda G protein-coupled receptor 5 (TGR5) is the first known G protein-coupled receptor specific for bile acids and is recognized as a new and critical target for type 2 diabetes and metabolic syndrome. It is expressed in many brain regions associated with memory such as the hippocampus and frontal cortex. Here, we hypothesize that activation of TGR5 may ameliorate streptozotocin- (STZ-) induced cognitive impairment. The mouse model of cognitive impairment was established by a single intracerebroventricular (ICV) injection of STZ (3.0 mg/kg), and we found that TGR5 activation by its agonist INT-777 (1.5 or 3.0 μg/mouse, ICV injection) ameliorated spatial memory impairment in the Morris water maze and Y-maze tests. Importantly, INT-777 reversed STZ-induced downregulation of TGR5 and glucose usage deficits. Our results further showed that INT-777 suppressed neuronal apoptosis and improved neurogenesis which were involved in tau phosphorylation and CREB-BDNF signaling. Moreover, INT-777 increased action potential firing of excitatory pyramidal neurons in the hippocampal CA3 and medial prefrontal cortex of ICV-STZ groups. Taken together, these findings reveal that activation of TGR5 has a neuroprotective effect against STZ-induced cognitive impairment by modulating apoptosis, neurogenesis, and neuronal firing in the brain and TGR5 might be a novel and potential target for Alzheimer's disease.
Collapse
|
34
|
Makhaeva GF, Kovaleva NV, Boltneva NP, Rudakova EV, Lushchekina SV, Astakhova TY, Serkov IV, Proshin AN, Radchenko EV, Palyulin VA, Korabecny J, Soukup O, Bachurin SO, Richardson RJ. Bis-Amiridines as Acetylcholinesterase and Butyrylcholinesterase Inhibitors: N-Functionalization Determines the Multitarget Anti-Alzheimer’s Activity Profile. Molecules 2022; 27:molecules27031060. [PMID: 35164325 PMCID: PMC8839189 DOI: 10.3390/molecules27031060] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Using two ways of functionalizing amiridine—acylation with chloroacetic acid chloride and reaction with thiophosgene—we have synthesized new homobivalent bis-amiridines joined by two different spacers—bis-N-acyl-alkylene (3) and bis-N-thiourea-alkylene (5) —as potential multifunctional agents for the treatment of Alzheimer’s disease (AD). All compounds exhibited high inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity for BChE. These new agents displayed negligible carboxylesterase inhibition, suggesting a probable lack of untoward drug–drug interactions arising from hydrolytic biotransformation. Compounds 3 with bis-N-acyl-alkylene spacers were more potent inhibitors of both cholinesterases compared to compounds 5 and the parent amiridine. The lead compounds 3a–c exhibited an IC50(AChE) = 2.9–1.4 µM, IC50(BChE) = 0.13–0.067 µM, and 14–18% propidium displacement at 20 μM. Kinetic studies of compounds 3a and 5d indicated mixed-type reversible inhibition. Molecular docking revealed favorable poses in both catalytic and peripheral AChE sites. Propidium displacement from the peripheral site by the hybrids suggests their potential to hinder AChE-assisted Aβ42 aggregation. Conjugates 3 had no effect on Aβ42 self-aggregation, whereas compounds 5c–e (m = 4, 5, 6) showed mild (13–17%) inhibition. The greatest difference between conjugates 3 and 5 was their antioxidant activity. Bis-amiridines 3 with N-acylalkylene spacers were nearly inactive in ABTS and FRAP tests, whereas compounds 5 with thiourea in the spacers demonstrated high antioxidant activity, especially in the ABTS test (TEAC = 1.2–2.1), in agreement with their significantly lower HOMO-LUMO gap values. Calculated ADMET parameters for all conjugates predicted favorable blood–brain barrier permeability and intestinal absorption, as well as a low propensity for cardiac toxicity. Thus, it was possible to obtain amiridine derivatives whose potencies against AChE and BChE equaled (5) or exceeded (3) that of the parent compound, amiridine. Overall, based on their expanded and balanced pharmacological profiles, conjugates 5c–e appear promising for future optimization and development as multitarget anti-AD agents.
Collapse
Affiliation(s)
- Galina F. Makhaeva
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Nadezhda V. Kovaleva
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Natalia P. Boltneva
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Elena V. Rudakova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Sofya V. Lushchekina
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Tatiana Yu. Astakhova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Igor V. Serkov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Alexey N. Proshin
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Eugene V. Radchenko
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (E.V.R.); (V.A.P.)
| | - Vladimir A. Palyulin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (E.V.R.); (V.A.P.)
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, 500 05 Hradec Kralove, Czech Republic; (J.K.); (O.S.)
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, 500 05 Hradec Kralove, Czech Republic; (J.K.); (O.S.)
| | - Sergey O. Bachurin
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Rudy J. Richardson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: ; Tel.: +1-734-936-0769
| |
Collapse
|
35
|
Tong H, Wang K, Wang X, Lu T. Molecular Mechanism of Tetramethylpyrazine Ameliorating Neuroexcitotoxicity through Activating the PKA/CREB Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2812839. [PMID: 35097116 PMCID: PMC8794663 DOI: 10.1155/2022/2812839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/09/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Excitotoxicity plays a key role in nervous system disease and can trigger a critical cascade of reaction which affects cell viability and promotes neuronal death. Tetramethylpyrazine (TMP) reveals its effect in the treatment of neurovascular diseases by antiapoptosis. Recently, there were several studies that demonstrated that the PKA/CREB signaling pathway played a role in neural disease because of excitotoxicity, such as stroke, AD, and Parkinson's disease. In this study, we wanted to focus on the protective effect of tetramethylpyrazine against excitotoxicity through the PKA/CREB signaling pathway. METHODS In order to verify whether tetramethylpyrazine can attenuate excitotoxicity through the PKA/CREB signaling pathway, we first used molecular docking technology to predict the combinational strength and mode of tetramethylpyrazine with the proteins in the PKA/CREB signaling pathway. Then, we determined the optimal concentration and time according to the model effect of glutamate (Glu) with different concentration gradients and action times in PC12 cells. After the determination of concentration and time of glutamate in the previous step as the model way, tetramethylpyrazine was added to determine its influence on the cell viability under different doses and times. The TUNEL assay and flow cytometry were used to detect apoptosis. RT-PCR was used to detect the expression of Bcl-2, Bax, PKA, and 5CREB genes, and Western blot was used to detect the expression of these factors. RESULT Tetramethylpyrazine had a good docking score (-5.312) with PKA and had a moderately docking score (-3.838) with CREB. The CCK-8 cell activity assay showed that the activity of PC12 cells decreased gradually with the increase in glutamate concentration and time, and PC12 cells were treated with 10 mM/L glutamate (the half of the inhibitory concentration (IC50)) for 12 hours. Then, the cell viability increased gradually following the increased concentration of tetramethylpyrazine. When PC12 cells were treated with 0.1 mM/L tetramethylpyrazine, the cell viability was increased significantly compared with the control group (P < 0.05). The TUNEL assay and flow cytometry also showed that tetramethylpyrazine could decrease the apoptosis induced by glutamate. In the result of RT-PCR, the transcriptional levels of Bcl-2, PKA, and CREB were increased and Bax was decreased. Meanwhile, Western blot showed that expression levels of Bcl-2, PKA, CREB, and p-CREB were increased and Bax was decreased. CONCLUSIONS This study provided evidence that tetramethylpyrazine can protect against apoptosis caused by neuroexcitotoxicity and the protective mechanism is closely related to the activation of the PKA/CREB signaling pathway.
Collapse
Affiliation(s)
- Hongxuan Tong
- Institute of Basic Theory of Chinese Medicine, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Kaili Wang
- School of Life Sciences, Beijing University of Chinese Medicine, China
| | - Xiting Wang
- School of Life Sciences, Beijing University of Chinese Medicine, China
| | - Tao Lu
- School of Life Sciences, Beijing University of Chinese Medicine, China
| |
Collapse
|
36
|
Trace amine-associated receptor 1 (TAAR1): Potential application in mood disorders: A systematic review. Neurosci Biobehav Rev 2021; 131:192-210. [PMID: 34537265 DOI: 10.1016/j.neubiorev.2021.09.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 12/29/2022]
Abstract
There is a need for innovation with respect to therapeutics in psychiatry. Available evidence indicates that the trace amine-associated receptor 1 (TAAR1) agonist SEP-363856 is promising, as it improves measures of cognitive and reward function in schizophrenia. Hedonic and cognitive impairments are transdiagnostic and constitute major burdens in mood disorders. Herein, we systematically review the behavioural and genetic literature documenting the role of TAAR1 in reward and cognitive function, and propose a mechanistic model of TAAR1's functions in the brain. Notably, TAAR1 activity confers antidepressant-like effects, enhances attention and response inhibition, and reduces compulsive reward seeking without impairing normal function. Further characterization of the responsible mechanisms suggests ion-homeostatic, metabolic, neurotrophic, and anti-inflammatory enhancements in the limbic system. Multiple lines of evidence establish the viability of TAAR1 as a biological target for the treatment of mood disorders. Furthermore, the evidence suggests a role for TAAR1 in reward and cognitive function, which is attributed to a cascade of events that are relevant to the cellular integrity and function of the central nervous system.
Collapse
|
37
|
Budantsev AL, Prikhodko VA, Varganova IV, Okovityi SV. BIOLOGICAL ACTIVITY OF HYPERICUM PERFORATUM L. (HYPERICACEAE): A REVIEW. PHARMACY & PHARMACOLOGY 2021. [DOI: 10.19163/2307-9266-2021-9-1-17-31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- A. L. Budantsev
- Komarov Botanical Institute of Russian Academy of Science
2, Prof. Popov St., St. Petersburg, Russia, 197376
| | - V. A. Prikhodko
- Saint Petersburg State Chemical and Pharmaceutical University
14, Prof. Popov St., St. Petersburg, Russia, 197376
| | - I. V. Varganova
- Komarov Botanical Institute of Russian Academy of Science
2, Prof. Popov St., St. Petersburg, Russia, 197376
| | - S. V. Okovityi
- Saint Petersburg State Chemical and Pharmaceutical University
14, Prof. Popov St., St. Petersburg, Russia, 197376
| |
Collapse
|
38
|
Kuo YC, Ng IW, Rajesh R. Glutathione- and apolipoprotein E-grafted liposomes to regulate mitogen-activated protein kinases and rescue neurons in Alzheimer's disease. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112233. [PMID: 34225874 DOI: 10.1016/j.msec.2021.112233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 01/29/2023]
Abstract
Neurodegenerative disorders, such as Alzheimer's disease (AD), present biomedical challenges due to inability of pharmaceuticals to permeate the blood-brain barrier (BBB) and lack of therapeutic specificity in definite sites against multiple pathologies. Phosphatidylcholine (PC)-liposomes carrying curcumin (CURC), quercetin (QU), epigallocatechin gallate (EGCG) and rosmarinic acid (RA) with crosslinked glutathione (GSH) and apolipoprotein E (ApoE) were fabricated to recognize brain microvascular endothelial cells and amyloid beta (Aβ), and reduce tau protein hyperphosphorylation for AD management. Addition of stearic acid to liposomal bilayers ameliorated particle stability, promoted drug entrapment efficiency, and prolonged drug release duration. The triple targeting liposomes boosted the capability of CURC, QU, EGCG and RA for crossing the BBB with the assistance of grafted GSH and ApoE and docking Aβ around SK-N-MC cells using ApoE and PC. Moreover, GSH-ApoE-PC-liposomes benefited the 4 medicines in simultaneously transporting to Aβ1-42-insulted neurons, in functioning against hyperphosphorylated mitogen-activated protein kinases, including p-c-Jun N-terminal protein kinase, p-extracellular signal-regulated protein kinase 1/2 and p-p38, in downregulating tau protein at S202, caspase-3 and interleukin-6, and in upregulating p-cyclic adenosine monophosphate response element-binding protein. GSH-ApoE-PC-liposomes can be promising colloidal carriers in delivering CURC, QU, EGCG and RA to degenerated neural tissue in a controlled manner, targeting pathological factors for neuroprotection, and raising preclinical effectualness for AD treatment.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC; Advanced Institute of Manufacturing with High-tech Innovations, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC.
| | - I-Wen Ng
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC
| | - Rajendiran Rajesh
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC
| |
Collapse
|
39
|
Samidurai A, Xi L, Das A, Iness AN, Vigneshwar NG, Li PL, Singla DK, Muniyan S, Batra SK, Kukreja RC. Role of phosphodiesterase 1 in the pathophysiology of diseases and potential therapeutic opportunities. Pharmacol Ther 2021; 226:107858. [PMID: 33895190 DOI: 10.1016/j.pharmthera.2021.107858] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/17/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are superfamily of enzymes that regulate the spatial and temporal relationship of second messenger signaling in the cellular system. Among the 11 different families of PDEs, phosphodiesterase 1 (PDE1) sub-family of enzymes hydrolyze both 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP) in a mutually competitive manner. The catalytic activity of PDE1 is stimulated by their binding to Ca2+/calmodulin (CaM), resulting in the integration of Ca2+ and cyclic nucleotide-mediated signaling in various diseases. The PDE1 family includes three subtypes, PDE1A, PDE1B and PDE1C, which differ for their relative affinities for cAMP and cGMP. These isoforms are differentially expressed throughout the body, including the cardiovascular, central nervous system and other organs. Thus, PDE1 enzymes play a critical role in the pathophysiology of diseases through the fundamental regulation of cAMP and cGMP signaling. This comprehensive review provides the current research on PDE1 and its potential utility as a therapeutic target in diseases including the cardiovascular, pulmonary, metabolic, neurocognitive, renal, cancers and possibly others.
Collapse
Affiliation(s)
- Arun Samidurai
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298-0204, USA
| | - Lei Xi
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298-0204, USA
| | - Anindita Das
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298-0204, USA
| | - Audra N Iness
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298-0204, USA
| | - Navin G Vigneshwar
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298-0204, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Dinender K Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Sakthivel Muniyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Rakesh C Kukreja
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298-0204, USA.
| |
Collapse
|
40
|
Iqubal A, Rahman SO, Ahmed M, Bansal P, Haider MR, Iqubal MK, Najmi AK, Pottoo FH, Haque SE. Current Quest in Natural Bioactive Compounds for Alzheimer's Disease: Multi-Targeted-Designed-Ligand Based Approach with Preclinical and Clinical Based Evidence. Curr Drug Targets 2021; 22:685-720. [PMID: 33302832 DOI: 10.2174/1389450121999201209201004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/12/2020] [Accepted: 08/23/2020] [Indexed: 12/06/2022]
Abstract
Alzheimer's disease is a common and most chronic neurological disorder (NDs) associated with cognitive dysfunction. Pathologically, Alzheimer's disease (AD) is characterized by the presence of β-amyloid (Aβ) plaques, hyper-phosphorylated tau proteins, and neurofibrillary tangles, however, persistence oxidative-nitrative stress, endoplasmic reticulum stress, mitochondrial dysfunction, inflammatory cytokines, pro-apoptotic proteins along with altered neurotransmitters level are common etiological attributes in its pathogenesis. Rivastigmine, memantine, galantamine, and donepezil are FDA approved drugs for symptomatic management of AD, whereas tacrine has been withdrawn because of hepatotoxic profile. These approved drugs only exert symptomatic relief and exhibit poor patient compliance. In the current scenario, the number of published evidence shows the neuroprotective potential of naturally occurring bioactive molecules via their antioxidant, anti-inflammatory, antiapoptotic and neurotransmitter modulatory properties. Despite their potent therapeutic implications, concerns have arisen in context to their efficacy and probable clinical outcome. Thus, to overcome these glitches, many heterocyclic and cyclic hydrocarbon compounds inspired by natural sources have been synthesized and showed improved therapeutic activity. Computational studies (molecular docking) have been used to predict the binding affinity of these natural bioactive as well as synthetic compounds derived from natural sources for the acetylcholine esterase, α/β secretase Nuclear Factor kappa- light-chain-enhancer of activated B cells (NF-kB), Nuclear factor erythroid 2-related factor 2(Nrf2) and other neurological targets. Thus, in this review, we have discussed the molecular etiology of AD, focused on the pharmacotherapeutics of natural products, chemical and pharmacological aspects and multi-targeted designed ligands (MTDLs) of synthetic and semisynthetic molecules derived from the natural sources along with some important on-going clinical trials.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Syed Obaidur Rahman
- Department of Pharmaceutical Medicine, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Musheer Ahmed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Pratichi Bansal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Md Rafi Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal, University, P.O.BOX 1982, Damman, 31441, Saudi Arabia
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| |
Collapse
|
41
|
Roflumilast and tadalafil improve learning and memory deficits in intracerebroventricular Aβ1-42 rat model of Alzheimer's disease through modulations of hippocampal cAMP/cGMP/BDNF signaling pathway. Pharmacol Rep 2021; 73:1287-1302. [PMID: 33860460 DOI: 10.1007/s43440-021-00264-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent age-dependent neurodegenerative disease characterized by progressive impairment of memory and cognitive functions. Cyclic nucleotides like cAMP and cGMP are well-known to play an important role in learning and memory functions. Enhancement of cAMP and cGMP levels in the hippocampus by phosphodiesterase (PDE) inhibitors might be a novel therapeutic approach for AD. Thus, the present study was planned to explore the therapeutic potential of roflumilast (RFM) and tadalafil (TDF) phosphodiesterase inhibitors in intracerebroventricular (ICV) Aβ1-42 induced AD in rats. METHODS ICV Aβ1-42 was administered in rats followed by treatment with RFM (0.05 mg/kg) and TDF (0.51 mg/kg) for 15 days. Novel object recognition (NOR), and Morris water maze (MWM) test were performed during the drug treatment schedule. On the day, 22 rats were sacrificed, and hippocampus was separated for biochemical, neuroinflammation, and histopathological analysis. RESULTS Aβ1-42 infused rats were induce behavioral impairment and increased AChE, BACE-1, Aβ1-42, GSK-3β, phosphorylated tau (p-Tau), pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) levels, oxidative stress (increased MDA, Nitrite and decreased GSH), histopathological changes, and reduced cAMP, cGMP, and BDNF levels. RFM and TDF significantly attenuated Aβ1-42 induced memory deficits and neuropathological alterations in the hippocampus. CONCLUSION The outcomes of the current study indicate that RFM and TDF lead to memory enhancement through upregulation of cAMP/cGMP/BDNF pathway, thus they may have a therapeutic potential in cognitive deficits associated with AD.
Collapse
|
42
|
Furlan V, Bren U. Insight into Inhibitory Mechanism of PDE4D by Dietary Polyphenols Using Molecular Dynamics Simulations and Free Energy Calculations. Biomolecules 2021; 11:479. [PMID: 33806914 PMCID: PMC8004924 DOI: 10.3390/biom11030479] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/11/2022] Open
Abstract
Phosphodiesterase 4 (PDE4), mainly present in immune, epithelial, and brain cells, represents a family of key enzymes for the degradation of cyclic adenosine monophosphate (cAMP), which modulates inflammatory response. In recent years, the inhibition of PDE4 has been proven to be an effective therapeutic strategy for the treatment of neurological disorders. PDE4D constitutes a high-interest therapeutic target primarily for the treatment of Alzheimer's disease, as it is highly involved in neuroinflammation, learning ability, and memory dysfunctions. In the present study, a thorough computational investigation consisting of molecular docking, molecular dynamics (MD) simulations, and binding free energy calculations based on the linear response approximation (LRA) method was performed to study dietary polyphenols as potential PDE4D inhibitors. The obtained results revealed that curcumin, 6-gingerol, capsaicin, and resveratrol represent potential PDE4D inhibitors; however, the predicted binding free energies of 6-gingerol, capsaicin, and resveratrol were less negative than in the case of curcumin, which exhibited the highest inhibitory potency in comparison with a positive control rolipram. Our results also revealed that the electrostatic component through hydrogen bonding represents the main driving force for the binding and inhibitory activity of curcumin, 6-gingerol, and resveratrol, while the van der Waals component through shape complementarity plays the most important role in capsaicin's inhibitory activity. All investigated compounds form hydrophobic interactions with residues Gln376 and Asn602 as well as hydrogen bonds with nearby residues Asp438, Met439, and Ser440. The binding mode of the studied natural compounds is consequently very similar; however, it significantly differs from the binding of known PDE4 inhibitors. The uncovered molecular inhibitory mechanisms of four investigated natural polyphenols, curcumin, 6-gingerol, capsaicin, and resveratrol, form the basis for the design of novel PDE4D inhibitors for the treatment of Alzheimer's disease with a potentially wider therapeutic window and fewer adverse side effects.
Collapse
Affiliation(s)
- Veronika Furlan
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia;
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia;
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia
| |
Collapse
|
43
|
Yang W, Zhou X, Ryazanov AG, Ma T. Suppression of the kinase for elongation factor 2 alleviates mGluR-LTD impairments in a mouse model of Alzheimer's disease. Neurobiol Aging 2021; 98:225-230. [PMID: 33341653 PMCID: PMC8201868 DOI: 10.1016/j.neurobiolaging.2020.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/05/2020] [Accepted: 11/22/2020] [Indexed: 01/06/2023]
Abstract
Impaired mRNA translation (protein synthesis) is linked to Alzheimer's disease (AD) pathophysiology. Recent studies revealed the role of increased phosphorylation of eukaryotic elongation factor 2 (eEF2) in AD-associated cognitive deficits. Phosphorylation of eEF2 (at the Thr56 site) by its only known kinase eEF2K leads to inhibition of general protein synthesis. AD is considered as a disease of "synaptic failure" characterized by impairments of synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD). Deficiency of metabotropic glutamate receptor 5-dependent LTD (mGluR-LTD) is indicated in cognitive syndromes associated with various neurological disorders, including AD, but the molecular signaling mechanisms underlying the mGluR-LTD dysregulation in AD remain unclear. In this brief communication, we report genetic repression of eEF2K in aged APP/PS1 AD model mice prevented AD-associated hippocampal mGluR-LTD deficits. Using a pharmacological approach, we further observed that impairments of mGluR-LTD in APP/PS1 mice were rescued by treating hippocampal slices with a small molecule eEF2K antagonist NH125. Our findings, taken together, suggest a critical role of abnormal protein synthesis dysregulation at the elongation phase in AD-associated mGluR-LTD failure, thus providing insights into a mechanistic understanding of synaptic impairments in AD and other related dementia syndromes.
Collapse
Affiliation(s)
- Wenzhong Yang
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Xueyan Zhou
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Alexey G Ryazanov
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Tao Ma
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
44
|
Park JC, Jang SY, Lee D, Lee J, Kang U, Chang H, Kim HJ, Han SH, Seo J, Choi M, Lee DY, Byun MS, Yi D, Cho KH, Mook-Jung I. A logical network-based drug-screening platform for Alzheimer's disease representing pathological features of human brain organoids. Nat Commun 2021; 12:280. [PMID: 33436582 PMCID: PMC7804132 DOI: 10.1038/s41467-020-20440-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/19/2020] [Indexed: 01/29/2023] Open
Abstract
Developing effective drugs for Alzheimer's disease (AD), the most common cause of dementia, has been difficult because of complicated pathogenesis. Here, we report an efficient, network-based drug-screening platform developed by integrating mathematical modeling and the pathological features of AD with human iPSC-derived cerebral organoids (iCOs), including CRISPR-Cas9-edited isogenic lines. We use 1300 organoids from 11 participants to build a high-content screening (HCS) system and test blood-brain barrier-permeable FDA-approved drugs. Our study provides a strategy for precision medicine through the convergence of mathematical modeling and a miniature pathological brain model using iCOs.
Collapse
Affiliation(s)
- Jong-Chan Park
- grid.31501.360000 0004 0470 5905Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905Neuroscience Research Institute, Medical Research Center, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea ,grid.83440.3b0000000121901201Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG United Kingdom
| | - So-Yeong Jang
- grid.37172.300000 0001 2292 0500Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Dongjoon Lee
- grid.31501.360000 0004 0470 5905Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea
| | - Jeongha Lee
- grid.31501.360000 0004 0470 5905Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea
| | - Uiryong Kang
- grid.37172.300000 0001 2292 0500Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Hongjun Chang
- grid.37172.300000 0001 2292 0500Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Haeng Jun Kim
- grid.31501.360000 0004 0470 5905Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea
| | - Sun-Ho Han
- grid.31501.360000 0004 0470 5905Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905Neuroscience Research Institute, Medical Research Center, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea
| | - Jinsoo Seo
- grid.417736.00000 0004 0438 6721Department of Brain and Cognitive Science, Daegu Gyeongbuk Institute of Sciences and Technology (DGIST), Daegu, 42988 Republic of Korea
| | - Murim Choi
- grid.31501.360000 0004 0470 5905Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea
| | - Dong Young Lee
- grid.31501.360000 0004 0470 5905Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905Department of Psychiatry, College of medicine, Seoul National University, Seoul, 03080 Republic of Korea ,grid.412484.f0000 0001 0302 820XDepartment of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080 Republic of Korea
| | - Min Soo Byun
- grid.412480.b0000 0004 0647 3378Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, 13620 Republic of Korea
| | - Dahyun Yi
- grid.31501.360000 0004 0470 5905Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, 03080 Republic of Korea
| | - Kwang-Hyun Cho
- grid.37172.300000 0001 2292 0500Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Inhee Mook-Jung
- grid.31501.360000 0004 0470 5905Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905Neuroscience Research Institute, Medical Research Center, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea
| |
Collapse
|
45
|
Jee SC, Lee KM, Kim M, Lee YJ, Kim S, Park JO, Sung JS. Neuroprotective Effect of Cudrania tricuspidata Fruit Extracts on Scopolamine-Induced Learning and Memory Impairment. Int J Mol Sci 2020; 21:ijms21239202. [PMID: 33276674 PMCID: PMC7730846 DOI: 10.3390/ijms21239202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022] Open
Abstract
Cudrania tricuspidata has diverse biological activities, such as antioxidant, anti-inflammatory, anticancer, and neuroprotective effects. This study investigated the protective effects of C. tricuspidata fruit extracts (CTFE) against scopolamine (SCO)-induced neuron impairment. The neuroprotective effects of CTFE on SCO-induced memory dysfunction were confirmed in mice using the Barnes maze test. The results showed that co-treatment of SCO and CTFE increased the stay time in the target zone compared with SCO treatment alone. Similarly, the results obtained by the fear conditioning test revealed that SCO-CTFE co-treatment induced the freezing action time under both the contextual fear condition and the cued fear condition compared with SCO treatment alone. Moreover, we showed that CTFE reduced the SCO-induced acetylcholinesterase (AChE) activity, thereby increasing the acetylcholine concentration in mice hippocampal tissues. Consistent with the improvement of memory and recognition function in vivo, our in vitro results showed that CTFE induced cAMP response element binding protein (CREB) and extracellular regulated kinase 1/2 (ERK1/2) activity in PC12 cells and reduced SCO-induced AChE activity. In addition, the microarray results of the hippocampal tissue support our data showing that CTFE affects gene expressions associated with neurogenesis and neuronal cell differentiation markers such as spp1 and klk6. Overall, CTFE exerts a neuroprotective effect via regulation of the CREB and ERK1/2 signaling pathways and could be a therapeutic candidate for neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jung-Suk Sung
- Correspondence: ; Tel.: +82-31-961-5132; Fax: +82-31-961-5108
| |
Collapse
|
46
|
Snow WM, Cadonic C, Cortes-Perez C, Adlimoghaddam A, Roy Chowdhury SK, Thomson E, Anozie A, Bernstein MJ, Gough K, Fernyhough P, Suh M, Albensi BC. Sex-Specific Effects of Chronic Creatine Supplementation on Hippocampal-Mediated Spatial Cognition in the 3xTg Mouse Model of Alzheimer's Disease. Nutrients 2020; 12:nu12113589. [PMID: 33238473 PMCID: PMC7700653 DOI: 10.3390/nu12113589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/23/2022] Open
Abstract
The creatine (Cr) energy system has been implicated in Alzheimer’s disease (AD), including reductions in brain phosphoCr and Cr kinase, yet no studies have examined the neurobehavioral effects of Cr supplementation in AD, including the 3xTg mouse model. This studied investigated the effects of Cr supplementation on spatial cognition, plasticity- and disease-related protein levels, and mitochondrial function in the 3xTg hippocampus. Here, 3xTg mice were fed a control or Cr-supplemented (3% Cr (w/w)) diet for 8–9 weeks and tested in the Morris water maze. Mitochondrial oxygen consumption (Seahorse) and protein levels (Western blots) were measured in the hippocampus in subsets of mice. Overall, 3xTg females exhibited impaired memory as compared to males. In females, Cr supplementation decreased escape latency and was associated with increased spatial search strategy use. In males, Cr supplementation decreased the use of spatial search strategies. Pilot data indicated mitochondrial enhancements with Cr supplementation in both sexes. In females, Cr supplementation increased CREB phosphorylation and levels of IκB (NF-κB suppressor), CaMKII, PSD-95, and high-molecular-weight amyloid β (Aβ) species, whereas Aβ trimers were reduced. These data suggest a beneficial preventative effect of Cr supplementation in females and warrant caution against Cr supplementation in males in the AD-like brain.
Collapse
Affiliation(s)
- Wanda M. Snow
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H2A6, Canada; (C.C.); (C.C.-P.); (A.A.); (S.K.R.C.); (E.T.); (A.A.); (P.F.); (M.S.)
- Centre for the Advancement of Teaching and Learning, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Correspondence: or (W.M.S); (B.C.A.); Tel.: +1-204-235-3942 (B.C.A.)
| | - Chris Cadonic
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H2A6, Canada; (C.C.); (C.C.-P.); (A.A.); (S.K.R.C.); (E.T.); (A.A.); (P.F.); (M.S.)
| | - Claudia Cortes-Perez
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H2A6, Canada; (C.C.); (C.C.-P.); (A.A.); (S.K.R.C.); (E.T.); (A.A.); (P.F.); (M.S.)
| | - Aida Adlimoghaddam
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H2A6, Canada; (C.C.); (C.C.-P.); (A.A.); (S.K.R.C.); (E.T.); (A.A.); (P.F.); (M.S.)
| | - Subir K. Roy Chowdhury
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H2A6, Canada; (C.C.); (C.C.-P.); (A.A.); (S.K.R.C.); (E.T.); (A.A.); (P.F.); (M.S.)
- Research Institute in Oncology, CancerCare Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ella Thomson
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H2A6, Canada; (C.C.); (C.C.-P.); (A.A.); (S.K.R.C.); (E.T.); (A.A.); (P.F.); (M.S.)
| | - Adama Anozie
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H2A6, Canada; (C.C.); (C.C.-P.); (A.A.); (S.K.R.C.); (E.T.); (A.A.); (P.F.); (M.S.)
| | - Michael J. Bernstein
- Department of Psychological and Social Sciences, Pennsylvania State University Abington, Abington, PA 19001, USA;
| | - Kathleen Gough
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Paul Fernyhough
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H2A6, Canada; (C.C.); (C.C.-P.); (A.A.); (S.K.R.C.); (E.T.); (A.A.); (P.F.); (M.S.)
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Miyoung Suh
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H2A6, Canada; (C.C.); (C.C.-P.); (A.A.); (S.K.R.C.); (E.T.); (A.A.); (P.F.); (M.S.)
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Benedict C. Albensi
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H2A6, Canada; (C.C.); (C.C.-P.); (A.A.); (S.K.R.C.); (E.T.); (A.A.); (P.F.); (M.S.)
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Correspondence: or (W.M.S); (B.C.A.); Tel.: +1-204-235-3942 (B.C.A.)
| |
Collapse
|
47
|
Toll-like receptors in Alzheimer's disease. J Neuroimmunol 2020; 348:577362. [DOI: 10.1016/j.jneuroim.2020.577362] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/04/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023]
|
48
|
Petekkaya E, Burakgazi G, Kuş B, Melek İM, Arpacı A. Comparative study of the volume of the temporal lobe sections and neuropeptide effect in Alzheimer's patients and healthy persons. Int J Neurosci 2020; 131:725-734. [PMID: 33064056 DOI: 10.1080/00207454.2020.1831490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIM The aim of this study was to make a volumetric comparison of some medial temporal lobe structures and neuropeptides between the patients of Alzheimer's disease (AD) and healthy individuals. METHOD The study comprised of a group of patients diagnosed with mild AD (n:15) and a Control group (n:15) (16 females, 14 males, mean age:72.90 ± 4.50). Voxel-based morphometry and MRICloud analyses were performed on the MR images taken in 3D measurements of gray matter volumes of all subjects. Following a 10-minute hug test, blood samples were taken from all participants for oxytocin (OT) and arginine vasopressin (AVP) analyses. RESULTS The patient group had a statistically lower right hippocampus volume (p = 0.004) and OT values (p = 0.028) than the Control group. OT signal values increased with a volume increase in the right parahippocampal gyrus (PHG_R), and OT conc. and AVP conc. values increased with increasing volume of the PHG_R. CONCLUSION It is suggested that the right hippocampus, right fusiform gyrus, left amygdala, left parahippocampal gyrus, and left entorhinal cortex atrophies can be used as predictors in the early diagnosis of AD. The positive correlation between PHG_R and neuropeptides showed the need to investigate the PHG and OT function more deeply.
Collapse
Affiliation(s)
- Emine Petekkaya
- Department of Anatomy, The Faculty of Medicine, University of Kastamonu, Kastamonu, Turkey
| | - Gülen Burakgazi
- Department of Radiology, The Faculty of Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - Berna Kuş
- Department of Biochemistry, The Faculty of Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - İsmet Murat Melek
- Department of Neurology, The Faculty of Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - Abdullah Arpacı
- Department of Biochemistry, The Faculty of Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| |
Collapse
|
49
|
Tian Y, Yang S, Gao S. Advances, Perspectives and Potential Engineering Strategies of Light-Gated Phosphodiesterases for Optogenetic Applications. Int J Mol Sci 2020; 21:E7544. [PMID: 33066112 PMCID: PMC7590022 DOI: 10.3390/ijms21207544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/24/2020] [Accepted: 10/05/2020] [Indexed: 12/25/2022] Open
Abstract
The second messengers, cyclic adenosine 3'-5'-monophosphate (cAMP) and cyclic guanosine 3'-5'-monophosphate (cGMP), play important roles in many animal cells by regulating intracellular signaling pathways and modulating cell physiology. Environmental cues like temperature, light, and chemical compounds can stimulate cell surface receptors and trigger the generation of second messengers and the following regulations. The spread of cAMP and cGMP is further shaped by cyclic nucleotide phosphodiesterases (PDEs) for orchestration of intracellular microdomain signaling. However, localized intracellular cAMP and cGMP signaling requires further investigation. Optogenetic manipulation of cAMP and cGMP offers new opportunities for spatio-temporally precise study of their signaling mechanism. Light-gated nucleotide cyclases are well developed and applied for cAMP/cGMP manipulation. Recently discovered rhodopsin phosphodiesterase genes from protists established a new and direct biological connection between light and PDEs. Light-regulated PDEs are under development, and of demand to complete the toolkit for cAMP/cGMP manipulation. In this review, we summarize the state of the art, pros and cons of artificial and natural light-regulated PDEs, and discuss potential new strategies of developing light-gated PDEs for optogenetic manipulation.
Collapse
Affiliation(s)
| | | | - Shiqiang Gao
- Department of Neurophysiology, Physiological Institute, University of Wuerzburg, 97070 Wuerzburg, Germany; (Y.T.); (S.Y.)
| |
Collapse
|
50
|
Jastaniah A, Gaisina IN, Knopp RC, Thatcher GRJ. Synthesis of α-Ketoamide-Based Stereoselective Calpain-1 Inhibitors as Neuroprotective Agents. ChemMedChem 2020; 15:2280-2285. [PMID: 32840034 DOI: 10.1002/cmdc.202000385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/23/2020] [Indexed: 01/05/2023]
Abstract
Calpain inhibitors have been proposed as drug candidates for neurodegenerative disorders, with ABT-957 entering clinical trials for Alzheimer's disease and mild cognitive impairment. The structure of ABT-957 was very recently disclosed, and trials were terminated owing to inadequate CNS concentrations to obtain a pharmacodynamic effect. The multistep synthesis of an α-ketoamide peptidomimetic inhibitor series potentially including ABT-957 was optimized to yield diastereomerically pure compounds that are potent and selective for calpain-1 over papain and cathepsins B and K. As the final oxidation step, with its optimized synthesis protocol, does not alter the configuration of the substrate, the synthesis of the diastereomeric pair (R)-1-benzyl-N-((S)-4-((4-fluorobenzyl)amino)-3,4-dioxo-1-phenylbutan-2-yl)-5-oxopyrrolidine-2-carboxamide (1 c) and (R)-1-benzyl-N-((R)-4-((4-fluorobenzyl)amino)-3,4-dioxo-1-phenylbutan-2-yl)-5-oxopyrrolidine-2-carboxamide (1 g) was feasible. This allowed the exploration of stereoselective inhibition of calpain-1, with 1 c (IC50 =78 nM) being significantly more potent than 1 g. Moreover, inhibitor 1 c restored cognitive function in amnestic mice.
Collapse
Affiliation(s)
- Ammar Jastaniah
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL., 60612, USA
| | - Irina N Gaisina
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL., 60612, USA
| | - Rachel C Knopp
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL., 60612, USA
| | - Gregory R J Thatcher
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL., 60612, USA
| |
Collapse
|