1
|
Bucher ML, Dicent J, Duarte Hospital C, Miller GW. Neurotoxicology of dopamine: Victim or assailant? Neurotoxicology 2024; 103:175-188. [PMID: 38857676 DOI: 10.1016/j.neuro.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
Since the identification of dopamine as a neurotransmitter in the mid-20th century, investigators have examined the regulation of dopamine homeostasis at a basic biological level and in human disorders. Genetic animal models that manipulate the expression of proteins involved in dopamine homeostasis have provided key insight into the consequences of dysregulated dopamine. As a result, we have come to understand the potential of dopamine to act as an endogenous neurotoxin through the generation of reactive oxygen species and reactive metabolites that can damage cellular macromolecules. Endogenous factors, such as genetic variation and subcellular processes, and exogenous factors, such as environmental exposures, have been identified as contributors to the dysregulation of dopamine homeostasis. Given the variety of dysregulating factors that impact dopamine homeostasis and the potential for dopamine itself to contribute to further cellular dysfunction, dopamine can be viewed as both the victim and an assailant of neurotoxicity. Parkinson's disease has emerged as the exemplar case study of dopamine dysregulation due to the genetic and environmental factors known to contribute to disease risk, and due to the evidence of dysregulated dopamine as a pathologic and pathogenic feature of the disease. This review, inspired by the talk, "Dopamine in Durham: location, location, location" presented by Dr. Miller for the Jacob Hooisma Memorial Lecture at the International Neurotoxicology Association meeting in 2023, offers a primer on dopamine toxicity covering endogenous and exogenous factors that disrupt dopamine homeostasis and the actions of dopamine as an endogenous neurotoxin.
Collapse
Affiliation(s)
- Meghan L Bucher
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY 10032, USA
| | - Jocelyn Dicent
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY 10032, USA
| | - Carolina Duarte Hospital
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY 10032, USA
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY 10032, USA; Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
2
|
Bucher ML, Dunn AR, Bradner JM, Egerton KS, Burkett JP, Johnson MA, Miller GW. Synaptic vesicle glycoprotein 2C enhances vesicular storage of dopamine and counters dopaminergic toxicity. Eur J Neurosci 2024; 59:2483-2501. [PMID: 38532289 DOI: 10.1111/ejn.16311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/28/2024]
Abstract
Dopaminergic neurons of the substantia nigra exist in a persistent state of vulnerability resulting from high baseline oxidative stress, high-energy demand, and broad unmyelinated axonal arborisations. Impairments in the storage of dopamine compound this stress because of cytosolic reactions that transform the vital neurotransmitter into an endogenous neurotoxicant, and this toxicity is thought to contribute to the dopamine neuron degeneration that occurs Parkinson's disease. We have previously identified synaptic vesicle glycoprotein 2C (SV2C) as a modifier of vesicular dopamine function, demonstrating that genetic ablation of SV2C in mice results in decreased dopamine content and evoked dopamine release in the striatum. Here, we adapted a previously published in vitro assay utilising false fluorescent neurotransmitter 206 (FFN206) to visualise how SV2C regulates vesicular dopamine dynamics and determined that SV2C promotes the uptake and retention of FFN206 within vesicles. In addition, we present data indicating that SV2C enhances the retention of dopamine in the vesicular compartment with radiolabelled dopamine in vesicles isolated from immortalised cells and from mouse brain. Further, we demonstrate that SV2C enhances the ability of vesicles to store the neurotoxicant 1-methyl-4-phenylpyridinium (MPP+) and that genetic ablation of SV2C results in enhanced 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced vulnerability in mice. Together, these findings suggest that SV2C functions to enhance vesicular storage of dopamine and neurotoxicants and helps maintain the integrity of dopaminergic neurons.
Collapse
Affiliation(s)
- Meghan L Bucher
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Amy R Dunn
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Joshua M Bradner
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- AbbVie CRC, Cambridge, Massachusetts, USA
| | - Kristen Stout Egerton
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- School of Education and Health Sciences, North Central College, Naperville, Illinois, USA
| | - James P Burkett
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Michelle A Johnson
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- College of Arts and Sciences, Oberlin College, Oberlin, Ohio, USA
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
3
|
Lee H, Kim H, Choi D, Ko EN, Choi J, Seo Y, Lee S, Kim S, Jung S, Kim M, Kang D, Im C, Bae G, Jung S, Kwon O. Dopaminergic cell protection and alleviation of neuropsychiatric disease symptoms by VMAT2 expression through the class I HDAC inhibitor TC-H 106. Pharmacol Res Perspect 2023; 11:e01135. [PMID: 37740715 PMCID: PMC10517640 DOI: 10.1002/prp2.1135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/25/2023] Open
Abstract
The importance of vesicular monoamine transporter 2 (VMAT2) in dopamine regulation, which is considered crucial for neuropsychiatric disorders, is currently being studied. Moreover, the development of disease treatments using histone deacetylase (HDAC) inhibitors (HDACi) is actively progressing in various fields. Recently, research on the possibility of regulating neuropsychiatric disorders has been conducted. In this study, we evaluated whether VMAT2 expression increased by an HDACi can fine-tune neuropsychotic behavior, such as attention deficit hyperactivity disorder (ADHD) and protect against the cell toxicity through oxidized dopamine. First, approximately 300 candidate HDACi compounds were added to the SH-SY5Y dopaminergic cell line to identify the possible changes in the VMAT2 expression levels, which were measured using quantitative polymerase chain reaction. The results demonstrated, that treatment with pimelic diphenylamide 106 (TC-H 106), a class I HDACi, increased VMAT2 expression in both the SH-SY5Y cells and mouse brain. The increased VMAT2 expression induced by TC-H 106 alleviated the cytotoxicity attributed to 6-hydroxydopamine (6-OHDA) or 1-methyl-4-phenylpyridinium (MPP+ ) and free dopamine treatment. Moreover, dopamine concentrations, both intracellularly and in the synaptosomes, were significantly elevated by increased VMAT2 expression. These results suggest that dopamine concentration regulation by VMAT2 expression induced by TC-H 106 could alter several related behavioral aspects that was confirmed by attenuation of hyperactivity and impulsivity, which were major characteristics of animal model showing ADHD-like behaviors. These results indicate that HDACi-increased VMAT2 expression offers sufficient protections against dopaminergic cell death induced by oxidative stress. Thus, the epigenetic approach could be considered as therapeutic candidate for neuropsychiatric disease regulation.
Collapse
Affiliation(s)
- Heejin Lee
- New Drug Development Center, K‐MedihubDaeguKorea
| | - Hye‐Ji Kim
- Department of Physiology, School of MedicineJeju National UniversityJejuKorea
| | | | - Eu n.‐A. Ko
- Department of Physiology, School of MedicineJeju National UniversityJejuKorea
| | | | - Yohan Seo
- New Drug Development Center, K‐MedihubDaeguKorea
| | - Sion Lee
- New Drug Development Center, K‐MedihubDaeguKorea
| | | | - Sejin Jung
- New Drug Development Center, K‐MedihubDaeguKorea
| | - Minwoo Kim
- New Drug Development Center, K‐MedihubDaeguKorea
| | - Dongwan Kang
- New Drug Development Center, K‐MedihubDaeguKorea
| | | | - Gi‐Hun Bae
- New Drug Development Center, K‐MedihubDaeguKorea
| | - Sung‐Cherl Jung
- Department of Physiology, School of MedicineJeju National UniversityJejuKorea
| | - Oh‐Bin Kwon
- New Drug Development Center, K‐MedihubDaeguKorea
| |
Collapse
|
4
|
Bucher ML, Dunn AR, Bradner JM, Egerton KS, Burkett JP, Johnson MA, Miller GW. Synaptic vesicle glycoprotein 2C enhances vesicular storage of dopamine and counters dopaminergic toxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546143. [PMID: 37425736 PMCID: PMC10326994 DOI: 10.1101/2023.06.26.546143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Dopaminergic neurons of the substantia nigra exist in a persistent state of vulnerability resulting from high baseline oxidative stress, high energy demand, and broad unmyelinated axonal arborizations. Impairments in the storage of dopamine compound this stress due to cytosolic reactions that transform the vital neurotransmitter into an endogenous neurotoxicant, and this toxicity is thought to contribute to the dopamine neuron degeneration that occurs Parkinson's disease. We have previously identified synaptic vesicle glycoprotein 2C (SV2C) as a modifier of vesicular dopamine function, demonstrating that genetic ablation of SV2C in mice results in decreased dopamine content and evoked dopamine release in the striatum. Here, we adapted a previously published in vitro assay utilizing false fluorescent neurotransmitter 206 (FFN206) to visualize how SV2C regulates vesicular dopamine dynamics and determined that SV2C promotes the uptake and retention of FFN206 within vesicles. In addition, we present data indicating that SV2C enhances the retention of dopamine in the vesicular compartment with radiolabeled dopamine in vesicles isolated from immortalized cells and from mouse brain. Further, we demonstrate that SV2C enhances the ability of vesicles to store the neurotoxicant 1-methyl-4-phenylpyridinium (MPP+) and that genetic ablation of SV2C results in enhanced 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced vulnerability in mice. Together, these findings suggest that SV2C functions to enhance vesicular storage of dopamine and neurotoxicants, and helps maintain the integrity of dopaminergic neurons.
Collapse
Affiliation(s)
- Meghan L Bucher
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Amy R Dunn
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Joshua M Bradner
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Kristen Stout Egerton
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - James P Burkett
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Michelle A Johnson
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10031, USA
| |
Collapse
|
5
|
Rodrigues-Costa M, Fernandes MSDS, Jurema-Santos GC, Gonçalves LVDP, Andrade-da-Costa BLDS. Nutrigenomics in Parkinson's disease: diversity of modulatory actions of polyphenols on epigenetic effects induced by toxins. Nutr Neurosci 2023; 26:72-84. [PMID: 36625764 DOI: 10.1080/1028415x.2021.2017662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although the pathogenesis of Parkinson's Disease (PD) is not completely understood, there is a consensus that it can be caused by multifactorial mechanisms involving genetic susceptibility, epigenetic modifications induced by toxins and mitochondrial dysfunction. In the past 20 years, great efforts have been made in order to clarify molecular mechanisms that are risk factors for this disease, as well as to identify bioactive agents for prevention and slowing down of its progression. Nutraceutical products have received substantial interest due to their nutritional, safe and therapeutic effects on several chronic diseases. The aim of this review was to gather the main evidence of the epigenetic mechanisms involved in the neuroprotective effects of phenolic compounds currently under investigation for the treatment of toxin-induced PD. These studies confirm that the neuroprotective actions of polyphenols involve complex epigenetic modulations, demonstrating that the intake of these natural compounds can be a promising, low-cost, pharmacogenomic strategy against the development of PD.
Collapse
Affiliation(s)
- Moara Rodrigues-Costa
- Programa de Neuropsiquiatria e Ciências do Comportamento, Universidade Federal de Pernambuco, Recife, Brazil.,Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - Matheus Santos de Sousa Fernandes
- Programa de Neuropsiquiatria e Ciências do Comportamento, Universidade Federal de Pernambuco, Recife, Brazil.,Departamento de Educação Física, Universidade Federal de Pernambuco, Recife, Brazil
| | | | | | - Belmira Lara da Silveira Andrade-da-Costa
- Programa de Neuropsiquiatria e Ciências do Comportamento, Universidade Federal de Pernambuco, Recife, Brazil.,Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
6
|
Landau R, Halperin R, Sullivan P, Zibly Z, Leibowitz A, Goldstein DS, Sharabi Y. The rat rotenone model reproduces the abnormal pattern of central catecholamine metabolism found in Parkinson's disease. Dis Model Mech 2021; 15:274082. [PMID: 34842277 PMCID: PMC8807569 DOI: 10.1242/dmm.049082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/18/2021] [Indexed: 11/20/2022] Open
Abstract
Recent reports indicate that Parkinson's disease (PD) involves specific functional abnormalities in residual neurons – decreased vesicular sequestration of cytoplasmic catecholamines via the vesicular monoamine transporter (VMAT) and decreased aldehyde dehydrogenase (ALDH) activity. This double hit builds up the autotoxic metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL), the focus of the catecholaldehyde hypothesis for the pathogenesis of PD. An animal model is needed that reproduces this abnormal catecholamine neurochemical pattern. Adult rats received subcutaneous vehicle or the mitochondrial complex 1 inhibitor rotenone (2 mg/kg/day via a minipump) for 10 days. Locomotor activity was recorded, and striatal tissue sampled for catechol contents and catechol ratios that indicate the above abnormalities. Compared to vehicle, rotenone reduced locomotor activity (P=0.002), decreased tissue dopamine concentrations (P=0.00001), reduced indices of vesicular sequestration (3,4-dihydroxyphenylacetic acid (DOPAC)/dopamine) and ALDH activity (DOPAC/DOPAL) (P=0.0025, P=0.036), and increased DOPAL levels (P=0.04). The rat rotenone model involves functional abnormalities in catecholaminergic neurons that replicate the pattern found in PD putamen. These include a vesicular storage defect, decreased ALDH activity and DOPAL build-up. The rat rotenone model provides a suitable in vivo platform for studying the catecholaldehyde hypothesis. Summary: This study presents an animal model that reflects the neurochemical pattern found in Parkinson's patients, the basis of the new and evolving catecholaldehyde hypothesis for the disease.
Collapse
Affiliation(s)
- Regev Landau
- Neuroautonomic Service, Chaim Sheba Medical Center, Affiliated with the Tel Aviv University Sackler Faculty of Medicine, Tel-HaShomer, Israel
| | - Reut Halperin
- Neuroautonomic Service, Chaim Sheba Medical Center, Affiliated with the Tel Aviv University Sackler Faculty of Medicine, Tel-HaShomer, Israel
| | - Patti Sullivan
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Zion Zibly
- Department of Neurosurgery, Chaim Sheba Medical Center, Affiliated with the Tel Aviv University Sackler Faculty of Medicine, Tel-HaShomer, Israel
| | - Avshalom Leibowitz
- Neuroautonomic Service, Chaim Sheba Medical Center, Affiliated with the Tel Aviv University Sackler Faculty of Medicine, Tel-HaShomer, Israel
| | - David S Goldstein
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Yehonatan Sharabi
- Neuroautonomic Service, Chaim Sheba Medical Center, Affiliated with the Tel Aviv University Sackler Faculty of Medicine, Tel-HaShomer, Israel
| |
Collapse
|
7
|
Black CA, Bucher ML, Bradner JM, Jonas L, Igarza K, Miller GW. Assessing Vesicular Monoamine Transport and Toxicity Using Fluorescent False Neurotransmitters. Chem Res Toxicol 2020; 34:1256-1264. [PMID: 33378168 DOI: 10.1021/acs.chemrestox.0c00380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Impairments in the vesicular packaging of dopamine result in an accumulation of dopamine in the cytosol. Cytosolic dopamine is vulnerable to two metabolic processes-enzymatic catabolism and enzymatic- or auto-oxidation-that form toxic metabolites and generate reactive oxygen species. Alterations in the expression or activity of the vesicular monoamine transporter 2 (VMAT2), which transports monoamines such as dopamine from the cytosol into the synaptic vesicle, result in dysregulated dopamine packaging. Here, we developed a series of assays using the fluorescent false neurotransmitter 206 (FFN206) to visualize VMAT2-mediated vesicular packaging at baseline and following pharmacological and toxicological manipulations. As a proof of principle, we observed a significant reduction in vesicular FFN206 packaging after treatment with the VMAT2 inhibitors reserpine (IC50: 73.1 nM), tetrabenazine (IC50: 30.4 nM), methamphetamine (IC50: 2.4 μM), and methylphenidate (IC50: 94.3 μM). We then applied the assay to investigate the consequences on vesicular packaging by environmental toxicants including the pesticides paraquat, rotenone, and chlorpyrifos, as well as the halogenated compounds unichlor, perfluorooctanesulfonic acid, Paroil, Aroclor 1260, and hexabromocyclododecane. Several of the environmental toxicants showed minor impairment of the vesicular FFN206 loading, suggesting that the toxicants are weak VMAT2 inhibitors at the concentrations tested. The assay presented here can be applied to investigate the effect of additional pharmacological compounds and environmental toxicants on vesicular function, which will provide insight into how exposures to such factors are involved in the pathogenesis of monoaminergic diseases such as Parkinson's disease, and the assay can be used to identify pharmacological agents that influence VMAT2 activity.
Collapse
Affiliation(s)
- Carlie A Black
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Meghan L Bucher
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Joshua M Bradner
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Lauren Jonas
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Kenny Igarza
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| |
Collapse
|
8
|
Bucher ML, Barrett CW, Moon CJ, Mortimer AD, Burton EA, Greenamyre JT, Hastings TG. Acquired dysregulation of dopamine homeostasis reproduces features of Parkinson's disease. NPJ PARKINSONS DISEASE 2020; 6:34. [PMID: 33298952 PMCID: PMC7666186 DOI: 10.1038/s41531-020-00134-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 10/08/2020] [Indexed: 12/24/2022]
Abstract
The catecholamine neurotransmitter dopamine has the potential to act as an endogenous neurotoxin when its vesicular sequestration is dysregulated. Despite postmortem analyses from patients with Parkinson’s disease that demonstrate decreased vesicular sequestration of dopamine with a corresponding increase in dopamine metabolism, dopamine’s contribution to nigrostriatal dopaminergic degeneration in Parkinson’s disease has been debated. Here, we present a new in vivo model demonstrating the induction of Parkinson’s disease-associated pathogenic mechanisms of degeneration resulting from acquired dysregulation of dopamine sequestration in nigrostriatal dopaminergic neurons in adult rats. Utilizing adeno-associated virus (serotype 2), viral-mediated small-hairpin RNA interference of endogenous vesicular monoamine transporter 2 (VMAT2) expression resulted in a loss of VMAT2 protein expression in transduced dopaminergic cell bodies in the substantia nigra with a corresponding loss of VMAT2 protein within the striatal terminals. The loss of VMAT2 resulted in an accumulation of cytosolic dopamine and subsequent increased dopamine metabolism, deficits in dopamine-mediated behaviors, and degeneration of nigrostriatal dopaminergic neurons that was rescued through reintroduction of exogenous VMAT2, demonstrating that the toxicity was specific to the loss of VMAT2. Analysis of parkinsonian pathogenic mechanisms of degeneration identified oxidative damage, activation of Parkinson’s disease-associated kinase LRRK2, and the formation of aberrant α-synuclein. This model demonstrates that a progressive acquired loss of VMAT2 expression in adulthood is sufficient to induce Parkinson’s disease-associated pathogenic mechanisms of degeneration and provides a new model to further investigate the consequences of cytosolic dopamine.
Collapse
Affiliation(s)
- Meghan L Bucher
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Neuroscience, University of Pittsburgh School of Arts and Sciences, Pittsburgh, PA, USA.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Caitlyn W Barrett
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Connor J Moon
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Neuroscience, University of Pittsburgh School of Arts and Sciences, Pittsburgh, PA, USA
| | - Amanda D Mortimer
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Edward A Burton
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Geriatric Research, Education and Clinical Center, Pittsburgh VA Healthcare System, Pittsburgh, PA, USA
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Teresa G Hastings
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Department of Neuroscience, University of Pittsburgh School of Arts and Sciences, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Li J, Long X, Hu J, Bi J, Zhou T, Guo X, Han C, Huang J, Wang T, Xiong N, Lin Z. Multiple pathways for natural product treatment of Parkinson's disease: A mini review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 60:152954. [PMID: 31130327 DOI: 10.1016/j.phymed.2019.152954] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND It is established that natural medicines for Parkinson's disease (PD) provide an antioxidant activity in preventing dopaminergic neurons from degeneration. However, the underlying and related molecular details remain poorly understood. METHODS AND AIM We review published in vitro and rodent studies of natural products in PD models with the aim to identify common molecular pathways contributing to the treatment efficacy. Commonly regulated genes were identified through the systemic literature search and further analyzed from a network perspective. FINDINGS Approximately thirty different types of natural products have been investigated for their ability to regulate protein density and gene activity in various experimental systems. Most were found to attenuate neurotoxin-induced regulations. Three common PD pathways are involved. The most studied pathway was neuronal development/anti-apoptosis consisting of Bax/Bcl-2, caspases 3/9, and MAPK signaling. Another well studied was anti-inflammation comprising iNOS, nNOS, Nrf2/ARE, cytokines, TNFα, COX2 and MAPK signaling. The third pathway referred to dopamine transmission modulation with upregulated VMAT2, DAT, NURR1 and GDNF levels. To date, HIPK2, a conserved serine/threonine kinase and transcriptional target of Nrf2 in an anti-apoptosis signaling pathway, is the first protein identified as the direct binding target of a natural product (ZMHC). IMPLICATIONS Natural products may utilize multiple and intercellular pathways at various steps to prevent DA neurons from degeneration. Molecular delineation of the mechanisms of actions is revealing new, perhaps combinational therapeutic approaches to stop the progression of DA degeneration.
Collapse
Affiliation(s)
- Jingwen Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xi Long
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jichuan Hu
- Department of Neurology, People's Hospital of Dongxihu District, Wuhan, Hubei 430040, China
| | - Juan Bi
- Department of Neurology, People's Hospital of Dongxihu District, Wuhan, Hubei 430040, China
| | - Ting Zhou
- Department of Neurology, People's Hospital of Dongxihu District, Wuhan, Hubei 430040, China
| | - Xingfang Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Chao Han
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Department of Neurology, People's Hospital of Dongxihu District, Wuhan, Hubei 430040, China.
| | - Zhicheng Lin
- Laboratory of Psychiatric Neurogenomics, McLean Hospital, Harvard Medical School, Belmont, MA 02478, United States.
| |
Collapse
|
10
|
Liu J, Shi YC, Lee DYW. Applications of Pueraria lobata in treating diabetics and reducing alcohol drinking. CHINESE HERBAL MEDICINES 2019; 11:141-149. [PMID: 32831815 PMCID: PMC7434045 DOI: 10.1016/j.chmed.2019.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pueraria lobata is one of the most important medicinal herbs used traditionally in China. According to Shanghan Lun (Treatise on Exogenous Febrile Disease), it has been used traditionally to relieve body heat, eye soring, dry mouth, headache associated with high blood pressure, and stiff neck problems. Modern studies in the 1970s revealed that isoflavonoids extracted from P. lobata were the bioactive components of an herbal remedy namely Yufeng Ningxin Tablets for the treatment of patients after stroke. This article reviews recent application of P. lobota in the treatment of diabetics and in reducing alcohol drinking. In view of its low toxicity profile, P. lobota stands an excellent chance to be developed as a phytomedicine for treating human diseases.
Collapse
Affiliation(s)
- Jing Liu
- Bio-Organic and Natural Products Research Laboratory, Mailman Research Center, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA
| | | | - David Yue-Wei Lee
- Bio-Organic and Natural Products Research Laboratory, Mailman Research Center, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA
| |
Collapse
|
11
|
Liu QR, Canseco-Alba A, Zhang HY, Tagliaferro P, Chung M, Dennis E, Sanabria B, Schanz N, Escosteguy-Neto JC, Ishiguro H, Lin Z, Sgro S, Leonard CM, Santos-Junior JG, Gardner EL, Egan JM, Lee JW, Xi ZX, Onaivi ES. Cannabinoid type 2 receptors in dopamine neurons inhibits psychomotor behaviors, alters anxiety, depression and alcohol preference. Sci Rep 2017; 7:17410. [PMID: 29234141 PMCID: PMC5727179 DOI: 10.1038/s41598-017-17796-y] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/30/2017] [Indexed: 12/31/2022] Open
Abstract
Cannabinoid CB2 receptors (CB2Rs) are expressed in mouse brain dopamine (DA) neurons and are involved in several DA-related disorders. However, the cell type-specific mechanisms are unclear since the CB2R gene knockout mice are constitutive gene knockout. Therefore, we generated Cnr2-floxed mice that were crossed with DAT-Cre mice, in which Cre- recombinase expression is under dopamine transporter gene (DAT) promoter control to ablate Cnr2 gene in midbrain DA neurons of DAT-Cnr2 conditional knockout (cKO) mice. Using a novel sensitive RNAscope in situ hybridization, we detected CB2R mRNA expression in VTA DA neurons in wildtype and DAT-Cnr2 cKO heterozygous but not in the homozygous DAT-Cnr2 cKO mice. Here we report that the deletion of CB2Rs in dopamine neurons enhances motor activities, modulates anxiety and depression-like behaviors and reduces the rewarding properties of alcohol. Our data reveals that CB2Rs are involved in the tetrad assay induced by cannabinoids which had been associated with CB1R agonism. GWAS studies indicates that the CNR2 gene is associated with Parkinson's disease and substance use disorders. These results suggest that CB2Rs in dopaminergic neurons may play important roles in the modulation of psychomotor behaviors, anxiety, depression, and pain sensation and in the rewarding effects of alcohol and cocaine.
Collapse
Affiliation(s)
- Qing-Rong Liu
- Department of Biology, William Paterson University, Wayne, New Jersey, 74070, USA.
- Laboratory of Clinical Investigation, national Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
| | - Ana Canseco-Alba
- Department of Biology, William Paterson University, Wayne, New Jersey, 74070, USA
| | - Hai-Ying Zhang
- Molecular Targets and medications Discovery Branch, Intramural Research Program. National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Patricia Tagliaferro
- Department of Biology, William Paterson University, Wayne, New Jersey, 74070, USA
| | - Monika Chung
- Department of Biology, William Paterson University, Wayne, New Jersey, 74070, USA
| | - Eugene Dennis
- Department of Biology, William Paterson University, Wayne, New Jersey, 74070, USA
| | - Branden Sanabria
- Department of Biology, William Paterson University, Wayne, New Jersey, 74070, USA
| | - Norman Schanz
- Department of Biology, William Paterson University, Wayne, New Jersey, 74070, USA
| | | | - Hiroki Ishiguro
- Department of Psychiatry, University of Yamanashi, Yamanashi, Japan
| | - Zhicheng Lin
- Department of Psychiatry, Harvard Medical School, Psychiatric Neurogenomics, Division of Alcohol and Drug Abuse, and Mailman Neuroscience Research Center, McLean Hospital, Belmont, MA, USA
| | - Susan Sgro
- Department of Biology, William Paterson University, Wayne, New Jersey, 74070, USA
| | - Claire M Leonard
- Department of Biology, William Paterson University, Wayne, New Jersey, 74070, USA
| | | | - Eliot L Gardner
- Molecular Targets and medications Discovery Branch, Intramural Research Program. National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Josephine M Egan
- Laboratory of Clinical Investigation, national Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Jeung Woon Lee
- Department of Biology, William Paterson University, Wayne, New Jersey, 74070, USA
| | - Zheng-Xiong Xi
- Molecular Targets and medications Discovery Branch, Intramural Research Program. National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Emmanuel S Onaivi
- Department of Biology, William Paterson University, Wayne, New Jersey, 74070, USA.
| |
Collapse
|
12
|
Association analysis of polymorphisms in VMAT2 and TMEM106B genes for Parkinson's disease, amyotrophic lateral sclerosis and multiple system atrophy. J Neurol Sci 2017; 377:65-71. [PMID: 28477711 DOI: 10.1016/j.jns.2017.03.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND The vesicular monoamine transporter type 2 (VMAT2) and transmembrane Protein 106B (TMEM106B) were reported to be associated with neurodegenerative diseases. Recent studies found that two polymorphisms (rs363371 and rs363324) in VMAT2 might be a risk factor for Parkinson's disease (PD) in Caucasians, while the two other variants (rs1990622 and rs3173615) in TMEM106B increased the risk for frontotemporal dementia (FTD). Considering the overlap between clinical manifestation and pathologic characteristics in neurodegenerative diseases, we conducted a large-sample study to investigate the associations between these four polymorphisms and the risk for PD, sporadic amyotrophic lateral sclerosis (SALS), and multiple system atrophy (MSA) in a Chinese patient population. METHODS A total of 1121 PD, 863 SALS, and 356 MSA patients, as well as 829 healthy controls (HCs), were included in the study. These four polymorphisms were genotyped using Sequenom iPLEX Assay technology. RESULTS Significant differences were found in the genotype distribution of VMAT2 rs363371 between SALS patients and HCs (p=0.001). In an additive model, "GG" of rs363371 significantly decreased the risk for SALS (p<0.001, OR: 0.49, 95% CI [0.36-0.67]). The frequencies of minor alleles for rs1990622 and rs3173615 in TMEM106B were significantly different between PD patients with initial symptoms of tremor and rigidity/bradykinesia (p=0.001), and between patients with initial symptom of rigidity/bradykinesia and HCs (p<0.001). The minor alleles "T" of rs1990622 and "C" of rs3173615 increased the risk for PD patients with initial symptom of rigidity/bradykinesia (OR: 1.21[1.10-1.34] and OR: 1.19[1.07-1.31], respectively). No differences were found in the genotype distribution and allele frequency of the four polymorphisms between MSA patients and HCs. CONCLUSION In this Chinese patient population, "GG" of rs363371 in VMAT2 may reduce the risk for SALS, while minor alleles of rs1990622 and rs3173615 in TMEM106B may be associated with PD patients with initial symptom of rigidity/bradykinesia.
Collapse
|