1
|
Dalmau J, Dalakas MC, Kolson DL, Pröbstel AK, Paul F, Zamvil SS. Ten Years of Neurology® Neuroimmunology & Neuroinflammation: Decade in Review. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200363. [PMID: 39724529 DOI: 10.1212/nxi.0000000000200363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Affiliation(s)
- Josep Dalmau
- IDIBAPS-CaixaResearch Institute, University Hospital Clínic of Barcelona, Barcelona, Spain
- University of Pennsylvania, Philadelphia
| | - Marinos C Dalakas
- University of Athens Medical School, Greece
- Jefferson University, Philadelphia, PA
| | | | - Anne-Katrin Pröbstel
- Departments of Neurology, University Hospital of Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Switzerland
| | | | - Scott S Zamvil
- Department of Neurology, University of California, San Francisco
| |
Collapse
|
2
|
Miyamoto T, Fukunaga Y, Munakata A, Murai K. Antibodies against glutamic acid decarboxylase in intravenous immunoglobulin preparations can affect the diagnosis of type 1 diabetes mellitus. Vox Sang 2024; 119:1106-1110. [PMID: 38955431 DOI: 10.1111/vox.13710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND AND OBJECTIVES Intravenous immunoglobulins (IVIgs) contain various autoantibodies, including those against glutamic acid decarboxylase (GADAb), a valuable biomarker of type 1 diabetes mellitus. Passive transfer of GADAb from IVIgs to patients poses a risk of misdiagnosis, and information on the specific titres of GADAb and their impact on diagnostic accuracy remains limited. This study aimed to provide further insights into the origin of GADAb detected in patient serum following IVIg infusion. MATERIALS AND METHODS GADAb titres in IVIg products from Japan and the United States were measured using enzyme-linked immunosorbent assay-based assays. For reliable quantification, GADAb titres in pooled plasma were quantified and compared with those in the IVIg products. The determined titres were used to estimate the likelihood of passively detecting acquired GADAb in individuals receiving IVIgs. RESULTS GADAbs were prevalent in IVIg products; however, the titres varied significantly among different lots and products. Importantly, IVIg-derived GADAb was estimated to remain detectable in patient serum for up to 100 days following a dosage of 2000 mg/kg. CONCLUSION Clinicians should consider that IVIg preparations may contain GADAb, which can lead to false-positive results in serological assays. Careful interpretation of the assay results is key to the definitive diagnosis of type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Tatsuki Miyamoto
- Research and Development Division, Japan Blood Products Organization, Kobe, Hyogo, Japan
- Pharmacovigilance Division, Japan Blood Products Organization, Minato-ku, Tokyo, Japan
| | - Yuki Fukunaga
- Research and Development Division, Japan Blood Products Organization, Kobe, Hyogo, Japan
| | - Ai Munakata
- Pharmacovigilance Division, Japan Blood Products Organization, Minato-ku, Tokyo, Japan
| | - Katsushi Murai
- Pharmacovigilance Division, Japan Blood Products Organization, Minato-ku, Tokyo, Japan
| |
Collapse
|
3
|
Dalakas MC. Stiff-person syndrome and related disorders - diagnosis, mechanisms and therapies. Nat Rev Neurol 2024; 20:587-601. [PMID: 39227464 DOI: 10.1038/s41582-024-01012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 09/05/2024]
Abstract
Stiff-person syndrome (SPS) is the prototypical and most common autoimmune neuronal hyperexcitability disorder. It presents with stiffness in the limbs and axial muscles, stiff gait with uncontrolled falls, and episodic painful muscle spasms triggered by anxiety, task-specific phobias and startle responses, collectively leading to disability. Increased awareness of SPS among patients and physicians has created concerns about diagnosis, misdiagnosis and treatment. This Review addresses the evolving diagnostic challenges in SPS and overlapping glutamic acid decarboxylase (GAD) antibody spectrum disorders, highlighting the growing number of overdiagnoses and focusing on the progress made in our understanding of SPS pathophysiology, antibodies against GAD and other inhibitory synaptic antigens, and the fundamentals of neuronal hyperexcitability. It considers the role of impaired GABAergic or glycinergic inhibition in the cortex and at multiple levels in the neuraxis; the underlying autoimmunity and involvement of GAD antibodies; immunopathogenic mechanisms beyond antibodies, including environmental triggers; familial and immunogenetic susceptibility; and potential T cell cytotoxicity. Finally, the mechanistic rationale for target-specific therapeutic interventions is presented along with the available therapeutic approaches, including enhancers of GABA signalling drugs and immunotherapies.
Collapse
Affiliation(s)
- Marinos C Dalakas
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.
- Neuroimmunology Unit, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| |
Collapse
|
4
|
Dalakas MC. Stiff Person Syndrome and GAD Antibody-Spectrum Disorders. Continuum (Minneap Minn) 2024; 30:1110-1135. [PMID: 39088290 DOI: 10.1212/con.0000000000001457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
OBJECTIVE Antibodies against glutamic acid decarboxylase (GAD), originally associated with stiff person syndrome (SPS), define the GAD antibody-spectrum disorders that also include cerebellar ataxia, autoimmune epilepsy, limbic encephalitis, progressive encephalomyelitis with rigidity and myoclonus (PERM), and eye movement disorders, all of which are characterized by autoimmune neuronal excitability. This article elaborates on the diagnostic criteria for SPS and SPS spectrum disorders, highlights disease mimics and misdiagnoses, describes the electrophysiologic mechanisms and underlying autoimmunity of stiffness and spasms, and provides a step-by-step therapeutic scheme. LATEST DEVELOPMENTS Very-high serum GAD antibody titers are diagnostic for GAD antibody-spectrum disorders and also predict the presence of GAD antibodies in the CSF, increased intrathecal synthesis, and reduced CSF γ-aminobutyric acid (GABA) levels. Low serum GAD antibody titers or the absence of antibodies generates diagnostic challenges that require careful distinction in patients with a variety of painful spasms and stiffness, including functional neurologic disorders. Antibodies against glycine receptors, first found in patients with PERM, are seen in 13% to 15% of patients with SPS, whereas amphiphysin and gephyrin antibodies, seen in 5% of patients with SPS spectrum disorders, predict a paraneoplastic association. GAD-IgG from different SPS spectrum disorders recognizes the same dominant GAD intracellular epitope and, although the pathogenicity is unclear, is an excellent diagnostic marker. The biological basis of muscle stiffness and spasms is related to autoimmune neuronal hyperexcitability caused by impaired reciprocal γ-aminobutyric acid-mediated (GABA-ergic) inhibition, which explains the therapeutic response to GABA-enhancing agents and immunotherapies. ESSENTIAL POINTS It is essential to distinguish SPS spectrum disorders from disease mimics to avoid both overdiagnoses and misdiagnoses, considering that SPS is treatable if managed correctly from the outset to prevent disease progression. A step-by-step, combination therapy of GABA-enhancing medications along with immunotherapies ensures prolonged clinical benefits.
Collapse
|
5
|
Kawasumi M, Ishii S, Uchida S, Shishido T. A Case of Type 2 Diabetes Mellitus Revealed Transient Positivity of Glutamic Acid Decarboxylase (GAD) Antibodies Following Immunoglobulin Administrations. Cureus 2024; 16:e66485. [PMID: 39247010 PMCID: PMC11380740 DOI: 10.7759/cureus.66485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Glutamic acid decarboxylase (GAD) antibodies are frequently measured in diabetes care as islet-associated autoantibodies that are useful in the diagnosis of type 1 diabetes. However, GAD antibodies derived from other persons may contaminate immunoglobulin preparations, and there have been cases of transiently positive GAD antibodies after intravenous immunoglobulin (IVIg) in patients who were originally negative for GAD antibodies. Clinicians may be unaware of such contamination and misdiagnose some cases as type 1 instead of type 2 diabetes mellitus based on positivity for GAD antibodies. Herein, we present a case of type 2 diabetes mellitus that revealed transiently positive GAD antibodies following immunoglobulin administrations. A 68-year-old woman with a medical history of diabetes mellitus was admitted to our hospital for the treatment of Guillain-Barré syndrome, and IVIg was started on the day of admission. Blood tests on admission revealed negative for GAD antibodies but showed weak positivity on day one after IVIg. Afterward, GAD antibodies turned negative on day 72. Immunoglobulin preparations were revealed to have a high concentration of GAD antibodies. Based on changes in GAD antibody titers and all negativity for anti-insulinoma-associated antigen-2 (IA-2), insulin, and zinc transporter 8 (ZnT8) antibodies, the patient was diagnosed with type 2 diabetes mellitus rather than slowly progressive type 1 diabetes mellitus (SPIDDM). This case demonstrates that it is important for the medical clinician to be aware of the possible presence of GAD antibodies in immunoglobulin preparations and to measure antibody titers before and after their use for diagnosing the type of diabetes mellitus.
Collapse
Affiliation(s)
- Muneo Kawasumi
- Department of Endocrinology and Diabetology, Hiroshima City North Medical Center Asa Citizens Hospital, Hiroshima, JPN
| | - Shogo Ishii
- Department of Endocrinology and Diabetology, Hiroshima City North Medical Center Asa Citizens Hospital, Hiroshima, JPN
| | - Shota Uchida
- Department of Neurology, Hiroshima City North Medical Center Asa Citizens Hospital, Hiroshima, JPN
| | - Takeo Shishido
- Department of Neurology, Hiroshima City North Medical Center Asa Citizens Hospital, Hiroshima, JPN
| |
Collapse
|
6
|
Xu Y, Wang L, Chen Z, Zhang Q, Shen Y, Ye Y, Liu J, Zhang H. Thymoma with immunodeficiency, combined diffuse panbronchiolitis, and latent autoimmune diabetes in adults- case report and systematic review. J Transl Autoimmun 2024; 8:100230. [PMID: 38188041 PMCID: PMC10765483 DOI: 10.1016/j.jtauto.2023.100230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024] Open
Abstract
Thymoma with Immunodeficiency (Good's Syndrome, GS) is a rare association between thymoma and immunodeficiency, first described over 60 years ago. Patients with GS typically present with thymomas, reduced or absent B cells in the peripheral blood, hypogammaglobulinemia, and defects in cell-mediated immunity. We report the case of a 67-year-old woman diagnosed with GS following the development of a progressive, severe, refractory pulmonary infection and diffuse panbronchiolitis (DPB). She also had diabetes, characterized by anti-glutamic acid decarboxylase antibody positivity, leading to a diagnosis of latent autoimmune diabetes in adults (LADA). A thorough review of existing literature revealed that GS is often confirmed after multiple episodes of opportunistic infections or autoimmune diseases post-thymoma surgery. Due to their immunodeficiency, GS patients frequently suffer from recurrent infections over extended periods, and some succumb to severe infections. Regular immunoglobulin infusions may be effective in treating GS.
Collapse
Affiliation(s)
- Yijiao Xu
- Zhongshan Hospital (Xiamen), Fudan University, 361015, China
| | - Lumin Wang
- Zhongshan Hospital (Xiamen), Fudan University, 361015, China
| | - Zhisheng Chen
- Zhongshan Hospital (Xiamen), Fudan University, 361015, China
| | - Qingwei Zhang
- Zhongshan Hospital (Xiamen), Fudan University, 361015, China
| | - Yun Shen
- Zhongshan Hospital (Xiamen), Fudan University, 361015, China
- Zhongshan Hospital, Fudan University, 200032, China
| | - Yanrong Ye
- Zhongshan Hospital (Xiamen), Fudan University, 361015, China
- Zhongshan Hospital, Fudan University, 200032, China
| | - Jiaxin Liu
- Zhongshan Hospital (Xiamen), Fudan University, 361015, China
| | - Huijun Zhang
- Zhongshan Hospital (Xiamen), Fudan University, 361015, China
- Zhongshan Hospital, Fudan University, 200032, China
| |
Collapse
|
7
|
Roy S, Vasileiou E, Barreras P, Ahmadi G, Chen H, Suslovic W, Kornbluh A, Kahn I, Sotirchos ES. Longitudinal evaluation of serum MOG-IgG titers in MOGAD after initiation of maintenance immunoglobulin: A case series. Mult Scler 2024; 30:594-599. [PMID: 38018493 DOI: 10.1177/13524585231211119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
BACKGROUND Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is a distinct demyelinating disease of the central nervous system. Immunoglobulin (Ig) has been used as a maintenance therapy to prevent relapses in MOGAD, but the impact of Ig on serum MOG-IgG titers is unclear. OBJECTIVE To characterize the variation in serum MOG-IgG titers after initiation of Ig treatment in people with MOGAD. METHODS We conducted a retrospective study of 10 patients with a diagnosis of MOGAD and available serum MOG-IgG titers before and after initiation of maintenance Ig treatment. RESULTS We found that most of the patients remained MOG-IgG seropositive while on Ig treatment with a reduced or unchanged titer, despite a lack of disease activity. CONCLUSIONS This case series suggests that the mechanism of action of Ig therapy in MOGAD is not exclusively dependent on MOG-IgG titer reduction.
Collapse
Affiliation(s)
- Shuvro Roy
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Eleni Vasileiou
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Paula Barreras
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Gelareh Ahmadi
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Haiwen Chen
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - William Suslovic
- Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Alexandra Kornbluh
- Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Ilana Kahn
- Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Elias S Sotirchos
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
8
|
Miyamoto T, Fukunaga Y, Ogasawara A, Munakata A, Murai K. Autoantibody profiles in intravenous immunoglobulin preparations: A possible cause of mistaken autoimmunity diagnosis. Transfusion 2024; 64:597-605. [PMID: 38400628 DOI: 10.1111/trf.17766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Intravenous immunoglobulins (IVIgs) derived from the pooled plasma of thousands of donors contain numerous types of IgG molecules, including autoantibodies commonly used to diagnose autoimmunity. While these autoantibodies can cause misinterpretation of serological tests for IVIg recipients, their profiles in IVIg preparations are not fully understood. STUDY DESIGN AND METHODS Using binding-capability based immune assays, we measured 18 varieties of clinically relevant autoantibodies in domestic blood donor-derived IVIg products. In addition, we analyzed an IVIg product from a US brand to evaluate the influence of regional and racial differences. Based on the determined autoantibody titers, pharmacokinetics of passively acquired autoantibodies and their possible detection period in serum were estimated. RESULTS Anti-thyroglobulin (Tg), anti-thyroidperoxidase (TPO), and anti-Sjögren's-syndrome-related antigen A (SS-A) antibodies were present in considerable amounts in IVIg products. Notably, these three autoantibodies can be detected in IVIg recipients' sera for up to 3 months after infusion. DISCUSSION To the best of our knowledge, this is the first study that analyzed multiple autoantibody profiles in both pooled plasma and IVIg products and that further evaluated their potential influences on diagnosis of autoimmunity. Clinicians should keep in mind that IVIgs contain several autoantibodies and that their infusion can produce false-positive serology results. To establish an accurate diagnosis, serological tests must be carefully interpreted and clinical symptoms should be more purposefully considered if patients are receiving IVIg therapy.
Collapse
Affiliation(s)
- Tatsuki Miyamoto
- Research and Development Division, Japan Blood Products Organization, Kobe, Hyogo, Japan
- Pharmacovigilance Division, Japan Blood Products Organization, Minato-ku, Tokyo, Japan
| | - Yuki Fukunaga
- Research and Development Division, Japan Blood Products Organization, Kobe, Hyogo, Japan
| | - Atsushi Ogasawara
- Pharmacovigilance Division, Japan Blood Products Organization, Minato-ku, Tokyo, Japan
| | - Ai Munakata
- Pharmacovigilance Division, Japan Blood Products Organization, Minato-ku, Tokyo, Japan
| | - Katsushi Murai
- Pharmacovigilance Division, Japan Blood Products Organization, Minato-ku, Tokyo, Japan
| |
Collapse
|
9
|
Budhram A, Flanagan EP. Optimizing the diagnostic performance of neural antibody testing for paraneoplastic and autoimmune encephalitis in clinical practice. HANDBOOK OF CLINICAL NEUROLOGY 2024; 200:365-382. [PMID: 38494290 DOI: 10.1016/b978-0-12-823912-4.00002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The detection of neural antibodies in patients with paraneoplastic and autoimmune encephalitis has majorly advanced the diagnosis and management of neural antibody-associated diseases. Although testing for these antibodies has historically been restricted to specialized centers, assay commercialization has made this testing available to clinical chemistry laboratories worldwide. This improved test accessibility has led to reduced turnaround time and expedited diagnosis, which are beneficial to patient care. However, as the utilization of these assays has increased, so too has the need to evaluate how they perform in the clinical setting. In this chapter, we discuss assays for neural antibody detection that are in routine use, draw attention to their limitations and provide strategies to help clinicians and laboratorians overcome them, all with the aim of optimizing neural antibody testing for paraneoplastic and autoimmune encephalitis in clinical practice.
Collapse
Affiliation(s)
- Adrian Budhram
- Department of Clinical Neurological Sciences, Western University, London Health Sciences Centre, London, ON, Canada; Department of Pathology and Laboratory Medicine, Western University, London Health Sciences Centre, London, ON, Canada.
| | - Eoin P Flanagan
- Department of Neurology, Mayo Clinic, Rochester, MN, United States; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
10
|
Conti F, Moratti M, Leonardi L, Catelli A, Bortolamedi E, Filice E, Fetta A, Fabi M, Facchini E, Cantarini ME, Miniaci A, Cordelli DM, Lanari M, Pession A, Zama D. Anti-Inflammatory and Immunomodulatory Effect of High-Dose Immunoglobulins in Children: From Approved Indications to Off-Label Use. Cells 2023; 12:2417. [PMID: 37830631 PMCID: PMC10572613 DOI: 10.3390/cells12192417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/23/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND The large-scale utilization of immunoglobulins in patients with inborn errors of immunity (IEIs) since 1952 prompted the discovery of their key role at high doses as immunomodulatory and anti-inflammatory therapy, in the treatment of IEI-related immune dysregulation disorders, according to labelled and off-label indications. Recent years have been dominated by a progressive imbalance between the gradual but constant increase in the use of immunoglobulins and their availability, exacerbated by the SARS-CoV-2 pandemic. OBJECTIVES To provide pragmatic indications for a need-based application of high-dose immunoglobulins in the pediatric context. SOURCES A literature search was performed using PubMed, from inception until 1st August 2023, including the following keywords: anti-inflammatory; children; high dose gammaglobulin; high dose immunoglobulin; immune dysregulation; immunomodulation; immunomodulatory; inflammation; intravenous gammaglobulin; intravenous immunoglobulin; off-label; pediatric; subcutaneous gammaglobulin; subcutaneous immunoglobulin. All article types were considered. IMPLICATIONS In the light of the current imbalance between gammaglobulins' demand and availability, this review advocates the urgency of a more conscious utilization of this medical product, giving indications about benefits, risks, cost-effectiveness, and administration routes of high-dose immunoglobulins in children with hematologic, neurologic, and inflammatory immune dysregulation disorders, prompting further research towards a responsible employment of gammaglobulins and improving the therapeutical decisional process.
Collapse
Affiliation(s)
- Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (A.M.); (A.P.)
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy; (A.F.); (D.M.C.); (M.L.); (D.Z.)
| | - Mattia Moratti
- Specialty School of Paediatrics, University of Bologna, 40138 Bologna, Italy; (A.C.); (E.B.)
| | - Lucia Leonardi
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Arianna Catelli
- Specialty School of Paediatrics, University of Bologna, 40138 Bologna, Italy; (A.C.); (E.B.)
| | - Elisa Bortolamedi
- Specialty School of Paediatrics, University of Bologna, 40138 Bologna, Italy; (A.C.); (E.B.)
| | - Emanuele Filice
- Department of Pediatrics, Maggiore Hospital, 40133 Bologna, Italy;
| | - Anna Fetta
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy; (A.F.); (D.M.C.); (M.L.); (D.Z.)
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell’Età Pediatrica, 40139 Bologna, Italy
| | - Marianna Fabi
- Paediatric Emergency Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Elena Facchini
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.F.); (M.E.C.)
| | - Maria Elena Cantarini
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.F.); (M.E.C.)
| | - Angela Miniaci
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (A.M.); (A.P.)
| | - Duccio Maria Cordelli
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy; (A.F.); (D.M.C.); (M.L.); (D.Z.)
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell’Età Pediatrica, 40139 Bologna, Italy
| | - Marcello Lanari
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy; (A.F.); (D.M.C.); (M.L.); (D.Z.)
- Paediatric Emergency Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Andrea Pession
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (A.M.); (A.P.)
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy; (A.F.); (D.M.C.); (M.L.); (D.Z.)
| | - Daniele Zama
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy; (A.F.); (D.M.C.); (M.L.); (D.Z.)
- Paediatric Emergency Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| |
Collapse
|
11
|
Hou JY, Liu HU, Kuo CY, Liu YH, Lin JJ, Hsieh MY, Hung PC, Cheng YT, Su IC, Wang HS, Chou IJ, Lin KL. The clinical relevance of anti-glutamic acid decarboxylase antibodies in children with encephalitis/encephalopathy. Front Neurosci 2023; 16:1081580. [PMID: 36817097 PMCID: PMC9932768 DOI: 10.3389/fnins.2022.1081580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/31/2022] [Indexed: 02/05/2023] Open
Abstract
Anti-glutamic acid decarboxylase (anti-GAD) antibodies are associated with different types of syndromes. However, few studies have investigated the correlation between anti-GAD antibody titers with clinical severity and outcomes in children with encephalitis/encephalopathy. In this single-center retrospective cohort study, we consecutively enrolled hospitalized children who had encephalitis and/or encephalopathy with positive anti-GAD antibodies in serum and/or cerebrospinal fluid (CSF) from February 2010 to October 2021. Thirty-seven patients were included and divided into high-titer and low-titer groups. The patients with high anti-GAD antibody titers were associated with initial symptoms of language difficulty and ataxia. The level of titers was not associated with severity or outcomes. Anti-GAD antibody titers decreased after immunotherapy, however, the clinical response to immunotherapy was variable. A transient elevation in anti-GAD antibody titers during immunotherapy was noted. Further studies are warranted to investigate the role of anti-GAD antibodies in the pathogenesis and immune mechanisms of encephalitis/encephalopathy.
Collapse
Affiliation(s)
- Ju-Yin Hou
- Division of Pediatric Neurology, Department of Pediatric, Chang Gung Children’s Hospital and Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Hsin-Uei Liu
- Division of Pediatric Neurology, Department of Pediatric, Chang Gung Children’s Hospital and Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Cheng-Yen Kuo
- Division of Pediatric Neurology, Department of Pediatric, Chang Gung Children’s Hospital and Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Yi-Hsuan Liu
- Division of Pediatric Critical Care and Pediatric Neurocritical Care Center, Chang Gung Children’s Hospital and Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Jainn-Jim Lin
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan,Division of Pediatric Critical Care and Pediatric Neurocritical Care Center, Chang Gung Children’s Hospital and Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Meng-Ying Hsieh
- Division of Pediatric Neurology, Department of Pediatric, Chang Gung Children’s Hospital and Chang Gung Memorial Hospital, Taoyuan City, Taiwan,College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Po-Cheng Hung
- Division of Pediatric Neurology, Department of Pediatric, Chang Gung Children’s Hospital and Chang Gung Memorial Hospital, Taoyuan City, Taiwan,College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Yi-Ting Cheng
- Division of Pediatric Neurology, Department of Pediatric, Chang Gung Children’s Hospital and Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - I-Chen Su
- Division of Pediatric Neurology, Department of Pediatric, Chang Gung Children’s Hospital and Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Huei-Shyong Wang
- Division of Pediatric Neurology, Department of Pediatric, Chang Gung Children’s Hospital and Chang Gung Memorial Hospital, Taoyuan City, Taiwan,College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - I-Jun Chou
- Division of Pediatric Neurology, Department of Pediatric, Chang Gung Children’s Hospital and Chang Gung Memorial Hospital, Taoyuan City, Taiwan,College of Medicine, Chang Gung University, Taoyuan City, Taiwan,I-Jun Chou,
| | - Kuang-Lin Lin
- Division of Pediatric Neurology, Department of Pediatric, Chang Gung Children’s Hospital and Chang Gung Memorial Hospital, Taoyuan City, Taiwan,College of Medicine, Chang Gung University, Taoyuan City, Taiwan,*Correspondence: Kuang-Lin Lin,
| |
Collapse
|
12
|
Abstract
A 72-year-old woman presented with gradually-worsening myalgia and muscle weakness of the proximal lower limbs as well as elevated serum creatine kinase level. Based on a clinicoseropathological examination including a muscle biopsy, she was diagnosed with anti-signal recognition particle (SRP) myopathy. Although the myopathy relapsed two times in two years under oral prednisolone and intravenous immunoglobulin therapy, the myopathy remained in remission for more than three years after resection of gastric cancer. Although the anti-SRP myopathy is not considered to be cancer-associated in general, we should note that some cases of anti-SRP myopathy may be ameliorated with appropriate cancer treatment.
Collapse
Affiliation(s)
- Yoshihide Sehara
- Department of Neurology, Haga Red Cross Hospital, Japan
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Japan
| | - Kyoichiro Tsuchiya
- Department of Diabetes and Endocrinology, University of Yamanashi Hospital, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Japan
- Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry (NCNP), Japan
| | - Hirotake Sato
- Department of Surgery, Haga Red Cross Hospital, Japan
| | | |
Collapse
|
13
|
Sechi E, Cacciaguerra L, Chen JJ, Mariotto S, Fadda G, Dinoto A, Lopez-Chiriboga AS, Pittock SJ, Flanagan EP. Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease (MOGAD): A Review of Clinical and MRI Features, Diagnosis, and Management. Front Neurol 2022; 13:885218. [PMID: 35785363 PMCID: PMC9247462 DOI: 10.3389/fneur.2022.885218] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/06/2022] [Indexed: 01/02/2023] Open
Abstract
Myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) is the most recently defined inflammatory demyelinating disease of the central nervous system (CNS). Over the last decade, several studies have helped delineate the characteristic clinical-MRI phenotypes of the disease, allowing distinction from aquaporin-4 (AQP4)-IgG-positive neuromyelitis optica spectrum disorder (AQP4-IgG+NMOSD) and multiple sclerosis (MS). The clinical manifestations of MOGAD are heterogeneous, ranging from isolated optic neuritis or myelitis to multifocal CNS demyelination often in the form of acute disseminated encephalomyelitis (ADEM), or cortical encephalitis. A relapsing course is observed in approximately 50% of patients. Characteristic MRI features have been described that increase the diagnostic suspicion (e.g., perineural optic nerve enhancement, spinal cord H-sign, T2-lesion resolution over time) and help discriminate from MS and AQP4+NMOSD, despite some overlap. The detection of MOG-IgG in the serum (and sometimes CSF) confirms the diagnosis in patients with compatible clinical-MRI phenotypes, but false positive results are occasionally encountered, especially with indiscriminate testing of large unselected populations. The type of cell-based assay used to evaluate for MOG-IgG (fixed vs. live) and antibody end-titer (low vs. high) can influence the likelihood of MOGAD diagnosis. International consensus diagnostic criteria for MOGAD are currently being compiled and will assist in clinical diagnosis and be useful for enrolment in clinical trials. Although randomized controlled trials are lacking, MOGAD acute attacks appear to be very responsive to high dose steroids and plasma exchange may be considered in refractory cases. Attack-prevention treatments also lack class-I data and empiric maintenance treatment is generally reserved for relapsing cases or patients with severe residual disability after the presenting attack. A variety of empiric steroid-sparing immunosuppressants can be considered and may be efficacious based on retrospective or prospective observational studies but prospective randomized placebo-controlled trials are needed to better guide treatment. In summary, this article will review our rapidly evolving understanding of MOGAD diagnosis and management.
Collapse
Affiliation(s)
- Elia Sechi
- Neurology Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Laura Cacciaguerra
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
- Department of Neurology and Center for Multiple Sclerosis and Autoimmune Neurology Mayo Clinic, Rochester, MN, United States
| | - John J. Chen
- Department of Neurology and Center for Multiple Sclerosis and Autoimmune Neurology Mayo Clinic, Rochester, MN, United States
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, United States
| | - Sara Mariotto
- Neurology Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Giulia Fadda
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Alessandro Dinoto
- Neurology Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | | | - Sean J. Pittock
- Department of Neurology and Center for Multiple Sclerosis and Autoimmune Neurology Mayo Clinic, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Eoin P. Flanagan
- Department of Neurology and Center for Multiple Sclerosis and Autoimmune Neurology Mayo Clinic, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Eoin P. Flanagan
| |
Collapse
|
14
|
Dalakas MC. Stiff-person Syndrome and GAD Antibody-spectrum Disorders: GABAergic Neuronal Excitability, Immunopathogenesis and Update on Antibody Therapies. Neurotherapeutics 2022; 19:832-847. [PMID: 35084720 PMCID: PMC9294130 DOI: 10.1007/s13311-022-01188-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 01/10/2023] Open
Abstract
Although antibodies against Glutamic Acid Decarboxylase (GAD) were originally associated with Stiff Person Syndrome (SPS), they now denote the "GAD antibody-spectrum disorders (GAD-SD)" that include Cerebellar Ataxia, Autoimmune Epilepsy, Limbic Encephalitis, PERM and eye movement disorder. In spite of the unique clinical phenotype that each of these disorders has, there is significant overlapping symptomatology characterized by autoimmune neuronal excitability. In addition to GAD, three other autoantibodies, against glycine receptors, amphiphysin and gephyrin, are less frequently or rarely associated with SPS-SD. Very high serum anti-GAD antibody titers are a key diagnostic feature for all GAD-SD, commonly associated with the presence of GAD antibodies in the CSF, a reduced CSF GABA level and increased anti-GAD-specific IgG intrathecal synthesis denoting stimulation of B-cell clones in the CNS. Because anti-GAD antibodies from the various hyperexcitability syndromes recognize the same dominant GAD epitope, the clinical heterogeneity among GAD-SD patients remains unexplained. The paper highlights the biologic basis of autoimmune hyperexcitability connected with the phenomenon of reciprocal inhibition as the fundamental mechanism of the patients' muscle stiffness and spasms; addresses the importance of high-GAD antibody titers in diagnosis, pinpointing the diagnostic challenges in patients with low-GAD titers or their distinction from functional disorders; and discusses whether high GAD-antibodies are disease markers or pathogenic in the context of their association with reduced GABA level in the brain and CSF. Finally, it focuses on therapies providing details on symptomatic GABA-enhancing drugs and the currently available immunotherapies in a step-by-step approach. The prospects of future immunotherapeutic options with antibody therapies are also summarized.
Collapse
Affiliation(s)
- Marinos C Dalakas
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.
- Neuroimmunology Unit National and Kapodistrian University of Athens Medical School, Athens, Greece.
| |
Collapse
|
15
|
Budding K, Johansen LE, Van de Walle I, Dijkxhoorn K, de Zeeuw E, Bloemenkamp LM, Bos JW, Jansen MD, Curial CAD, Silence K, de Haard H, Blanchetot C, Van de Ven L, Leusen JHW, Pasterkamp RJ, van den Berg LH, Hack CE, Boross P, van der Pol WL. Anti-C2 Antibody ARGX-117 Inhibits Complement in a Disease Model for Multifocal Motor Neuropathy. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 9:9/1/e1107. [PMID: 34759020 PMCID: PMC8587732 DOI: 10.1212/nxi.0000000000001107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 09/10/2021] [Indexed: 11/22/2022]
Abstract
Background and Objectives To determine the role of complement in the disease pathology of multifocal motor neuropathy (MMN), we investigated complement activation, and inhibition, on binding of MMN patient-derived immunoglobulin M (IgM) antibodies in an induced pluripotent stem cell (iPSC)-derived motor neuron (MN) model for MMN. Methods iPSC-derived MNs were characterized for the expression of complement receptors and membrane-bound regulators, for the binding of circulating IgM anti-GM1 from patients with MMN, and for subsequent fixation of C4 and C3 on incubation with fresh serum. The potency of ARGX-117, a novel inhibitory monoclonal antibody targeting C2, to inhibit fixation of complement was assessed. Results iPSC-derived MNs moderately express the complement regulatory proteins CD46 and CD55 and strongly expressed CD59. Furthermore, MNs express C3aR, C5aR, and complement receptor 1. IgM anti-GM1 antibodies in serum from patients with MMN bind to MNs and induce C3 and C4 fixation on incubation with fresh serum. ARGX-117 inhibits complement activation downstream of C4 induced by patient-derived anti-GM1 antibodies bound to MNs. Discussion Binding of IgM antibodies from patients with MMN to iPSC-derived MNs induces complement activation. By expressing complement regulatory proteins, particularly CD59, MNs are protected against complement-mediated lysis. Yet, because of expressing C3aR, the function of these cells may be affected by complement activation upstream of membrane attack complex formation. ARGX-117 inhibits complement activation upstream of C3 in this disease model for MMN and therefore represents an intervention strategy to prevent harmful effects of complement in MMN.
Collapse
Affiliation(s)
- Kevin Budding
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Lill Eva Johansen
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Inge Van de Walle
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Kim Dijkxhoorn
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Elisabeth de Zeeuw
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Lauri M Bloemenkamp
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Jeroen W Bos
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Marc D Jansen
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Chantall A D Curial
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Karen Silence
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Hans de Haard
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Christophe Blanchetot
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Liesbeth Van de Ven
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Jeanette H W Leusen
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - R Jeroen Pasterkamp
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Leonard H van den Berg
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - C Erik Hack
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - Peter Boross
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands
| | - W Ludo van der Pol
- From the Center for Translational Immunology (K.B., K.D., E.Z., L.M.B., J.H.W.L., C.E.H., P.B.), University Medical Center Utrecht; Department of Neurology and Neurosurgery (L.E.J., L.M.B., J.W.B., M.D.J., C.A.D.C., L.H.B., W.L.P.), University Medical Center Utrecht Brain Center; Department of Translational Neuroscience (L.E.J., L.M.B., R.J.P.), University Medical Center Utrecht Brain Center, Utrecht University; Argenx BVBA, Industriepark-Zwijnaarde 7 (I.W., K.S., H.H., C.B., L.V.), Zwijnaarde, Belgium; and Prothix (C.E.H., P.B.), Leiden, the Netherlands.
| |
Collapse
|
16
|
Yasuda N, Nishikawa M, Shimosaka H, Ono Y, Yatomi Y. Effect of administration of immunoglobulin preparations on the results of tests for autoantibodies. Mod Rheumatol 2021; 32:946-952. [PMID: 34918126 DOI: 10.1093/mr/roab085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/06/2021] [Accepted: 09/27/2021] [Indexed: 11/14/2022]
Abstract
OBJECTIVES We encountered the case in whom the results of autoantibodies tests became transiently positive after high-dose immunoglobulin therapy and investigated the effect of administration of these preparations on autoantibodies tests in subjects with autoimmune diseases who had received high-dose immunoglobulin therapy. METHODS We measured the autoantibodies in residual serum samples after routine clinical testing from eight subjects with autoimmune diseases who had received high-dose immunoglobulin therapy. We also measured the autoantibodies in available immunoglobulin preparations. RESULTS Tests for autoantibodies conducted before and after immunoglobulin therapy revealed a positive conversion of the results for anti-Sjogren's syndrome antigen A (SS-A) antibody, anti-glutamic acid decarboxylase (GAD) antibody, anti-thyroglobulin (Tg) antibody, and anti-thyroid peroxidase (TPO) antibody. In five cases in which changes in the antibody titres of anti-SS-A antibody after the high-dose immunoglobulin administration, it was found that the titres decreased by about 50% from 10 to 20 days after and the test result became negative 25- 30 days later. CONCLUSIONS In patients receiving high-dose immunoglobulin therapy, there appears to be a high likelihood of positive conversion of tests for anti-SS-A antibody, GAD antibody, Tg antibody, and TPO antibody after the treatment, so that cautious interpretation of the results is of importance.
Collapse
Affiliation(s)
- Naomi Yasuda
- Department of Clinical Laboratory, University of Tokyo Hospital, Tokyo, Japan
| | - Masako Nishikawa
- Department of Clinical Laboratory, University of Tokyo Hospital, Tokyo, Japan
| | - Hironori Shimosaka
- Department of Clinical Laboratory, University of Tokyo Hospital, Tokyo, Japan
| | - Yoshikazu Ono
- Department of Clinical Laboratory, University of Tokyo Hospital, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory, University of Tokyo Hospital, Tokyo, Japan.,Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Dalakas MC. Update on Intravenous Immunoglobulin in Neurology: Modulating Neuro-autoimmunity, Evolving Factors on Efficacy and Dosing and Challenges on Stopping Chronic IVIg Therapy. Neurotherapeutics 2021; 18:2397-2418. [PMID: 34766257 PMCID: PMC8585501 DOI: 10.1007/s13311-021-01108-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
In the last 25 years, intravenous immunoglobulin (IVIg) has had a major impact in the successful treatment of previously untreatable or poorly controlled autoimmune neurological disorders. Derived from thousands of healthy donors, IVIg contains IgG1 isotypes of idiotypic antibodies that have the potential to bind pathogenic autoantibodies or cross-react with various antigenic peptides, including proteins conserved among the "common cold"-pre-pandemic coronaviruses; as a result, after IVIg infusions, some of the patients' sera may transiently become positive for various neuronal antibodies, even for anti-SARS-CoV-2, necessitating caution in separating antibodies derived from the infused IVIg or acquired humoral immunity. IVIg exerts multiple effects on the immunoregulatory network by variably affecting autoantibodies, complement activation, FcRn saturation, FcγRIIb receptors, cytokines, and inflammatory mediators. Based on randomized controlled trials, IVIg is approved for the treatment of GBS, CIDP, MMN and dermatomyositis; has been effective in, myasthenia gravis exacerbations, and stiff-person syndrome; and exhibits convincing efficacy in autoimmune epilepsy, neuromyelitis, and autoimmune encephalitis. Recent evidence suggests that polymorphisms in the genes encoding FcRn and FcγRIIB may influence the catabolism of infused IgG or its anti-inflammatory effects, impacting on individualized dosing or efficacy. For chronic maintenance therapy, IVIg and subcutaneous IgG are effective in controlled studies only in CIDP and MMN preventing relapses and axonal loss up to 48 weeks; in practice, however, IVIg is continuously used for years in all the aforementioned neurological conditions, like is a "forever necessary therapy" for maintaining stability, generating challenges on when and how to stop it. Because about 35-40% of patients on chronic therapy do not exhibit objective neurological signs of worsening after stopping IVIg but express subjective symptoms of fatigue, pains, spasms, or a feeling of generalized weakness, a conditioning effect combined with fear that discontinuing chronic therapy may destabilize a multi-year stability status is likely. The dilemmas of continuing chronic therapy, the importance of adjusting dosing and scheduling or periodically stopping IVIg to objectively assess necessity, and concerns in accurately interpreting IVIg-dependency are discussed. Finally, the merit of subcutaneous IgG, the ineffectiveness of IVIg in IgG4-neurological autoimmunities, and genetic factors affecting IVIg dosing and efficacy are addressed.
Collapse
Affiliation(s)
- Marinos C Dalakas
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.
- Neuroimmunology Unit, Dept. of Pathophysiology, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| |
Collapse
|
18
|
Sechi E, Flanagan EP. Antibody-Mediated Autoimmune Diseases of the CNS: Challenges and Approaches to Diagnosis and Management. Front Neurol 2021; 12:673339. [PMID: 34305787 PMCID: PMC8292678 DOI: 10.3389/fneur.2021.673339] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022] Open
Abstract
Antibody-mediated disorders of the central nervous system (CNS) are increasingly recognized as neurologic disorders that can be severe and even life-threatening but with the potential for reversibility with appropriate treatment. The expanding spectrum of newly identified autoantibodies targeting glial or neuronal (neural) antigens and associated clinical syndromes (ranging from autoimmune encephalitis to CNS demyelination) has increased diagnostic precision, and allowed critical reinterpretation of non-specific neurological syndromes historically associated with systemic disorders (e.g., Hashimoto encephalopathy). The intracellular vs. cell-surface or synaptic location of the different neural autoantibody targets often helps to predict the clinical characteristics, potential cancer association, and treatment response of the associated syndromes. In particular, autoantibodies targeting intracellular antigens (traditionally termed onconeural autoantibodies) are often associated with cancers, rarely respond well to immunosuppression and have a poor outcome, although exceptions exist. Detection of neural autoantibodies with accurate laboratory assays in patients with compatible clinical-MRI phenotypes allows a definite diagnosis of antibody-mediated CNS disorders, with important therapeutic and prognostic implications. Antibody-mediated CNS disorders are rare, and reliable autoantibody identification is highly dependent on the technique used for detection and pre-test probability. As a consequence, indiscriminate neural autoantibody testing among patients with more common neurologic disorders (e.g., epilepsy, dementia) will necessarily increase the risk of false positivity, so that recognition of high-risk clinical-MRI phenotypes is crucial. A number of emerging clinical settings have recently been recognized to favor development of CNS autoimmunity. These include antibody-mediated CNS disorders following herpes simplex virus encephalitis or occurring in a post-transplant setting, and neurological autoimmunity triggered by TNFα inhibitors or immune checkpoint inhibitors for cancer treatment. Awareness of the range of clinical and radiological manifestations associated with different neural autoantibodies, and the specific settings where autoimmune CNS disorders may occur is crucial to allow rapid diagnosis and early initiation of treatment.
Collapse
Affiliation(s)
- Elia Sechi
- Department of Neurology, Mayo Clinic, Rochester, MN, United States.,Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Eoin P Flanagan
- Department of Neurology, Mayo Clinic, Rochester, MN, United States.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
19
|
Detection of Antibodies Against Human Leukocyte Antigen Class II in the Sera of Patients Receiving Intravenous Immunoglobulin. Transplant Direct 2021; 7:e697. [PMID: 34036167 PMCID: PMC8133174 DOI: 10.1097/txd.0000000000001146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 02/11/2021] [Indexed: 11/25/2022] Open
Abstract
Supplemental Digital Content is available in the text. IVIG is occasionally used for preventing and treating severe infections of patients who are to undergo transplantation. Administration of IVIG, which includes high-titer antibodies (Abs) against HLA class I and II, might have a substantial influence on the HLA Ab test results of these patients. However, this issue has remained unreported.
Collapse
|
20
|
Fernández Díaz E, Sánchez-Larsen Á, Redondo-Peñas I, Segura T. Progressive cerebellar ataxia with falsely positive anti-Ma2 antibodies. NEUROLOGÍA (ENGLISH EDITION) 2021. [DOI: 10.1016/j.nrleng.2020.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
21
|
Fernández Díaz E, Sánchez-Larsen Á, Redondo-Peñas I, Segura T. Ataxia cerebelosa progresiva con anticuerpos anti-Ma2 falsamente positivos. Neurologia 2021; 36:334-336. [DOI: 10.1016/j.nrl.2020.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/12/2020] [Accepted: 06/12/2020] [Indexed: 10/23/2022] Open
|
22
|
Tsiortou P, Alexopoulos H, Dalakas MC. GAD antibody-spectrum disorders: progress in clinical phenotypes, immunopathogenesis and therapeutic interventions. Ther Adv Neurol Disord 2021; 14:17562864211003486. [PMID: 33854562 PMCID: PMC8013924 DOI: 10.1177/17562864211003486] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 12/14/2022] Open
Abstract
Antibodies against glutamic acid decarboxylase (GAD), originally linked to stiff person syndrome (SPS), now denote the "GAD antibody-spectrum disorders" (GAD-SD) that also include autoimmune epilepsy, limbic encephalitis, cerebellar ataxia and nystagmus with overlapping symptomatology highlighting autoimmune neuronal excitability disorders. The reasons for the clinical heterogeneity among GAD-antibody associated syndromes remain still unsettled, implicating variable susceptibility of GABAergic neurons to anti-GAD or other still unidentified autoantibodies. Although anti-GAD antibody titers do not correlate with clinical severity, very high serum titers, often associated with intrathecal synthesis of anti-GAD-specific IgG, point to in-situ effects of GAD or related autoantibodies within the central nervous system. It remains, however, uncertain what drives these antibodies, why they persist and whether they are disease markers or have pathogenic potential. The review, focused on these concerns, describes the widened clinical manifestations and overlapping features of all GAD-SD; addresses the importance of GAD antibody titers and potential significance of GAD epitopes; summarizes the biologic basis of autoimmune hyperexcitability; highlights the electrophysiological basis of reciprocal inhibition in muscle stiffness; and provides practical guidelines on symptomatic therapies with gamma-aminobutyric acid-enhancing drugs or various immunotherapies.
Collapse
Affiliation(s)
- Popianna Tsiortou
- Neuroimmunology Unit, Department of Pathophysiology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Harry Alexopoulos
- Neuroimmunology Unit, Department of Pathophysiology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Marinos C Dalakas
- Department of Neurology, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA; Neuroimmunology Unit, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
23
|
Dalakas MC, Bitzogli K, Alexopoulos H. Anti-SARS-CoV-2 Antibodies Within IVIg Preparations: Cross-Reactivities With Seasonal Coronaviruses, Natural Autoimmunity, and Therapeutic Implications. Front Immunol 2021; 12:627285. [PMID: 33679770 PMCID: PMC7925824 DOI: 10.3389/fimmu.2021.627285] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/01/2021] [Indexed: 02/05/2023] Open
Abstract
Introduction: Cross-reactivity to SARS-CoV-2 antigenic peptides has been detected on T-cells from pre-pandemic donors due to recognition of conserved protein fragments within members of the coronavirus's family. Further, preexisting antibodies recognizing SARS-CoV-2 with conserved epitopes in the spike region have been now seen in uninfected individuals. High-dose Intravenous Immunoglobulin (IVIg), derived from thousands of healthy donors, contains natural IgG antibodies against various antigens which can be detected both within the IVIg preparations and in the serum of IVIg-receiving patients. Whether IVIg preparations from pre-pandemic donors also contain antibodies against pre-pandemic coronaviruses or autoreactive antibodies that cross-react with SARS-CoV-2 antigenic epitopes, is unknown. Methods: 13 samples from 5 commercial IVIg preparations from pre-pandemic donors (HyQvia (Baxalta Innovations GmbH); Privigen (CSL Behring); Intratect (Biotest AG); IgVena (Kedrion S.p.A); and Flebogamma (Grifols S.A.) were blindly screened using a semi-quantitative FDA-approved and validated enzyme-linked immunosorbent assay (ELISA) (Euroimmun, Lubeck, Germany). Results: Nine of thirteen preparations (69.2%), all from two different manufactures, were antibody-positive based on the defined cut-off positivity (index of sample OD to calibrator OD > 1.1). From one manufacturer, 7/7 lots (100%) and from another 2/3 lots (67%), tested positive for cross-reacting antibodies. 7/9 of the positive preparations (77%) had titers as seen in asymptomatically infected individuals or recent COVID19-recovered patients, while 2/9 (23%) had higher titers, comparable to those seen in patients with active symptomatic COVID-19 infection (index > 2.2). Conclusion: Pre-pandemic IVIg donors have either natural autoantibodies or pre-pandemic cross-reactive antibodies against antigenic protein fragments conserved among the “common cold” - related coronaviruses. The findings are important in: (a) assessing true anti-SARS-CoV-2-IgG seroprevalence avoiding false positivity in IVIg-receiving patients; (b) exploring potential protective benefits in patients with immune-mediated conditions and immunodeficiencies receiving acute or chronic maintenance IVIg therapy, and (c) validating data from a recent controlled study that showed significantly lower in-hospital mortality in the IVIg- treated group.
Collapse
Affiliation(s)
- Marinos C Dalakas
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States.,Neuroimmunology Unit, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Kleopatra Bitzogli
- Neuroimmunology Unit, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Harry Alexopoulos
- Neuroimmunology Unit, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|