1
|
Chen L, Bian G, Zhu X, Duan X, Meng Y, Li L. Importance of computed tomography perfusion on assessing collateral circulation and prognosis of patients with acute anterior circulation large vessel occlusion after endovascular therapy. SLAS Technol 2024; 29:100139. [PMID: 38734181 DOI: 10.1016/j.slast.2024.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/11/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
This study probed the importance of computed tomography perfusion (CTP) on assessing collateral circulation and prognosis in patients with acute anterior circulation large vessel occlusion (AAC-LVO) after endovascular therapy (EVT). Retrospective analysis was performed on the case data of 124 AAC-LVO patients who achieved EVT in the First People's Hospital of Lianyungang. All patients received computed tomography (CT) examination. Based on the multi-phase computed tomography angiography (mCTA) score, patients were separated into poor collateral circulation group and good collateral circulation group. Based on modified Rankin scale (mRS) score, patients were separated into good prognosis group and poor prognosis group. The receiver operating characteristic (ROC) curve was used to measure the efficacy of CTP parameters in predicting good collateral circulation or good prognosis. Correlation between CTP parameters with mCTA collateral and 90-day mRS circulation score was analyzed using the Spearman correlation analysis. The age and admission national Institutes of Health stroke scale (NIHSS) scores of the good collateral circulation group were lower than the poor collateral circulation group, and low perfusion area volume with Tmax > 6 s (VTmax>6 s), infarct core area volume (VCBF<30 %)and hypoperfusion intensity ratio (HIR) were also lower. The mCTA collateral cycle score was negatively related to VTmax>6s, VCBF<30 % and HIR. The area under the curve (AUC) values of VTmax>6s and VCBF<30 % and HIR for predicting good collateral circulation were 0.763, 0.884 and 0.842, respectively, which suggested that perfusion parameters VTmax>6s, VCBF<30 % and HIR could effectively indicate the status of patients' collateral circulation. Relative to the poor prognosis group, patients in the good prognosis group possessed lower admission NIHSS score, younger age, smaller final infarct volume, lower HIR, VCBF<30 %, VTmax>6 s, Alberta Stroke Program Early CT(ASPECT) score, and higher mCTA score. Spearman correlation analysis unveiled that ASPECT score, mCTA score and 90-day mRS were negatively correlated. The final infarct volume, perfusion parameters HIR and VCBF<30 % were positively correlated with 90-day mRS. ROC analysis showed that all variates had good prognostic value for acute anterior circulation great vessel occlusion patients, while VCBF<30 % and HIR had high diagnostic value for prognosis. To sum up, CTP can provide a comprehensive imaging assessment of the collateral circulation of patients with AAC-LVO and has a higher predictive value for the prognosis assessment of patients with EVT in terms of VCBF<30 %, HIR score and mCTA collateral circulation score.
Collapse
Affiliation(s)
- Lei Chen
- Department of Medical Imaging, The First Affiliated Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222000, China
| | - Guangjun Bian
- Department of Medical Imaging, The First Affiliated Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222000, China
| | - Xiufang Zhu
- Department of Medical Imaging, The First Affiliated Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222000, China
| | - Xinxiu Duan
- Department of Medical Imaging, The First Affiliated Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222000, China
| | - Yue Meng
- Department of Medical Imaging, The First Affiliated Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222000, China
| | - Lei Li
- Department of Medical Imaging, The First Affiliated Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222000, China.
| |
Collapse
|
2
|
Pan Y, Chen P, Chen S, Li Y, Wang J, Xia S, Rao J, Gao R, Lu C, Ji J. Computed tomography perfusion deficit volume predicts the functional outcome of endovascular therapy for basilar artery occlusion. J Stroke Cerebrovasc Dis 2024; 33:107677. [PMID: 38460777 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
OBJECTIVES To investigate the relationship between baseline computed tomography perfusion deficit volumes and functional outcomes in patients with basilar artery occlusion (BAO) undergoing endovascular therapy. METHODS This was a single-center study in which the data of 64 patients with BAO who underwent endovascular therapy were retrospectively analyzed. All the patients underwent multi-model computed tomography on admission. The posterior-circulation Acute Stroke Prognosis Early Computed Tomography Score was applied to assess the ischemic changes. Perfusion deficit volumes were obtained using Syngo.via software. The primary outcome of the analysis was a good functional outcome (90-day modified Rankin Scale score ≤ 3). Logistic regression and receiver operating characteristic curves were used to explore predictors of functional outcome. RESULTS A total of 64 patients (median age, 68 years; 72 % male) were recruited, of whom 26 (41 %) patients achieved good functional outcomes, while 38 (59 %) had poor functional outcomes. Tmax > 10 s, Tmax > 6 s, and rCBF < 30 % volume were independent predictors of good functional outcomes (odds ratio range, 1.0-1.2; 95 % confidence interval [CI], 1.0-1.4]) and performed well in the receiver operating characteristic curve analyses, exhibiting positive prognostic value; the areas under the curve values were 0.85 (95 % CI, 0.75-0.94), 0.81 (95 % CI, 0.70-0.90), and 0.78 (95 % CI, 0.67-0.89). CONCLUSION Computed tomography perfusion deficit volume represents a valuable tool in predicting high risk of disability and mortality in patients with BAO after endovascular treatment.
Collapse
Affiliation(s)
- Yiying Pan
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang University, Lishui, 323000, PR China
| | - Pengjun Chen
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang University, Lishui, 323000, PR China
| | - Shunyang Chen
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang University, Lishui, 323000, PR China
| | - Yanjun Li
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang University, Lishui, 323000, PR China
| | - Junhe Wang
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang University, Lishui, 323000, PR China
| | - Shuiwei Xia
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang University, Lishui, 323000, PR China
| | - Jie Rao
- Department of Neurology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang University, Lishui, 323000, PR China
| | - Ruijie Gao
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang University, Lishui, 323000, PR China
| | - Chenying Lu
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang University, Lishui, 323000, PR China
| | - Jiansong Ji
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang University, Lishui, 323000, PR China.
| |
Collapse
|
3
|
Huang A, Ji L, Li Y, Li Y, Yu Q. Gut microbiome plays a vital role in post-stroke injury repair by mediating neuroinflammation. Int Immunopharmacol 2023; 118:110126. [PMID: 37031605 DOI: 10.1016/j.intimp.2023.110126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/18/2023] [Accepted: 03/29/2023] [Indexed: 04/11/2023]
Abstract
Cerebral stroke is a common neurological disease and often causes severe neurological deficits. With high morbidity, mortality, and disability rates, stroke threatens patients' life quality and brings a heavy economic burden on society. Ischemic cerebral lesions incur pathological changes as well as spontaneous nerve repair following stroke. Strategies such as drug therapy, physical therapy, and surgical treatment, can ameliorate blood and oxygen supply in the brain, hamper the inflammatory responses and maintain the structural and functional integrity of the brain. The gut microbiome, referred to as the "second genome" of the human body, participates in the regulation of multiple physiological functions including metabolism, digestion, inflammation, and immunity. The gut microbiome is not only inextricably associated with dangerous factors pertaining to stroke, including high blood pressure, diabetes, obesity, and atherosclerosis, but also influences stroke occurrence and prognosis. AMPK functions as a hub of metabolic control and is responsible for the regulation of metabolic events under physiological and pathological conditions. The AMPK mediators have been found to exert dual roles in regulating gut microbiota and neuroinflammation/neuronal apoptosis in stroke. In this study, we reviewed the role of the gut microbiome in cerebral stroke and the underlying mechanism of the AMPK signaling pathway in stroke. AMPK mediators in nerve repair and the regulation of intestinal microbial balance were also summarized.
Collapse
Affiliation(s)
- Airu Huang
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Ling Ji
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Yamei Li
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Yufeng Li
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China.
| | - Qian Yu
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China.
| |
Collapse
|
4
|
Patzwaldt K, Berezhnoy G, Ionescu T, Schramm L, Wang Y, Owczorz M, Calderón E, Poli S, Serna Higuita LM, Gonzalez-Menendez I, Quintanilla-Martinez L, Herfert K, Pichler B, Trautwein C, Castaneda-Vega S. Repurposing the mucolytic agent ambroxol for treatment of sub-acute and chronic ischaemic stroke. Brain Commun 2023; 5:fcad099. [PMID: 37065090 PMCID: PMC10090797 DOI: 10.1093/braincomms/fcad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/31/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Ambroxol is a well-known mucolytic expectorant, which has gained much attention in amyotrophic lateral sclerosis, Parkinson's and Gaucher's disease. A specific focus has been placed on ambroxol's glucocerebrosidase-stimulating activity, on grounds that the point mutation of the gba1 gene, which codes for this enzyme, is a risk factor for developing Parkinson's disease. However, ambroxol has been attributed other characteristics, such as the potent inhibition of sodium channels, modification of calcium homeostasis, anti-inflammatory effects and modifications of oxygen radical scavengers. We hypothesized that ambroxol could have a direct impact on neuronal rescue if administered directly after ischaemic stroke induction. We longitudinally evaluated 53 rats using magnetic resonance imaging to examine stroke volume, oedema, white matter integrity, resting state functional MRI and behaviour for 1 month after ischemic stroke onset. For closer mechanistic insights, we evaluated tissue metabolomics of different brain regions in a subgroup of animals using ex vivo nuclear magnetic resonance spectroscopy. Ambroxol-treated animals presented reduced stroke volumes, reduced cytotoxic oedema, reduced white matter degeneration, reduced necrosis, improved behavioural outcomes and complex changes in functional brain connectivity. Nuclear magnetic resonance spectroscopy tissue metabolomic data at 24 h post-stroke proposes several metabolites that are capable of minimizing post-ischaemic damage and that presented prominent shifts during ambroxol treatment in comparison to controls. Taking everything together, we propose that ambroxol catalyzes recovery in energy metabolism, cellular homeostasis, membrane repair mechanisms and redox balance. One week of ambroxol administration following stroke onset reduced ischaemic stroke severity and improved functional outcome in the subacute phase followed by reduced necrosis in the chronic stroke phase.
Collapse
Affiliation(s)
- Kristin Patzwaldt
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Georgy Berezhnoy
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Tudor Ionescu
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Linda Schramm
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Yi Wang
- Hertie Institute for Clinical Brain Research, Department for Neurology, University Hospital Tuebingen, Tuebingen 72076, Germany
| | - Miriam Owczorz
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Eduardo Calderón
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, Tuebingen 72076, Germany
| | - Sven Poli
- Hertie Institute for Clinical Brain Research, Department for Neurology, University Hospital Tuebingen, Tuebingen 72076, Germany
| | - Lina M Serna Higuita
- Institute for Clinical Epidemiology and Applied Biostatistics, University Hospital Tuebingen, Tuebingen 72076, Germany
| | - Irene Gonzalez-Menendez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University, Tuebingen 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University, Tuebingen 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Kristina Herfert
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Bernd Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Christoph Trautwein
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Salvador Castaneda-Vega
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, Tuebingen 72076, Germany
| |
Collapse
|
5
|
Chalet L, Boutelier T, Christen T, Raguenes D, Debatisse J, Eker OF, Becker G, Nighoghossian N, Cho TH, Canet-Soulas E, Mechtouff L. Clinical Imaging of the Penumbra in Ischemic Stroke: From the Concept to the Era of Mechanical Thrombectomy. Front Cardiovasc Med 2022; 9:861913. [PMID: 35355966 PMCID: PMC8959629 DOI: 10.3389/fcvm.2022.861913] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/11/2022] [Indexed: 01/01/2023] Open
Abstract
The ischemic penumbra is defined as the severely hypoperfused, functionally impaired, at-risk but not yet infarcted tissue that will be progressively recruited into the infarct core. Early reperfusion aims to save the ischemic penumbra by preventing infarct core expansion and is the mainstay of acute ischemic stroke therapy. Intravenous thrombolysis and mechanical thrombectomy for selected patients with large vessel occlusion has been shown to improve functional outcome. Given the varying speed of infarct core progression among individuals, a therapeutic window tailored to each patient has recently been proposed. Recent studies have demonstrated that reperfusion therapies are beneficial in patients with a persistent ischemic penumbra, beyond conventional time windows. As a result, mapping the penumbra has become crucial in emergency settings for guiding personalized therapy. The penumbra was first characterized as an area with a reduced cerebral blood flow, increased oxygen extraction fraction and preserved cerebral metabolic rate of oxygen using positron emission tomography (PET) with radiolabeled O2. Because this imaging method is not feasible in an acute clinical setting, the magnetic resonance imaging (MRI) mismatch between perfusion-weighted imaging and diffusion-weighted imaging, as well as computed tomography perfusion have been proposed as surrogate markers to identify the penumbra in acute ischemic stroke patients. Transversal studies comparing PET and MRI or using longitudinal assessment of a limited sample of patients have been used to define perfusion thresholds. However, in the era of mechanical thrombectomy, these thresholds are debatable. Using various MRI methods, the original penumbra definition has recently gained a significant interest. The aim of this review is to provide an overview of the evolution of the ischemic penumbra imaging methods, including their respective strengths and limitations, as well as to map the current intellectual structure of the field using bibliometric analysis and explore future directions.
Collapse
Affiliation(s)
- Lucie Chalet
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Olea Medical, La Ciotat, France
| | | | - Thomas Christen
- Grenoble Institut Neurosciences, INSERM, U1216, Univ. Grenoble Alpes, Grenoble, France
| | | | - Justine Debatisse
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Omer Faruk Eker
- CREATIS, CNRS UMR-5220, INSERM U1206, Université Lyon 1, Villeurbanne, France
- Neuroradiology Department, Hospices Civils of Lyon, Lyon, France
| | - Guillaume Becker
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Norbert Nighoghossian
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Stroke Department, Hospices Civils of Lyon, Lyon, France
| | - Tae-Hee Cho
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Stroke Department, Hospices Civils of Lyon, Lyon, France
| | - Emmanuelle Canet-Soulas
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Laura Mechtouff
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Stroke Department, Hospices Civils of Lyon, Lyon, France
- *Correspondence: Laura Mechtouff
| |
Collapse
|
6
|
Wang L, Wu L, Duan Y, Xu S, Yang Y, Yin J, Lang Y, Gao Z, Wu C, Lv Z, Shi J, Wu D, Ji X. Phenotype Shifting in Astrocytes Account for Benefits of Intra-Arterial Selective Cooling Infusion in Hypertensive Rats of Ischemic Stroke. Neurotherapeutics 2022; 19:386-398. [PMID: 35044645 PMCID: PMC9130426 DOI: 10.1007/s13311-022-01186-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2022] [Indexed: 01/03/2023] Open
Abstract
The translational failure of neuroprotective therapies in stroke may be influenced by the mismatch of existing comorbidities between animal models and patients. Previous studies found that single-target neuroprotective agents reduced infarction in Sprague-Dawley but not in spontaneously hypertensive rats. It is of great interest to explore whether multi-target neuroprotectants and stroke models with comorbidities should be used in further translational researches. Ischemic stroke was induced in normotensive or hypertensive rats by 90- or 120-min middle cerebral artery occlusion (MCAO) and reperfusion. Intra-Arterial Selective Cooling Infusion (IA-SCI) was started at the onset of reperfusion for 30 minutes. Acute neurological deficits, infarct volumes, gene expression and markers of A1-like and A2-like astrocytes were evaluated. In further analysis, TNFα and IL-1α were administrated intracerebroventricularly, phenotype shifting of astrocytes and infarct volumes were assessed. Normobaric oxygen treatment, as a negative control, was also assessed in hypertensive rats. IA-SCI led to similar benefits in normotensive rats with 120-min MCAO and hypertensive rats with both 90-min and 120-min MCAO, including mitigated functional deficit and reduced infarct volumes. IA-SCI shifted astrocyte phenotypes partly by downregulating A1-like astrocytes and upregulating A2-like astrocytes in both RNA and protein levels. Upregulated A1-type astrocyte markers levels, induced by intracerebroventricular injection of TNFα and IL-1α, were closely related to increased infarct volumes in hypertensive rats, despite receiving IA-SCI treatment. In addition, infarct volumes and A1/A2-like genes were not affected by normobaric oxygen treatment. IA-SCI reduced infarction in both normotensive and hypertensive rats. Our results demonstrated the neuroprotective effects of IA-SCI in hypertensive rats may be related with phenotype shifting of astrocytes.
Collapse
Affiliation(s)
- Luling Wang
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
- Center of Stroke, Beijing Institute of Brain Disorders, Beijing, China
- Department of Emergency, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Longfei Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Yunxia Duan
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Shuaili Xu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Yuyao Yang
- Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jidong Yin
- Department of Emergency, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Ye Lang
- Department of Neurology, Shengli Oilfield Central Hospital, Shandong, China
| | - Zongen Gao
- Department of Neurology, Shengli Oilfield Central Hospital, Shandong, China
| | - Chuanjie Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Zaigang Lv
- Department of Neurology, Shengli Oilfield Central Hospital, Shandong, China
| | - Jingfei Shi
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Di Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China.
- Center of Stroke, Beijing Institute of Brain Disorders, Beijing, China.
| | - Xunming Ji
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China.
- Center of Stroke, Beijing Institute of Brain Disorders, Beijing, China.
| |
Collapse
|
7
|
Liu B, Huang D, Guo Y, Sun X, Chen C, Zhai X, Jin X, Zhu H, Li P, Yu W. Recent advances and perspectives of postoperative neurological disorders in the elderly surgical patients. CNS Neurosci Ther 2021; 28:470-483. [PMID: 34862758 PMCID: PMC8928923 DOI: 10.1111/cns.13763] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 12/17/2022] Open
Abstract
Postoperative neurological disorders, including postoperative delirium (POD), postoperative cognitive dysfunction (POCD), postoperative covert ischemic stroke, and hemorrhagic stroke, are challenging clinical problems in the emerging aged surgical population. These disorders can deteriorate functional outcomes and long‐term quality of life after surgery, resulting in a substantial social and financial burden to the family and society. Understanding predisposing and precipitating factors may promote individualized preventive treatment for each disorder, as several risk factors are modifiable. Besides prevention, timely identification and treatment of etiologies and symptoms can contribute to better recovery from postoperative neurological disorders and lower risk of long‐term cognitive impairment, disability, and even death. Herein, we summarize the diagnosis, risk factors, prevention, and treatment of these postoperative complications, with emphasis on recent advances and perspectives.
Collapse
Affiliation(s)
- Biying Liu
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Dan Huang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Yunlu Guo
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoqiong Sun
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Caiyang Chen
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Xiaozhu Zhai
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Xia Jin
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Hui Zhu
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Peiying Li
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Hu G, Shi Z, Li B, Shao W, Xu B. General anesthesia versus monitored anesthesia care during endovascular therapy for vertebrobasilar stroke. Am J Transl Res 2021; 13:1558-1567. [PMID: 33841679 PMCID: PMC8014376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE The objective is to compare the effect of general anesthesia (GA) and monitored anesthesia care (MAC) on clinical outcomes in patients with endovascular therapy for vertebrobasilar occlusion stroke. METHODS 139 patients undergoing endovascular therapy for vertebrobasilar stroke, were recruited. The patients were randomized into GA group and MAC group (about 1:1 ratio). GA group received general anesthesia and MAC group received monitored anesthesia care during endovascular therapy. The primary outcome measure was the shift in the degree of disability among the 2 groups as measured by the modified Rankin scale score (mRS) at 90 days (80-100 days). Secondary end points included infarct volume and related complications. RESULTS The patients were assigned randomly (about 1:1 allocation) to GA group (n=72) and MAC group (n=67). The primary outcome of functional independence measured by 90-day mRS score was not significantly different between the 2 groups (median (IQR), 2 (1-3) vs. 3 (1-4); P=0.316). Final infarct volume was smaller in the GA group than in the MAC group (median (IQR), 27.60 (13.75-83.52) vs. 33.60 (26.85-92.95); P=0.045). There were no differences with statistical significance in rates of successful reperfusion (modified Thrombolysis in Cerebral Ischemia (mTICI) 2b-3) between 2 groups (73.61% vs. 76.12%; P=0.734). Early neurological outcomes measured by the 24-hour National Institutes of Health Stroke Scale scores (NIHSS) showed that 11 (interquartile range (IQR), 3-22) in GA group and 11 (interquartile range (IQR), 7-25) in MAC group, but were not statistically significant. There was no statistical difference in postoperative complications between the two groups. CONCLUSION For patients who underwent endovascular therapy for vertebrobasilar occlusion strok caused by occlusions in the posterior circulation, MAC appears to be as effective as GA. However, MAC is associated with bigger final infarct volume. Future studies are warranted to confirm our findings.
Collapse
Affiliation(s)
- Guangjun Hu
- The First Clinical College of Southern Medical UniversityGuangzhou, Guangdong Province, China
- Department of Anesthesiology, General Hospital of The Southern Theater Command of The Chinese PLAGuangzhou, Guangdong Province, China
- Department of Anesthesiology, Wuhan Third Hospital/Tongren Hospital of Wuhan UniversityWuhan, Hubei Province, China
| | - Zhen Shi
- Department of Pain Treatment, Hubei Provincial Hospital of Traditional Chinese MedicineWuhan, Hubei Province, China
- Hubei Provincial Academy of Traditional Chinese MedicineWuhan, Hubei Province, China
| | - Bixi Li
- Department of Anesthesiology, General Hospital of The Central Theater Command of The Chinese PLAWuhan, Hubei Province, China
| | - Weidong Shao
- Department of Anesthesiology, General Hospital of The Southern Theater Command of The Chinese PLAGuangzhou, Guangdong Province, China
| | - Bo Xu
- The First Clinical College of Southern Medical UniversityGuangzhou, Guangdong Province, China
- Department of Anesthesiology, General Hospital of The Southern Theater Command of The Chinese PLAGuangzhou, Guangdong Province, China
| |
Collapse
|
9
|
Li W, Shi L, Hu B, Hong Y, Zhang H, Li X, Zhang Y. Mesenchymal Stem Cell-Based Therapy for Stroke: Current Understanding and Challenges. Front Cell Neurosci 2021; 15:628940. [PMID: 33633544 PMCID: PMC7899984 DOI: 10.3389/fncel.2021.628940] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/14/2021] [Indexed: 12/15/2022] Open
Abstract
Stroke, the most prevalent cerebrovascular disease, causes serious loss of neurological function and is the leading cause of morbidity and mortality worldwide. Despite advances in pharmacological and surgical therapy, treatment for functional rehabilitation following stroke is limited with a consequent serious impact on quality of life. Over the past decades, mesenchymal stem cell (MSCs)-based therapy has emerged as a novel strategy for various diseases including stroke due to their unique properties that include easy isolation, multipotent differentiation potential and strong paracrine capacity. Although MSCs have shown promising results in the treatment of stroke, there remain many challenges to overcome prior to their therapeutic application. In this review, we focus on the following issues: the scientific data from preclinical studies and clinical trials of MSCs in the treatment of stroke; the potential mechanisms underlying MSC-based therapy for stroke; the challenges related to the timing and delivery of MSCs and MSC senescence.
Collapse
Affiliation(s)
- Weifeng Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Linli Shi
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Bei Hu
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yimei Hong
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hao Zhang
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Xin Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuelin Zhang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Current Methods for the Prehospital Detection of Large Vessel Occlusion (LVO) Ischemic Stroke. CURRENT EMERGENCY AND HOSPITAL MEDICINE REPORTS 2021. [DOI: 10.1007/s40138-020-00224-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Maingard J, Foo M, Chandra RV, Leslie-Mazwi TM. Endovascular Treatment of Acute Ischemic Stroke. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2019; 21:89. [PMID: 31823080 DOI: 10.1007/s11936-019-0781-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Endovascular thrombectomy (ET), the standard of treatment for emergent large vessel occlusion (ELVO) strokes, has been subject to rigorous efforts to further improve its usage and delivery for optimised patient outcomes. This review aims to provide an outline and discussion about the recently established and emerging recommendations regarding endovascular treatment of stroke. RECENT FINDINGS The indications for ET have expanded continually, with perfusion imaging now enabling selection of patients presenting 6-24 h after last-known-well, and improved device and operator proficiency allowing treatment of M2-MCA occlusions and tandem occlusions. Further inclusion of paediatric patients and patients with larger infarct core or milder stroke symptoms for ET has been proposed; however, this remains unproven. This growing applicability is supported by more efficient systems of care, employing modern techniques such as telemedicine, mobile stroke units and helicopter medical services. Ongoing debate exists regarding thrombolytic agent, thrombectomy technique, anaesthesia method and the role of advanced neuroimaging, with upcoming RCTs expected to provide clarification. The journey to further improving the efficacy of ET has advanced and diversified rapidly over recent years, involving improved patient selection, increased utility of advanced neuroimaging and ongoing device redevelopment, within the setting of more efficient, streamlined systems of care. This dynamic and ongoing influx of evidence-based refinements is key to further optimising outcomes for ELVO patients.
Collapse
Affiliation(s)
- Julian Maingard
- Interventional Neuroradiology Unit, Monash Imaging, Monash Health, Clayton, Victoria, Australia.,School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Michelle Foo
- Department of Radiology, Austin Health, Heidelberg, Victoria, Australia
| | - Ronil V Chandra
- Interventional Neuroradiology Unit, Monash Imaging, Monash Health, Clayton, Victoria, Australia.,Faculty of Medicine, Nursing and Heath Sciences, Monash University, Clayton, Victoria, Australia
| | - Thabele M Leslie-Mazwi
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA. .,Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|